Using Multi-Level Graphs for Timetable Information

Frank Schulz, Dorothea Wagner, and Christos Zaroliagis
Overview

1. Introduction
 ▶ Timetable Information - A Shortest Path Problem

2. Multi-Level Graphs
 ▶ Speed-Up Technique for Shortest Path Algorithms

3. Timetable Information Graphs

4. Experiments

5. Conclusion & Outlook
Overview

1. Introduction
 ▶ Timetable Information - A Shortest Path Problem

2. Multi-Level Graphs
 ▶ Speed-Up Technique for Shortest Path Algorithms

3. Timetable Information Graphs

4. Experiments

5. Conclusion & Outlook
Application Scenario

Timetable Information System

- Large timetable
 (e.g., 500,000 departures, 7,000 stations)
- Central server
 (e.g., 100 on-line queries per second)
→ Fast Algorithm

Simple Queries

- Input: departure and arrival station, departure time
- Output: train connection with earliest arrival time
Shortest Path Problem

Graph model

- Solving a query ⇔ finding a shortest path

Speed-up techniques needed

- Commercial products
 - Heuristics that don’t guarantee optimality
- Scientific work
 - Geometric techniques
 - Hierarchical graph decomposition
Contribution

Multi-Level Graph Approach

- Hierarchical graph decomposition technique
- For general digraphs
- Idea
 - Preprocessing: Construct multiple levels of additional edges
 - On-Line Phase: Compute shortest paths in small subgraphs

Experimental Evaluation

- For the given application scenario
- With real data
Overview

1. Introduction √

2. Multi-Level Graphs

3. Timetable Information Graphs

4. Experiments

5. Conclusion & Outlook
Multi-Level Graphs

Given

- a weighted digraph \(G = (V, E) \)
- a sequence of subsets of \(V \)

\[
V \supset S_1 \supset \ldots \supset S_l
\]

Outline

- Construct \(l \) levels of additional edges \(\rightarrow \mathcal{M}(G) \)
- Component Tree
- Define subgraph of \(\mathcal{M}(G) \) for a pair \(s, t \in V \)
- Use subgraph to compute \(s-t \) shortest path
Multi-Level Graphs

Given

- a weighted digraph $G = (V, E)$
- a sequence of subsets of V

\[V \supset S_1 \supset \ldots \supset S_l \]

Outline

- Construct l levels of additional edges $\rightarrow M(G)$
- Component Tree
- Define subgraph of $M(G)$ for a pair $s, t \in V$
- Use subgraph to compute s-t shortest path
Level Construction

\[G = (V, E), \quad S_1 = \{ a, b, c \}, \quad S_2 = \{ a, c \} \]
Level Construction

Connected Components in $G - S_1$
Level Construction

No internal vertex of path belongs to S_1
Level Construction

⇒ Edge in level 1

Level 1

Level 0
Level Construction

No internal vertex of path belongs to S_1
Level Construction

\Rightarrow Edge in level 1
Level Construction

No internal vertex of path belongs to S_1
Level Construction

⇒ Edge in level 1
Level Construction

All edges in level 1
Consider now iteratively graph \((S_1, E_1)\)
Connected components in $G - S_2$
Level Construction

No internal vertex of path belongs to S_2
Level Construction

\Rightarrow Edge in level 2
Level Construction

Level 2

Level 1

All edges in level 2
Level Construction

3-Level Graph $\mathcal{M}(G, S_1, S_2)$
Multi-Level Graphs

Given

• a weighted digraph \(G = (V, E) \)
• a sequence of subsets of \(V \)

\[V \supseteq S_1 \supseteq \ldots \supseteq S_l \]

Outline

• Construct \(l \) levels of additional edges \(\rightarrow M(G) \)
• Component Tree
• Define subgraph of \(M(G) \) for a pair \(s, t \in V \)
• Use subgraph to compute \(s-t \) shortest path
Component Tree

Level 2

Level 1

Level 0
Component Tree
Component Tree

Level 2

Level 1

Level 0
Component Tree
Component Tree
Multi-Level Graphs

Given

- a weighted digraph $G = (V, E)$
- a sequence of subsets of V

$V ⊃ S_1 ⊃ \ldots ⊃ S_l$

Outline

- Construct l levels of additional edges $→ \mathcal{M}(G)$
- Component Tree
- Define subgraph of $\mathcal{M}(G)$ for a pair $s, t \in V$
- Use subgraph to compute s-t shortest path
Define Subgraph

Level 0

Level 1

Level 2
Define Subgraph

root

Level 2

Level 1

Level 0

s

t
Define Subgraph

Level 0

Level 1

Level 2

root

E_1

E_2

G

s

t
Define Subgraph

Level 2

Level 1

Level 0

G

ts
root
E
E 2
1

G'

s

t
Define Subgraph

root

Level 2

Level 1

Level 0

G

ts

E

E_2

E_1

G'

ts

E

s

t
Define Subgraph
Multi-Level Graphs

Given
- a weighted digraph $G = (V, E)$
- a sequence of subsets of V
 \[V \supset S_1 \supset \ldots \supset S_l \]

Outline
- Construct l levels of additional edges $\rightarrow \mathcal{M}(G)$
- Component Tree
- Define subgraph of $\mathcal{M}(G)$ for a pair $s, t \in V$
- Use subgraph to compute s-t shortest path
Lemma

The length of a shortest s-t path is the same in the s-t subgraph of $\mathcal{M}(G)$ and G.

Subgraph of $\mathcal{M}(G)$:

![Diagram](image1)

Original Graph G:

![Diagram](image2)
A Different Pair s, t
A Different Pair \(s, t \)
A Different Pair s, t
Overview

1. Introduction ✓

2. Multi-Level Graphs ✓

3. Timetable Information Graphs

4. Experiments

5. Conclusion & Outlook
Station Graph

Patras → Korinthos → Athens
Train Graph

Patras

Korinthos

Athens
Train Graph

Athens
Korinthos
Patras

00:00
24:00
time
Train Graph

Patras

Korinthos

Athens

00:00

24:00

time
Query

Single-source **some-targets** shortest path problem
Multi-Level Train Graph

- Given l subsets of stations $\Sigma_1 \supset \ldots \supset \Sigma_l$

- Component tree in station graph

- Define subgraph for a pair of stations
Overview

1. Introduction ✓
2. Multi-Level Graphs ✓
3. Timetable Information Graphs ✓
4. Experiments
5. Conclusion & Outlook
Experiments

Given one instance G of a traingraph

- Timetable of German trains, winter 1996/97
- ~ 500000 vertices, ~ 7000 stations

Evaluate multi-level train graph $\mathcal{M}(G, \Sigma_1, \ldots, \Sigma_l)$

Investigate dependence on

- number of levels
- input sequence $\Sigma_1 \supset \ldots \supset \Sigma_l$
Sets of stations Σ_i

Three criteria to sort stations

A Importance regarding train changes
B Degree in station graph
C Random

Consider the first n_j stations according to A, B, C

- $n_1 = 1974$, \ldots, $n_{10} = 50$

\sim Sets of stations Σ_j^A, Σ_j^B, Σ_j^C
2-Level Graphs $\mathcal{M}(G, \Sigma_j^X)$

Number of Additional Edges

importance
degree
random
Evaluation of $\mathcal{M}(G, \Sigma_1, \ldots, \Sigma_l)$

Consider only criterion A in the following

Average Speed-up over 100000 queries

- $r = \text{Runtime for Dijkstra in } G$
- $q = \text{Runtime for Dijkstra in subgraph of } \mathcal{M}$
- Speed-up $= r / q$
2-Level Graphs $\mathcal{M}(G, \Sigma^A_j)$

Average Speed-up

![Graph showing speed-up vs. speedup]
Problem with small \sum_j^A

Big components \Rightarrow Level 1 rarely used
2-Level Graphs $\mathcal{M}(G, \Sigma^A_j)$

Queries Using Level 1

- Speedup of queries using level 1
- Percentage of queries using level 1
3-Level Graphs $\mathcal{M}(G, \Sigma^A_j, \Sigma^A_k)$
l-Level Graphs $\mathcal{M}(G, \Sigma_1, \ldots, \Sigma_{l-1})$

Best Average Speed-up (CPU-time, #Edges hit)
Overview

1. Introduction ✓

2. Multi-Level Graphs ✓

3. Timetable Information Graphs ✓

4. Experiments ✓

5. Conclusion & Outlook
Conclusion & Outlook

Experimental evaluation of multi-level graphs

- Input graph from timetable information
- Best number of levels: 4, 5
- Sizes of Σ_i are crucial

Outlook

- Other input graphs
- Relation $\left(\Sigma_1, \ldots, \Sigma_l\right) \leftrightarrow \text{speed-up}$
 - Here: Criteria A, B, C; Sizes of Σ_i
- Theoretical analysis
Overview

1. Introduction ✓
2. Multi-Level Graphs ✓
3. Timetable Information Graphs ✓
4. Experiments ✓
5. Conclusion & Outlook ✓