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W Train depot algorithms
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W Train depot algorithms

e Goal

— Arrange the trains on a minimum number of depot tracks

— Put the trains 1n a “correct” order to minimize shunting
operations
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e Train depot algorithms

e (Constraints

— Trains

* Sequences,

— Tracks

* topologies,
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= Train depot algorithms

e Methods

— Combinatorics
— @Graph theory (reduction to graph problems)

— Heuristics
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e Train scheduling

Train arrival and departure time

' " time
Evening Midnight Morning
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A: first incoming train

B: second
C: third

B: first outcoming train
A: second
C: third



ey
5 Train numbering

Train arrival and departure time

' " time
Evening Midnight Morning
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: first incoming train
: second
: third

. first outcoming train
: second
: third



L i Train depot algorithms

Train assignment
— Trains are numbered from 1 to N

— Incoming train permutation @ = [%t, , 7T, ... TT\]

 Each train 7t is represented by an integer

— QOutgoing train sequence S = [1,2, ... N]

[1,2,..N] «— «— [T, T, ... Ty]

ex.[3,7, ..., 5]
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Y Depot topologies

o Shunting area

i \
! \
! \.
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Y Depot topologies

* Marshalling area
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e Train depot algorithms

* Train assignment
— Marshalling problem Evening

41857263

3rd AMORE meeting, Leiden



e Train depot algorithms

* Train assignment

— Marshalling problem
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e Train depot algorithms

* Train assignment

— Marshalling problem
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e Train depot algorithms

* Train assignment

— Marshalling problem
4 8
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e Train depot algorithms

* Train assignment

— Marshalling problem Night
4 8

1 57

4 N/
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e Train depot algorithms

* Train assignment

— Marshalling problem Morning
4 8

5 7

. S
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e Train depot algorithms

* Train assignment

— Marshalling problem
4 8

5 7

12 o
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e Train depot algorithms

* Train assignment
— Marshalling problem

123456738
<
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i Ordering problem (1)

The storage of N trains in a marshalling depot
using the minimum number of tracks

is equivalent to

The ordering of a sequence of N numbers
using the minimun number of gueues

3rd AMORE meeting, Leiden



i Ordering problem (1)

4

S T

* Train assignment
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T Graph equivalence

* Train assignment

t=[4185726 3]

S=1123456 78I

Permutation graph

Ordering problem = Permutation graph coloring
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Colouring solution

n=[4,1,8,5 7, 2,6, 31

— Minimum colouring

(colour = track) of a

general graph 1s NP-
complete

— Minimum colouring of a
permutation graph 1s
solved in O (n Ilg n) time
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" i Colouring solution

n=[4,1,8, 5 7, 2, 6, 31
* Train assignment

4 8

1 57

Depot Permutation graph
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i Ordering problem (2)

The storage of N trains in a shunting depot |
using the minimum number of tracks !

is equivalent to

The ordering of a sequence of N numbers
using the minimun number of stacks
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i Ordering problem (2)

4 1
T

[4 185726 3]

* Train assignment

T

S=1123456 78I
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Complement graph

Complement permutation graph Permutation graph
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" i Coloring complexity

* What 1s the complement graph of a permutation graph?

Complement permutation graph

(Shunting area)

—
<

Permutation graph

(Marshalling area)

N

Colouring in O (n lg n) time
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i Train depot algorithms

* Train assignment
— Shunting area

4
8

Nl Dn| ]| +—
WH N

A\

123456738 41857263

< — <
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Online Problem (3)

* Train assignment
— Offline

e The algorithm 1s given the entire sequence of trains to store in
the depot

— Coloring of permutation graph

— Online

* When assigning a train to a depot track, there 1s no knowledge
of the remaining incoming trains

— Greedy assignment to tracks
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Train depot algorithms

Train assignment

— conclusions
* These train storage problems are ordering problems
* The problems are equiv. to coloring of permutation graphs
* The coloring is solvable in O (n lg n) [Pnueli et al., ‘71]

e (Offline solution = Online solution
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Circle Graphs

e Definition: Intersection graphs of chords 1n a
circle.

b b
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= Circle Graphs

e Permutation Graphs are Circle Graphs with an equator
r=[ 41 8 5 7 2 6 31
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==  Removing the “night” in a
shunting area

B

| > time
— T —

Evening Midnight Morning
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==  Removing the “night” in a
shunting area

| > time
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="  Removing the “night” in a
shunting area

C
A :
B D
| " time
Let X and Y be two trains, and
let [, and I, be the relative intervals A B
e ———

If I, and I, overlap _C

(Le.Iy,NI,# ¢ butneither/,c/,nor/,c/,)
Then two different tracks for X and Y
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ircle graph

Transf. into a ¢

No equator

that 1s

No night
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ircle graph

Transf. into a ¢

Shunting tracks

Circle graph
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ircle graph

Transf. into a ¢

Shunting tracks

Circle graph
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Train depot algorithms

Assignament on a shunting area without “night”

— conclusions

 This train storage problem is equiv. coloring of circle graphs

Coloring of circle graphs 1s NP-complete [GT4]

Is 2-Approx. but not (3/2)-Approx.

3-coloring is in P; 4-coloring is NP-complete [Unger, 88]

The same problem for a marshalling area is solvable in O(n lg n)
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e Generalized problems

 Track access constraints
 Single Input Single Output (SISO)

 Double Input Single Output (DISO) <§> station
 Single Input Double Output (SIDO) @
<>
* Double Input Double Output (DIDO)
<>
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Hypergraphs

H

H=(V,E)

V is a set of vertices
E is a set of subsets (hyperedges) of V
If all hyperedges have size &, H is called k-uniform

2-uniform hypergraphs are normal graphs
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il

Train assignment

— Two tracks are enough

Y871 6%

Y52

Ny

Single Input Double Output

A
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" i SIDO constraint

e Train assignment
— SIDO triple constraint

3 3

Can we use a single track?

1 1 2 13
I > No

Evening Midnight Morning
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Single Input Double Output

Why?
— triple constraint: three trains in the input sequence form
a valley.

\/"
Forbidden sequences: [2 1 3] and [3 1 2]

admissible sequences :  [1 2 3], [132], [2 3 1],and[3 2 1]
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ingle Input Double Output

 Input sequence representation: © =[ 4,1,8,5,7,2,6,3 ]

trains

o = N W OO0 O N 00 o©

time
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ingle Input Double Output

* Modelling as a 3-uniform hypergraph:

a o N o ©

Valley hypergraph
H(m)

trains
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ingle Input Double Output

* Track assignament = coloring of H(7)

a o N o ©

At least two nodes
in a hyperedge have
a different color.

trains

time
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ingle Input Double Output

e SIDO track assignament = coloring of H(m)

48763

a o N o ©

trains

152

time
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SIDO vs. DISO

* These two problems are equivalent

— Relation SIDO/DISO
* Given an arbitrary train permutation @ = [T, , T, ... Ty] , the
permutation index ! = [r,!, nt,’!, ..., m!], and the time

reversing operator R, s.t. (m 1) R=[n !, ..., m,, m, 1], then

SIDO (%) = DISO (m-)R

3rd AMORE meeting, Leiden



SIDO/DISO conclusions

e Coloring 3-uniform hypergraphs:

— NP-hard

— k-coloring is approx. within O(n/( 1gk! n)?)
[Hofmaister, Lefmann, ’98; ]

— 2-coloring 1s NP-complete for 3-uniform hypergraphs
[ Approx. results: Krivelevich et al., 2001]

— 2-coloring is in P for valley hypergraphs

— k-coloring of valley hypergraphs ? Open!
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Double Input Double Output

e Train assignment

_ SIDO (DISO)
* Model: coloring of valley hypergraphs

— DIDO

e Model: coloring of certain 4-uniform hypergraphs

Open!
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Other generalizations

e Take care of train/tracks lengths
— Equivalence with bin packing problems (?)

e Take care of types of trains fnput: [ABAC]

— Subgraphs of permutation graphs Output:] A C A B ]

» Take care of specific depot topologies
— Open
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Other generalizations

e Take care of train/tracks lengths
— Equivalence with bin packing problems. (?)

e Take care of types of trains fnput: [ABAC]

— Subgraphs of permutation graphs Output:] ACAB ]

» Take care of specific depot topologies
— 7
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THE END



