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Introduction
Timetable evaluation
• Corridors (capacity, headway, disruptions)
• Stations (capacity, throughput)
• Train network (stability, robustness, reliability, delay propagation)

⇒Train interactions and circulations, network properties

PETER: Performance Evaluation of Timed Events in Railways

Benefits of analytical approach
• Explicit model results (instead of black-box)
• Clear problem structure (validation) 
• Exact results based on (deterministic) timetable design times
• Fast computation
• Large-scale networks
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PETER
Periodic timetable
• Arrival and departure times of train lines at stations
• Same pattern repeats each hour (cycle time)
• Steady-state of train operations

Input (DONS)
• Lines: running times, dwell times, layover times
• Connections: transfer times, (de-)coupling times
• Infrastructure: headway at conflict points

Timetable performance
• Network stability, robustness & throughput
• Critical paths / critical circuits
• Buffer time allocation & sensitivity to delays
• Delay propagation over time and space, settling time
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Max-Plus Modelling

Period delay = 0 Period delay = 1 Period delay = 2

A = 55 D = 5 D = 55 A = 65≡ 5 D = 55 A = 125 ≡ 5

Constraint

where
xi(k) = departure time train i in period k
tij = transportation time from i to j
µij = period delay (token) from i to j

Period delay 
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Max-Plus Modelling
Running time constraint

where
DL1,S1(k) = k-th departure time of train line L1 at station S1

tL1,S1,S2 = Running time of a train of L1 from station S1 to S2

tL1,S2 = Dwell time of a train of L1 at station S2

= Period delay, 

Transfer constraint

tL2,L1,S2 = Transfer time from L2 to L1 at S2

2,12,1,11121 )()( SLSSL,SL,SL ttkDkD ++−≥ }

} { }p,,1,0 f}∈

2,1,22,0,20,22,1 )()( SLLSSLSLSL ttkDkD ++−≥ }



3rd AMORE, Oegstgeest, October 1-4, 2002 7

Max-Plus Modelling
Timetable constraint

dL1,S2 = Scheduled departure time L1 from S2

T = Timetable cycle time or period length (usually T = 60 min)

Headway constraint

hL1,L2,S2 = Minimum departure headway time from L1 to L2 after S2
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Max-Plus Modelling
Precedence graph
• Constraints: 
• Node for each departure event xi = DLl,Ss
• Arc (i,j) for each constraint from xi to xj
• Arc weight: transportation time tij in constraint
• 2nd arc weight: period delay µij in constraint

Timed event graph or timed marked graph
• Transitions: nodes of precedence graph
• Places: arcs of precedence graph
• Holding time of places: transportation times of arcs
• Initial marking (tokens) of places: period delays of arcs

ijijji tkxkx +−≥ )()( µ
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Max-Plus Modelling
The event times satisfy the (max,+) recursion

where

The recursion is linear in the max-plus algebra where
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Max-Plus Modelling
Higher (p-st) order (max,+) linear system

with

x = departure time vector
d = scheduled departure time vector
tji = holding time of arc (place) from j to i
µji = period delay (token) of arc from j to i

First-order representation
• by state augmentation
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Max-Plus System Analysis
• Stability: the ability to return to schedule (the steady-state) after 

disruptions

• The minimum cycle time equals the maximum cycle mean

and this equals the (max-plus) eigenvalue λ of (irreducible) A

• Circuits with maximum cycle mean are critical circuits
• Stability test
• The maximum mean cycle problem / maximum profit-to-time 

ratio cycle problem is solvable in O(nm) time
• Algorithms: Karp, power algorithm, Howard’s policy iteration, LP
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Max-plus System Analysis
• Stability margin: maximum delay of all holding times that can 

be settled within one timetable period (cycle time)

• A formal polynomial matrix of a finite matrix series               is 

which defines a matrix for given 

• Stability margin is where                 with

• Eigenvalue problem for matrix

µ−=∆ vvB ⊗=⊗ µ

)(max:)(
,,00

1 TATATB
p

p
⋅−=⊗=Α=

=

−

=

− ⊕ ��
��

�

�

�

)()( �

�

�

γγ ⊗=Α ⊕ A
{ }pA 0=��

ℜ∈γ

)( 1−Α T



3rd AMORE, Oegstgeest, October 1-4, 2002 13

Max-Plus System Analysis
• Recovery matrix: the matrix R where the ij-th entry is the 

maximum delay of xj(k) such that xi(m) is not delayed for all 

• Recovery matrix is given by

where A+ is the longest path matrix

• Note Ak is the matrix of the largest-weight path of length k
e.g. 

• Algorithms of all-pair shortest paths: Floyd-Warshall (dense 
networks), Johnson (sparse networks)
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Max-Plus System Analysis
Interpretation of recovery matrix entries

Delay impact (vector) departing train
• Minimum delay that reaches subsequent trains
• Columns of R

Delay sensitivity (vector) waiting train
• Minimum delay of preceding trains that reach waiting train
• Rows of R

Feedback delay time (vector)
• Minimum delay that returns to current station
• Diagonal of R
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Max-Plus System Analysis
Delay propagation
• Given (initial) delays at reference time
• Given timetable
• Deterministic dynamic system:

Output
• Delay vectors z(1), … , z(K), where K is settling period
• Aggregated output: cumulative (secondary) delay, average 

(secondary) delay, settling time, # reached trains, # reached 
stations
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Case Study (PETER)
Dutch Intercity Network 2000-2001
• 26 train lines (both directions)
• 74 stations
• 328 departures / line segments
• 51 connections
• 597 (dual) headway constraints

Model
• 328 transitions (nodes)
• 981 places (arcs)
• 441 tokens

• 114 trains
• 301 ordering tokens
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IC network: Critical Circuit

Headway
Headway
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IC Network: Stability Analysis

Gvc-Hrl1:030.9456:104. Excl. infra/transfer

Shl-Es1:000.9556:483. Excl. infra

Sgn-Hdr0:300.9557:002. Excl. transfer

Shl-Lw0:300.9657:241. Complete

RouteMarginThroughputCycle timeNetwork

2 3 4
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IC Network: Delay Impact 1900 Vl-Gvc
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IC Network: Delay Sensitivity 500 Amf-Zl
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IC Network: Delay Propagation
Scenario: during one hour all trains in Utrecht depart 10 min late
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Conclusions
• PETER is a software tool based on max-plus algebra to help 

railway planners

• PETER computes network perfomance indicators for 
evaluation and comparison of timetable structures

• Bottlenecks (critical circuits) with the tightest schedule are 
identified

• Robustness to delays through buffer times are clearly detailed 
by recovery times

• Delay forecasting by propagation of initial delays over time and 
network

• PETER gives results of large-scale networks in real-time


