
Train Composition and Decomposition: Domain and

Requirements

Panagiotis Karras and Dines Bjørner

Computer Science and Engineering,

Informatics and Mathematical Modelling, Technical University of Denmark

Building 322, Richard Petersens Plads, DK–2800 Kgs. Lyngby, Denmark

{pan|db}@imm.dtu.dk

30 September, 2002

Abstract

The problem is to be tackled is as follows: There is a railway net. Trains travel
from station to station. When leaving an intermediate station on a train journey, a train
may have its direction reversed. Trains are composed from assemblies. An assembly is
a sequence of carriages. At stations trains may have assemblies added (composed) to, or
removed (decomposed) from the train. Station tracks may restrict train additions and
removals to occur only at either the front, or at the back of a train. Given requirements
for trains to provide suitable load (for example passenger) capacity along a journey with
varying such demands, the problem is now to plan that trains, during their journeys, have
suitable assemblies added to or removed from the train.

We present a standard informal narrative and a formal model of train composition
and decomposition, of their planning and effectuation.

We relate this model to the rough sketch description provided by Dr. Leo Kroon of
NLS Reisigers.

Contents

1 Brief Outline of the Formal Model 2

2 Introduction of the Formal Model 4

2.1 Railway Topology . 4
2.2 Trains, Assemblies, Carriages, and Rolling Stock 6
2.3 Journeys, Time Tables and Schedules . 8
2.4 Passenger Statistics . 11

3 Planning 15

3.1 Planning Function . 15

1

2 Train Composition and Decomposition: Domain and Requirements

1 Brief Outline of the Formal Model
T:1, F:1

The end result of our model at this stage is schedule-generating function. The schedules this
function generates are such, so that the desired rolling stock changes can be derived from the
schedule itself. This function is producing a set of all allowed schedules which satisfy a given
passenger statistics:

gen Sched: Stat1 × RulReg × RS → Sched-set
gen Sched(st,rr,rs) ≡ {sch | sch: Sched • fitting(reform stat(st),sch)}

F:2

The satisfiability of a given statistics by a schedule is defined by a fitting function:

fitting: Stat1 × Sched → Bool

The statistics as entered into the fitting function are in a well formed format. In this
format, only the number of passengers travelling between consecutive stations at given times
is given. A general non-well-formed statistics may be transformed into a well-formed one
through a function made for that purpose:

reform stat: Stat1′ → Stat1

F:3

Crucial for the definition of this reformation function is the ability to sum over all possible
’trips’ within a statistics of which a ’trip’ between two given consecutive stations is a part.
For that purpose we use a recursive summing function:

sum of nums: Stat1′ × Trip-set → Stat Number

F:4

As well as a function that returns the desired set of trips within a statistics for a given
trip, such that the given trip is part of every trip in that set:

super trip set: Stat1′ × Trip → Trip-set

F:5

Necessary for the definition of such a function is, among others, a function generating the
set of stations that form the shortest path between two given stations:

connecting set: Sta × Sta → Sta-set

c© The AMORE Project September 30, 2002, 22:29

An AMORE Project Report: P.Karras and D.Bjørner 3

F:6

The connecting set function is based on, among others, a path existence function, which,
for two given stations, returns a true value when there exists a path between them within a
network:

exists path: Sta × Sta → Bool

The path existence function is defined recursively, while its basis is an observer function,
which gives the set of neighbouring stations for a given station:

obs SSS: Sta → Sta-set

It is axiomatically required that a station belongs to the unique same network as its
neighbours. After this short excursion we may proceed to the presentation of the whole
model. F:7

September 30, 2002, 22:29 c© The AMORE Project

4 Train Composition and Decomposition: Domain and Requirements

2 Introduction of the Formal Model
T:2, F:8

2.1 Railway Topology

We take as base concept for the railway net topology that of nets. From a railway net we can
observe lines and stations. There are at least two stations and one line in a net. From a line
we can observe the exactly two distinct stations it connects. From a station we can observe
the set of one or more tracks (on which trains may halt). From a station we can observe the
set of those lines from which the station can be reached. From a station we can observe the
set of lines that can be reached from that station. From a track of a station we can observeF:9

the lines from which the track can be reached. From a track of a station we can observe those
lines that can be reached from that track. Given a track and a pair of incoming, respectively
outgoing lines, we can observe whether a train, in order to pass from the incoming to the
outgoing line will be reverse or not. From a route we can observe the ordered list of stations
that it contains, including at least two stations. Given a route and a station, we can observe
whether a train following this route will undergo a reversal at this station or not.

type

Net, Lin, Sta, Tra,
Route = Sta×Tra×(Lin×Sta×Tra)∗

value

obs Stas: Net → Sta-set,
obs Lins: Net → Lin-set,

obs SS: Lin → Sta-set,
obs LS: Sta → Lin-set,
obs SSS: Sta → Sta-set,

obs Tras: Sta → Tra-set,

obs in Lins: Sta×Tra → Lin-set,
obs out Lins: Sta×Tra → Lin-set,

is Line Reversal: Lin × Tra × Lin → Bool,

obs RStas: Route → Sta∗,

is RReversal: Route × Sta → Bool,

exists path: Sta × Sta → Bool

exists path(s1,s2) ≡
(s2 ∈ obs SSS(s1)
∨
(∃ s3: Sta •

s3 ∈ obs SSS(s1) ∧

c© The AMORE Project September 30, 2002, 22:29

An AMORE Project Report: P.Karras and D.Bjørner 5

exists path(s3,s2))
),

next station: Route × Sta → Sta
next station((FS,FT,LSTlist),s) as s′

post

(∃ idx,idx′: Nat, l,l′: Lin, t,t′: Tra •

idx′ = idx + 1 ∧
(l,s,t) = LSTlist(idx) ∧
(l′,s′,t′) = LSTlist(idx′)

)
pre

(s = FS) ∨
(∃ idx: Nat, l: Lin, t: Tra •

(l,s,t) = LSTlist(idx)
)

axiom

∀ n : Net • card obs Stas(n) ≥ 2 ∧
card obs Lins(n) ≥ 1,

∀ s: Sta • ∃! n: Net • s ∈ obs Stas(n),
∀ l: Lin • ∃! n: Net • l ∈ obs Lins(n),
∀ t: Tra • ∃! s: Sta • t ∈ obs Tras(s),

∀ s: Sta, l: Lin •

(l ∈ obs LS(s) ⇒
(∃! n: Net •

(l ∈ obs Lins(n) ∧ s ∈ obs Stas(n)))),

∀ `: Lin •

obs SS(`) =
{ s | s: Sta • `∈ obs LS(s) }

∧
card obs SS(`) = 2,

∀ s: Sta •

obs SSS(s) =
{ s′ | s′: Sta •

∃ `: Lin •

{s,s′} ⊆ obs SS(`) },

∀ s : Sta • obs Tras(s) 6= {},

September 30, 2002, 22:29 c© The AMORE Project

6 Train Composition and Decomposition: Domain and Requirements

∀ s : Sta •

∃ t: Tra •

obs in Lins(s,t) 6= {} ∧
(∀ l : Lin •

l ∈ obs in Lins(s,t) ⇒
s ∈ obs SS(l)),

∀ s : Sta •

∃ t: Tra •

obs out Lins(s,t) 6={} ∧
(∀ l : Lin •

l ∈ obs out Lins(s,t) ⇒
s ∈ obs SS(l)),

∀ t : Tra, s : Sta, `: Lin •

`∈ obs in Lins(s,t) ⇒
t ∈ obs Tras(s),

∀ t : Tra, s : Sta, `: Lin •

`∈ obs out Lins(s,t) ⇒
t ∈ obs Tras(s),

∀ r : Route • len obs RStas(r) > 1

F:10

2.2 Trains, Assemblies, Carriages, and Rolling Stock
F:11

From a train we can observe the ordered list of assemblies that it contains, including at least
one assembly. From an assembly we can observe the ordered list of carriages that it contains,
including at least one carriage. Given two trains, we can observe whether they constitute a
reversal of each other, in case they are comparable. Given a route, we can observe the next
station within it. We define equivalence and identity relationships between trains.

type

Train, Assem, Carrg

value

obs Assems: Train → Assem∗,
obs Carrgs: Assem → Carrg∗,

is TReversal: Train × Train
∼

→ Bool,
next state in route: Route × Sta × Train → Train × Sta,

equivalent trains: Train × Train → Bool

c© The AMORE Project September 30, 2002, 22:29

An AMORE Project Report: P.Karras and D.Bjørner 7

equivalent trains(t1,t2) ≡
(∀ c: Carrg •

(∃ asm: Assem •

asm ∈ obs Assems(t1) ∧
c ∈ obs Carrgs(asm)

)
≡
(∃ asm′: Assem •

asm′ ∈ obs Assems(t2) ∧
c ∈ obs Carrgs(asm′)

)
),

identical trains: Train × Train → Bool

identical trains(t1,t2) ≡
(∀ c: Carrg, idx1,idx2: Nat •

(∃ asm: Assem •

asm = obs Assems(t1)(idx1) ∧
c = obs Carrgs(asm)(idx2)

)
≡
(∃ asm′: Assem •

asm′ = obs Assems(t2)(idx1) ∧
c = obs Carrgs(asm′)(idx2)

)
)

axiom

∀ t : Train • len obs Assems(t) > 0,
∀ a : Assem • len obs Carrgs(a) > 0,

∀ r: Route, s: Sta, t: Train •

let

(t′,s′) = next state in route(r,s,t)
in

is RReversal(r,s,t) ⇒ is TReversal(t,t′)
end,

∀ r: Route, s: Sta, t: Train •

let

(t′,s′) = next state in route(r,s,t)
in

s′ = next station(r,s)
end

September 30, 2002, 22:29 c© The AMORE Project

8 Train Composition and Decomposition: Domain and Requirements

F:12

2.3 Journeys, Time Tables and Schedules
F:13

From a schedule we can observe get the set of journeys described in it. From a schedule and
a train number we can observe the journey the train with this number makes according to
this schedule. From a journey we can observe the list of stations visited in it, including at
least two stations. Given a schedule, a train number and a station, we can observe the set of
pairs of arrival and departure times for the train with this number respectively to and from
that station according to this time table. Given a schedule, a train number, a station and
a time, we can observe the characteristics of the train that appears in that station bearing
this train number at that time by (according to) this schedule. We formulate well-formedness
conditions for journeys and schedules. An assembly map is a pairing of assembly types to
their numbers within a train configuration. For mathematical reasons that will be apparent
in the following section, we define a well-formed assembly map so that its domain includes
all existing assembly types, with possible zero values as numbers of assemblies. We define a
function that gives the expected travelling time between two stations.

type

TrainNum, TrainChars, Platform, AssemType, OClock,
TimeDur == null| ,
TravelTime = TimeDur,
StopTime = TimeDur,
Interval = TimeDur,
FirstTime = OClock,
LastTime = OClock,
Num of Assems = Nat,
Num of Passengers = Nat,

SV = Sta×OClock×OClock×Platform×TrainChars,
Journ′ = SV∗,
Journ = {|j: Journ′ • wf journ(j) |},

TrSer = TrainNum∗,

Sched = TrainNum →m Journ,

AssemMap′ = AssemType →m Num of Assems,
AssemMap = {|am: AssemMap′ • wf assem map(am) |}

value

obs Assemblies: TrainChars → AssemMap,
obs Num of Passengers: AssemType → Num of Passengers,

c© The AMORE Project September 30, 2002, 22:29

An AMORE Project Report: P.Karras and D.Bjørner 9

journs in sched: Sched → Journ-set
journs in sched(sch) ≡ rng sch,

journ of num: Sched × TrainNum → Journ
journ of num(sch,tn) ≡ sch(tn)
pre

tn ∈ dom sch,

journ stas: Journ → Sta-set
journ stas(j) as station set
post

(∀ s: Sta •

(∃ idx: Nat, dt,at: OClock,
p: Platform, tc: TrainChars •

j(idx) = (s,dt,at,p,tc)
)

≡
s ∈ station set

),

times: Sched × TrainNum × Sta → (OClock × OClock)-set
times(sch,tn,s) as times set
post

(∀ at,dt: OClock •

(at,dt) ∈ times set
≡
(∃ idx: Nat, p: Platform, tc: TrainChars •

(s,at,dt,p,tc) = sch(tn)(idx)
)

)
pre

tn ∈ dom sch ∧
s ∈ journ stas(sch(tn)),

trainchars: Sched × TrainNum × Sta × OClock → TrainChars
trainchars(sch,tn,s,t) as tc
post

(∃ idx: Nat, dt: OClock, p: Platform •

(s,t,dt,p,tc) = sch(tn)(idx)
)
pre

September 30, 2002, 22:29 c© The AMORE Project

10 Train Composition and Decomposition: Domain and Requirements

tn ∈ dom sch ∧
s ∈ obs JStas(sch(tn)),

obs travelling time: Sta × Sta → TravelTime,

>: OClock × OClock → Bool,
>: TimeDur × TimeDur → Bool,

≥: OClock × OClock → Bool,
≥: TimeDur × TimeDur → Bool,

∗: Nat × Interval → Interval,
+: OClock × TimeDur → OClock,
+: TimeDur × TimeDur → TimeDur,
−: OClock × OClock → TimeDur,

wf journ: Journ → Bool

wf journ(j) ≡
(∀ idx1,idx2: Nat •

idx1 < len j ∧ idx2 < len j ⇒
let

(s1,at1,dt1,p1,tc1) = j(idx1),
(s2,at2,dt2,p2,tc2) = j(idx2)

in

s2 ∈ obs SSS(s1) ∧
dt2 > at2 ∧ at2 > dt1 ∧ dt1 > at1 ∧
at2 − dt1 ≥ obs travelling time(s1,s2)

end

),

wf schedule: Sched → Bool

wf schedule(sch) ≡
(∀ j: Journ •

j ∈ rng sch ⇒ wf journ(j)
),

wf assem map: AssemMap → Bool

wf assem map(am) ≡
(∀ at: AssemType •

at ∈ dom am
)

axiom

c© The AMORE Project September 30, 2002, 22:29

An AMORE Project Report: P.Karras and D.Bjørner 11

∀ sch : Sched • journs in sched(sch) 6= {},

∀ j : Journ • card journ stas(j) > 1,

∀ s: Sta • obs travelling time(s,s) = null

F:14

2.4 Passenger Statistics
F:15

A Statistics is a mapping from pairs of time values to maps of couples of Stations mapped to
the Number of passangers commuting between those two stations in the time interval between
those two time values. We overload the addition and subtraction operators so that these may
be used for the composition and decomposition of trains, respectively, expressed as adding
and subtracting of assemply maps. Given a journey and a station within this journey, we may
derive the rolling stock to be added and to be taken out of the train making that journey in
that station. A real world statistics given in a general form, in terms of numbers of commuters
between pairs of stations and departure and arrival times, is transformed into a specific
statistics as needed in our model, in terms of number of commuters between consecutive
stations only.

type

Stat Number = Nat,
Trip = (OClock × OClock) × (Sta × Sta),

September 30, 2002, 22:29 c© The AMORE Project

12 Train Composition and Decomposition: Domain and Requirements

Stat1′ = (OClock×OClock) →m ((Sta×Sta) →m Number),
Stat1 = {|s: Stat1 • consecutive(s) |}

value

+: AssemMap × AssemMap → AssemMap
am1 + am2 as am3
post

(∀ at: AssemType •

am3(at) = am1(at) + am2(at)
),

−: AssemMap × AssemMap → AssemMap
am1 − am2 as am3
post

(∀ at: AssemType •

am3(at) = am1(at) − am2(at)
)

pre

(∀ at: AssemType •

am1(at) ≥ am2(at)
),

orthogonal: AssemMap × AssemMap → Bool

orthogonal(am1,am2) ≡
(∀ at: AssemType •

am1(at)∗am2(at) = 0
),

train change: Journ × Sta → TrainChars × TrainChars
train change(j,s) as (tc0,tc1)
post

(∃ idx: Nat, s0: Sta, at,at0,dt,dt0: OClock,
p,p0: Platform •

(s,at,dt,p,tc1) = j(idx) ∧
(s0,at0,dt0,p0,tc0) = j(idx − 1)

)
pre

s ∈ journ stas(j),

implement change: TrainChars × TrainChars → AssemMap × AssemMap
implement change(tc1,tc2) as (out assem map,in assem map)

c© The AMORE Project September 30, 2002, 22:29

An AMORE Project Report: P.Karras and D.Bjørner 13

post

let

ante assem map = obs Assemblies(tc1),
post assem map = obs Assemblies(tc2)
in

post assem map = ante assem map + in assem map − out assem map
∧
orthogonal(in assem map,out assem map)
end,

comp decomp: Journ × Sta → AssemMap × AssemMap
comp decomp(j,s) ≡
implement change(train change(j,s)),

consecutive: Stat1′ → Bool

consecutive(st) ≡
(∀ dst,ast: Sta, num: Stat Number, dt,at: OClock •

(dt,at) ∈ dom st ∧
(dst,ast) ∈ dom st(dt,at) ∧
num = st(dt,at)(dst,ast)
⇒
ast ∈ obs SSS(dst) ∧ at − dt ≥ obs travelling time(dst,ast)

),

connecting set: Sta × Sta → Sta-set
connecting set(s1,s2) as connecting set
post

(∀ s: Sta •

exists path(s1,s) ∧ exists path(s,s2) ∧
obs travelling time(s1,s) + obs travelling time(s,s2) =
obs travelling time(s1,s2)
≡
s ∈ connecting set

)
pre

exists path(s1,s2),

super trip set: Stat1′ × Trip → Trip-set
super trip set(st,((dt,at),(dst,ast))) as super trip set
post

(∀ dst′,ast′: Sta, dt′,at′: OClock •

(dt′,at′) ∈ dom st ∧
(dst′,ast′) ∈ dom st(dt′,at′) ∧

September 30, 2002, 22:29 c© The AMORE Project

14 Train Composition and Decomposition: Domain and Requirements

{dst,ast} ⊆ connecting set(dst′,ast′) ∧
dt ≥ dt′ + obs travelling time(dst,dst′) ∧
at′ ≥ at + obs travelling time(ast′,ast)
≡
((dt′,at′),(dst′,ast′)) ∈ super trip set

),

sum of nums: Stat1′ × Trip-set → Stat Number
sum of nums(st,super trip set) ≡
case card super trip set of

0 → 0,
→

let

dst: Sta, ast: Sta, dt: OClock, at: OClock •

((dt,at),(dst,ast)) ∈ super trip set
in

st(dt,at)(dst,ast) +
sum of nums(st,super trip set\{((dt,at),(dst,ast))})

end

end,

reform stat: Stat1′ → Stat1
reform stat(st′) as st
post

(∀ dst,ast: Sta, dt,at: OClock •

(dt,at) ∈ dom st ∧
(dst,ast) ∈ dom st(dt,at)
⇒
st(dt,at)(dst,ast) =
sum of nums(st′,super trip set(st′,((dt,at),(dst,ast))))

)
pre

(∀ dst,ast: Sta, dt,at: OClock •

(dt,at) ∈ dom st′ ∧
(dst,ast) ∈ dom st′(dt,at)
⇒
at − dt ≥ obs travelling time(dst,ast)

)

F:16

c© The AMORE Project September 30, 2002, 22:29

An AMORE Project Report: P.Karras and D.Bjørner 15

3 Planning
T:3, F:17

3.1 Planning Function

Given a statistics and a set of rules and regulations we can generate a set of scedules for
the given statistics under the given rules and regulations. The generated schedules satisfy
the given statistics. A recursive function computes the sum of passenger load that a given
configuration of train characteristics may take.

type

RulReg

value

passengers sum: AssemMap → Nat

passengers sum(assem map) ≡
case card dom assem map of

0 → 0,
→

let

assem type: AssemType •

assem type ∈ dom assem map
in

assem map(assem type)∗obs Num of Passengers(assem type) +
passengers sum(assem map\{assem type})

end

end,

fitting: Stat1 × Sched → Bool

fitting(st,sch) ≡
(∀ dt,at: OClock, dst,ast: Sta, num: Stat Number •

(dt,at) ∈ dom st ∧
(dst,ast) ∈ dom st(dt,at) ∧
num = st(dt,at)(dst,ast)
⇒
(∃ j: Journ •

j ∈ rng sch ∧
(∃ idx1,idx2: Nat, at1,dt2: OClock,

p1,p2: Platform, tc1,tc2: TrainChars •

idx1 ≤ len j ∧ idx2 ≤ len j ∧
(dst,at1,dt,p1,tc1) = j(idx1) ∧
(ast,at,dt2,p2,tc2) = j(idx2) ∧
passengers sum(obs Assemblies(tc1)) ≥ num

September 30, 2002, 22:29 c© The AMORE Project

16 Train Composition and Decomposition: Domain and Requirements

)
)

),

gen Sched: Stat1 × RulReg → Sched-set
gen Sched(st,rr) ≡ {sch | sch: Sched • fitting(reform stat(st),sch)}

F:18

c© The AMORE Project September 30, 2002, 22:29

