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COMBINATORIAL OPTIMIZATION
PROBLEMS

• We consider discrete NP-hard problems

• Minimizing (Maximizing) a function of many variables
subject to

– Mathematical constraints
– Non binary constraints (referred to as global constraints)
– Integrality restrictions on some or all variables

• Many application areas:
– resource allocation, scheduling, planning, routing, sequencing,

design,configuration….
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CSP AND OR TECHNIQUES
• Constraint Satisfaction

– Declarative Modelling
– Constraint Propagation (Local Consistency)
– Search

• Operations Research
– branch & bound

• Relaxation: e.g., Linear Programming

– branch & cut
• Cutting planes

– column generation
– dynamic programming

• We consider only COMPLETE methods
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CONSTRAINT SATISFACTION

• Problem modelling
– Variables range on a finite domain of objects of arbitrary type
– Constraints among variables

• mathematical constraints
• symbolic constraints

• Problem solving
– Propagation algorithms embedded in constraints

• Arc consistency as standard propagation
• More sophisticated propagation for global constraints

– Search strategies
– Branch & Bound for optimization

• CSP problems often modelled and solved through Constraint
Programming (CP) languages
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CSP: PROBLEM MODELLING

• A problem should be modelled in terms of
– Variables Problem entities

– Domains Possible Values
– Constraints Relations among variables

– Objective function (if any) Optimization Criteria

• Map coloring
variables: zones X1,…,X5

domains: colours [red,yellow,blue,green]

constraints: X1≠X2,X1 ≠X3,X1 ≠X4,X1 ≠X5,

  X2 ≠X3,X2 ≠X4,X2 ≠X5,X3 ≠X4,X4 ≠X5

1

3

2

4

5
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CSP: PROBLEM CONSTRAINTS
• Mathematical constraints: =, >, <, ≠, ≥, ≤

– Propagation: arc-consistency, bound-consistency

• Non binary constraints
– General methods: GAC [Bessiere, Regin IJCAI 99]

– Special purpose propagation algorithms [Beldiceanu, Contejean,
Math.Comp.Mod. 94]

– More concise formulation
• alldifferent([X1,...Xm])

 all variables have different values
• element(N,[X1,...Xm],Value)

 the n-th element of the list should be equal to Value
• cumulative([S1,...Sm],[D1,...Dn],[R1,...Rn],L)

 used for capacity constraints 

• disjunctive constraints
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CSP: PROBLEM SOLVING

• Notion of Consistency:
– Is the set of constraint consistent ?

– Does a solution exist?

• Constraint Propagation: inference mechanism
– Remove from domains inconsistent values

– Infer new constraints

• Search:  branching strategies
– Variable selection

– Value selection

– Others: problem dependent
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     CSP:OPTIMIZATION

• In some applications, we are not interested in a feasible solution
but in the OPTIMAL solution according to a given criterion

• ENUMERATION  inefficient
– find all feasible solutions
– chose the best one

• CSP Branch & Bound
– each time a solution is found whose cost is C*, impose a constraint

on the remaining search tree, stating that further solutions (whose
cost is C) should be better than the best one found so far

 C < C*
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     OR: BRANCH  & BOUND

• Two step tree search procedure:
• solving a relaxation of the original problem
• splitting the problem into subproblems

• Relaxation:
• consider the original problem P at a given node
• relax some constraints and generate Prel easier than P

• Branching:
• select a variable Var

• impose additional constraints on Var
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     OR: BRANCH  & BOUND

• The relaxation Prel of a problem P provides a lower
bound for P in minimization problems, an upper bound
for P in  maximization problems

• For minimization problems
• Zrel* = optimal solution of Prel

• Z* = optimal solution of P

• At a given node, if the lower bound is greater than the
best solution found so far, the corresponding subtree
can be pruned.

Zrel* ≤ Z*
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     OR: BRANCH  & BOUND

• Use of upper bounds in minimization problems:
• we need a solution Zup

• solve the problem with a heuristic algorithm

• For minimization problems
• Zup* = heuristic solution of P

• Z* = optimal solution of P

• At a given node, if the lower bound is greater than the
upper bound, the corresponding subtree can be pruned.

• Upper bound updated during search

Z* ≤ Zup*
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     INTEGER PROGRAMMING

• Standard form of Combinatorial Optimization Problem (IP)
[Nemhauser Wolsey: Integer and Combinatorial Optimization 88]

– min  z = Σ  cj xj

– subject to
      Σ  aij xj = bi     i = 1..m
      xj ≥ 0              j = 1..n
      xj integer

• Inequality y ≥ 0 recasted in y - s = 0
• Maximization expressed by negating the objective function
• When only some variables should be integer: Mixed

Integer (Linear) Problem MIP

j =1

j =1

n

n

May make the problem NP complete
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     0-1 INTEGER PROGRAMMING

• Many Combinatorial Optimization Problem can be
expressed in terms of 0-1 variables (IP)

– min  z = Σ  cj xj

– subject to
      Σ  aij xj = bi     i = 1..m

   xj :[0,1]

j =1

j =1

n

n

May make the problem NP complete
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     LINEAR RELAXATION

• General form of Combinatorial Optimization Problem (IP)

– min  z = Σ  cj xj

– subject to
      Σ  aij xj = bi     i = 1..m
      xj ≥ 0              j = 1..n
      xj integer

• The linear relaxation is solvable in POLYNOMIAL TIME
• The SIMPLEX ALGORITHM is the technique of choice

even if it is exponential in the worst case

j =1

j =1

n

n

Removed

Linear Relaxation
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     0-1 LINEAR PROGRAMMING

• Many Combinatorial Optimization Problem can be
expressed in terms of 0-1 variables (IP)

– min  z = Σ  cj xj

– subject to
      Σ  aij xj = bi     i = 1..m

   0≤ xj ≤ 1

j =1

j =1

n

n

Relaxed

Linear Relaxation
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     GEOMETRIC PROPERTIES OF LP

• The set of constraints defines a polytope
• The optimal solution is located on one of its vertices

– min  z = Σ  cj xj

– subject to
      Σ  aij xj = bi     i = 1..m
      xj ≥ 0              j = 1..n

The simplex algorithm starts from
one vertex and moves to an adjacent one
with a better value of the objective function

j =1

j =1

n

n

Optimal solution

Objective function
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PROPERTIES OF LP SOLUTION

• The optimal solution of the relaxation is an assignment of
values to variables such that all linear inequalities are
satisfied and the objective function is minimized

• The optimal LP solution is in general fractional: violates
the integrality constraint

• Each LP (primal) has an associated dual problem where
dual variables correspond to constraints and dual
constraints correspond to primal variables
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DUAL PROBLEM

• The optimal LP solution provides reduced costs (through dual
variables) representing the cost to be paid if a given value is
in the solution

min  z = c x
s.t.

      ai x = bi       i ∈ M

      ai x ≥ bi   i ∈ M

      xj ≥ 0              j ∈ N

      xj     0              j ∈ N

max  z’ = π b
s.t. 

    πi    0 i ∈ M

    πi ≥ 0 i ∈ M

    π Aj ≤ cj           j ∈ N

    π Aj = cj           j ∈ N<> 

<> 
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EXAMPLE

• Produce and sell two kinds of products: A and B
• Both products have to be processed on two machines M1

and M2
• Product A process lasts 12 min. on M1 and  30 min. on M2

• Product B process lasts 24 min. on M1 and  24 min. on M2
• The resource availability of M1 is 400 hours and that of M2 is 490

hours

• Profit of selling product A is  $12 and for product B is $20.

• Goal: produce at least 100 units of each product and
maximize the profit
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EXAMPLE: MODEL

• Decision variables prodA and prodB representing the
quantity to be produced. Convert minutes to hours

max 12*prodA + 20*prodB (Profit to be maximized)

s.t.

0.2*prodA + 0.4*prodB ≤ 400 (Availability M1)
0.5*prodA + 0.4*prodB ≤ 490 (Availability M2)
prodA ≥ 100
prodB ≥ 100

    prodA, prodB integer

(minimal quantity required)

24

EXAMPLE: MODEL

prodA

prodB

1000

0.2*prodA + 0.4*prodB ≤ 400

980

0.5*prodA + 0.4*prodB ≤ 490

prodA ≥ 100

prodB ≥ 100

max 12*prodA + 20*prodB

Optimal solution
prodA=300 prodB=850
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 BRANCH  & BOUND based on LP

P

P2P1

ZUP
ZLP

X with fractional
value f

X ≥  f X ≤  f 

If ZLP ≥ ZUP fail
  else branch

ZUP
Z’LP

If Z’LP ≥ ZUP fail
  else branch

X’ with fractional
value f’

P2’P1’

X’ ≥  f’  X’≤  f’ 

26

 BRANCH  & BOUND based on LP: EXAMPLE

P

P2P1

ZUP
ZLP

X = 4.3

X ≥ 5X ≤ 4

If ZLP ≥ ZUP fail
  else branch

ZUP
Z’LP

If Z’LP ≥ ZUP fail
  else branch

X’ = 7.8

P2’P1’

X’ ≥ 8X’≤ 7
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     OR: CUTTING PLANES ALGORITHM

• Iterative procedure:
• solving a linear relaxation of the problem P, x* optimal solution

• add cutting planes when the optimal solution of the relaxation is
not integral

• Cutting Planes: [Gomory, 63]

• linear inequalities  α x ≤ α0

• should cut off the optimal solution of the Linear Relaxation

• α x* > α0

• should not remove any integer solution         valid cut

• α x ≤ α0  ∀x ∈ conv(P)  where conv(P) is the convex hull of P

28

     OR: CUTTING PLANES ALGORITHM

• Cutting Planes: syntactic cuts: do not exploit the
problem structure

• Convergence is not guaranteed in general
• For some cases, i.e., Gomory cuts, the process

converges but it can be too expensive

Optimal
fractional
solution

conv(P)

Valid Cut New Optimal
fractional
solution

conv(P)
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     POLYHEDRAL CUTS

• Problem structure dependent

• Given an Integer Problem: S is the set of its solutions
• conv(S): convex hull of S
• if we have a constraint representation of the convex hull we can

optimally solve the IP with Linear Programming

• impossible to find the conv(S) efficiently

• Idea: generate cuts that are facets of the convex hull
Optimal fractional solution

Convex Hull
Valid Cut: facet of
the convex hull

30

     OR: BRANCH  & CUT

• Integrates Branch & Bound and Cutting Planes

• Two step tree search procedure: at each node
• solving a relaxation of the original problem
• add cuts when the optimal solution of the relaxation is not

integral in order to improve the bound

• Branch when cuts are no longer effective
• Cuts valid locally to a node: too memory expensive

• In Branch & Cut in general we have a unique pool of
cuts globally valid
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     OR: BENDERS DECOMPOSITION

• Cutting planes generation technique for the solution of
specially structured MIP.

• Given a problem P if for a subset of variables X ⊂ V a
fixing can be identified partitioning the problem P in
disconnected subproblems Spi which are easily solvable
we can solve P by a two step search procedure.
• At each iteration a Relaxed Master Problem RMPk is solved for

assigning variables in X = Xk. These values are used to build
subproblems SPi

k.

• Spi
k are solved and the solutions used to tighten the relaxation

RMPk by introducing Benders cuts βi
k(X)

• Benders cuts play the role of nogoods in CSPs.
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     OR: COLUMN GENERATION

• Method for solving large scale problems [Dantzig-Wolfe
Econometrica 61] [Gilmore, Gomory OR61]

• Avoid considering all variables (say X) of the problem, but
consider only a subset X’ ⊂ X        MASTER PROBLEM

• Once the master problem is solved, search for new variables
in X\X’ which can improve the solution         SUBPROBLEM

• From duality theory variables with negative reduced costs
improve the solution
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     OR: COLUMN GENERATION-EXAMPLE
• Partition a Directed Acyclic Graph into the minimal number of paths.

• MASTER PROBLEM                   Choose paths

V: set of variables (n nodes O(2n))

xj∈{0,1} xj = 1 if Path j is choosen

min Σxj∈V xj
Σxj∈V aij xj = 1 each node belongs to one path

• Solve the master problem on V’ ⊂ V, then add variables by solving the
SUBPROBLEM          find a path with negative reduced costs

yj∈{0,1} yj = 1 if node i is on that path
 z cost of the path

z - Σi∈V λi yi ≤ 0

Provides dual 
values λi 

Provides new
columns xji
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• Problems are decomposed into a nested family of subproblems.

• Consider a discrete system characterized by:
– a final state sk
– a decision variable xk
– a cost/profit function p(sk,xk)
– a state transition function sk = t(sk-1,xk)

• In a minimization problem the objective function is:

– z = min{Σ   p(sk,xk)}
n
k=1

s0

x1=d1’

x1=… 

x1=d1”

s1’

s1 s1”

State space graph: each node is a
state, each arc a transition whose
cost/profit is the corresponding p

DYNAMIC PROGRAMMING
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• DP solves a set of subproblems each corresponding to a system
composed by i steps and a state si at the end of step i.

• The cost function is computed as

 fi(si) = min { min {fi-1(si-1)} + pi(si,xi)}

  where si = ti(si-1,xi)

• Boundary condition: if s1 = t1(s0,x1)

f1(s1) = min {p1(s1,x1)}

xi si-1

x1

DYNAMIC PROGRAMMING
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• DP formulation of a TSP (defined on vertex set V):
• each state si = (Y,vk) where vk ∈ Y represents the path of
cardinality i covering  all nodes in Y and ending in vk
• a transition is  ((Y,i),(Y∪{i},j))
• the cost of the transition((Y,i),(Y∪{i},j)) is cij

• The cost function is computed as

   fk(Y,i) = min {fk-1(Y\{i}) + cij}  Y⊆V\{0},|Y|≥2,∀i∈Y

   where V is the vertex set and Ei the set of arcs ending in i

• Boundary condition: f1({i},i) = c0i

j∈Y\{i}∩Ei

EXAMPLE: TSP
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v1

4

v2 v5v4

4
5

7 5
7

6

6
3

v3

|Y|=1 |Y|=2 |Y|=3 |Y|=4

Y vi f1 Y vi f2 Y vi f3 Y vi f4
{v2} v2 5 {v2 v3} v2 9 {v2 v3 v4} v2 16 {v2 v3 v4 v5} v2 18
{v3} v3 6 {v2 v3} v3 8 {v2 v3 v4} v3 17 {v2 v3 v4 v5} v3 19
{v4} v4 7 {v2 v4} v2 14 {v2 v3 v4} v4 14 {v2 v3 v4 v5} v4 17
{v5} v5 4 {v2 v4} v4 12 {v2 v3 v5} v2 11 {v2 v3 v4 v5} v5 19

{v2 v5} v2 +∞ {v2 v3 v5} v3 +∞
{v2 v5} v5 +∞ {v2 v3 v5} v5 12
{v3 v4} v3 13 {v2 v4 v5} v2 16
{v3 v4} v4 12 {v2 v4 v5} v4 +∞
{v3 v5} v3 8 {v2 v4 v5} v5 17
{v3 v5} v5 10 {v3 v4 v5} v3 15
{v4 v5} v4 9 {v3 v4 v5} v4 14
{v4 v5} v5 12 {v3 v4 v5} v5 17

EXAMPLE: TSP
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• Number of states in DP: exponential

• Relaxations can be defined to obtain bound on the problem

• Consider a function w mapping
– each state sk in w(sk)
– each transition between (si sk) in (w(si),w(sk))

– Different functions w can be defined: in our example w is based
on the cardiality of the path

State Space Relaxation
useful if the resulting number of states is polynomial

STATE SPACE RELAXATION
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v1

4

v2 v5v4

4
5

7 5
7

6

6
3

v3

vi h=1 h=2 h=3 h=4

v2 5 9 11 15

v3 6 8 12 14

v4 7 9 14 17

v5 4 10 12 16

•The cost function is computed as
gk(h,i) = min {gk-1(h-1,j) + cji} ∀i∈V\{0}

    Boundary condition: g1(1,i) = c0i

STATE SPACE RELAXATION
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SPECIAL PURPOSE ALGORITHMS

• Beside the general methods (branch and bound,
branch and cut, column generation), we have special
purpose algorithms suited for solving a particular
structured problem:

– network flow algorithms
– primal-dual algorithms
– edge finder
– ...
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COMPARISONS

• Many studies on:
– comparisons on the same practical application

• [Smith et al. Constraints 96], [Puget, De Backer APMOD’95],[Darby-
Dowman et al. Constraints 98], [Proll, Smith INFORMS JOC98], [Darby-
Dowman, Little INFORMS JOC98]

– comparisons for defining general similarities and
differences in abstract ways

• [Heipcke Annals of OR99],[Darby-Dowman, Little INFORMS JOC98],
[Van Hentenryck, CP95], [Williams Tut.EURO XVI],

– works aimed at defining unifying frameworks
• [Bockmayr, Kasper INFORMS JOC 98], [Heipcke PhD99]
• Logic based methods for optimization [Hooker, 2000]
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COMPARISONS: MODELING

• Problem definition:

CSP model

variables X1,X2, …,Xn

domains  D1,D2, …,Dn

constraints c(X1,…,Xk)

objective function

f(X1,X2, …,Xn)

MIP model

min  z = cT x + hTy

subject to

      Ax + By = b

      x ≥ 0, y ≥ 0

      x ∈Z, y ∈ R

44

COMPARISONS: MODELING

• Variables
– CSP variables have a name and a domain. Type: real, rational,

boolean, sets, integer, symbolic

– MIP variables: binary, integer, real (semi-continuous), member of
sets, non-zero

• Domains:
– In CSP the domain contains values that can be assigned to the

variable and that are not proved to be inconsistent

– In MIP variables can have bounds
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COMPARISONS: MODELING

• Constraints:
– In CSPs a constraint is a relation (true or false) over a set of

variables
• Domain constraints X :: [1,2,5,7], Y:: [1..10]

• Mathematical constraints X = Y, X ≤ Y, X ≠ Y,...
• Symbolic constraints alldifferent([X,Y,Z,K])

– In MIP constraints are equalities/inequalities between linear terms
plus the integrality constraint which is relaxed in the correspondent
LP

• Redundant Constraints: entailed by other constraints
– In CSP the addition of redundant constraints can help CSP solution

procedures

– In MIP a similar concept is the addition of valid cuts
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COMPARISONS: MODELING

• Objective function: 
– In the two frameworks it has the same meaning.

• Feasible solution:
– In CSP a feasible solution is an assignment of values to variables

that satisfies all the constraints. Solution may also denote the result
after the application of a (local) consistency algorithm.

If such an assignment exists, the problem is feasible

– In MIP, the solution space is denoted by:
• S = {(x,y) : Ax + By = b, x ≥0, y ≥0}

If S is not empty, the problem is feasible
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COMPARISONS: MODELING general remarks
• Model

– CSP has a more intuitive, declarative and flexible problem
formulation

– MIP requires more expertise in order to write a good model

– Both approaches can model the same problem in different ways.
One model can be better than another.

• Relaxations:
– In CSP each constraint represents an independent subproblem

• feasibility problem

• adding constraints is straightforward

– In MIP some constraints are relaxed (say the integrality).
• Optimization problem

48

COMPARISONS: SOLVING

• Solution method: tree search
– CSP: each node is generated by a labelling procedure. At each

node propagation is performed until a fix point is reached.
Constraint Propagation achieves a consistency property.
Optimality is dealt with by imposing a cost constraint that (poorly)
propagates to variables

– MIP: each node is generated by setting variable bounds. At each
node the Linear relaxation is solved to optimality. If the lower
bound value is worse than the current best solution, the node is
fathomed as its successors can only be worse
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COMPARISONS: SOLVING

• Constraint Propagation: CSP
– Performed at each node
– Consistency algorithm remove values which cannot appear in a

consistent solution. If a domain becomes empty, the
corresponding problem is infeasible.

– NC, AC:AC1-3  [Mackworth AIJ (8), 77]  [Montanari Inf.Sci (7), 74], AC4
[Mohr, Henderson AIJ(28), 86], AC5 [Van Hentenryck, Deville and Teng AIJ(58),
92],  AC6 [Bessiere AIJ(65), 94], AC7 [Bessiere, Freuder, Regin AIJ(107), 99],
PC: [Mackworth AIJ (8), 77], PC3 [Mohr, Henderson AIJ(28), 86] PC4 [Han, Lee

AIJ(36), 88] , k-consistency [Freuder CACM (21), 78], [Cooper AIJ (41), 89],
GAC (for non binary constraints) [Bessiere, Regin IJCAI 99],
specialized procedured.

– Trade off between time spent at a node and total number of nodes

– Constraints can be seen as interacting agents triggering
propagation each time an event is raised

50

• Constraints interact with each other through shared variables (and
their domains) in the constraint store

• Trigger propagation each time an event is raised on one variable X
– a change in the domain of X
– a change in the range of the domain of X
– assignment of variable X to a value

INTERACTION  AMONG CONSTRAINTS

Variables & Domains

X1::[1..100]
X2::[1,5,9]
X3::[-30..40]
...
Xn::[15,40..60]

alldiff([X1,..,Xk]) element(N,[X1,X5],6)

alldiff([X3,..,Xn])
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COMPARISONS: SOLVING

• Pre-processing: (MIP)
– Performed at the root node

– Variable fixing, variable removal, multiple, redundant or dominated
row removal, variable bound tightening, matrix scaling, probing
(addition of logical consequences )

– Only sometimes applied also at other nodes

• Cut generation: (MIP)
– Addition of valid inequalities

– Global cuts are globally valid. Local cuts are valid in a subtree.

52

COMPARISONS: SOLVING

• Optimization:
– In CSP each time a feasible solution is found Z*, a constraint is

added on the objective function variable Z < Z*. Since Z is linked
to problem variables, propagation is performed. At each node,
when variables are instantiated and propagation is performed,
bounds of Z are updated.

– In MIP, at each node the LP relaxation is solved providing a lower
bound on the problem. If the lower bound is worse than the
current upper bound, the node is fathomed. Otherwise, a non
integral variable x is selected and the branching is performed on
its bounds. An initial upper bound can be in general computed.
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 BRANCH  & BOUND in CSP

P

P2P1

Constraint Propagation
on X1,…,Xn

If dom(Z)
is empty fail
 else branch

P2’P1’

Compute Zmin and Zmax
on the basis of X1,…,Xn

c(Xk) ¬ c(Xk)

Constraint Propagation
on X1,…,Xn

Solution Z*

Z < Z*

54

 BRANCH  & BOUND based on LP

P

P2P1

ZUP
ZLP

X with fractional
value f

X ≥  f X ≤  f 

If ZLP ≥ ZUP fail
  else branch

ZUP
Z’LP

If Z’LP ≥ ZUP fail
  else branch

X’ with fractional
value f’

P2’P1’

X’ ≥  f’  X’≤  f’ 
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UNIFYING FRAMEWORKS

• Purpose: define general concepts aimed at capturing the
basic concepts of CP and OR techniques

• Define basis for understanding correspondences,
similarities and differences between the two approaches

• Define the basis for a possible integration
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UNIFYING FRAMEWORK

• Branch and Infer [Bockmayr Kasper INFORMS JoC98]

– identifies common concepts to ILP and CP

• Primitive and non primitive constraints
–  CP primitive constraints: {X ≤ u, X ≥ b, X ≠ v, X = Y, integer(X)}
–  ILP primitive constraints: linear equalities and inequalities

• Branch and Infer based on transition rules

• name_rule : if Cond
 <P,S> P: disjunctive subproblems

<P’,S’> S: feasible solution set
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UNIFYING FRAMEWORK

• Goal: derive primitive from non primitive constraints

– bi_infer :

• CP: global constraints
– declarative abstractions embedding powerful filtering algorithms:

derive primitive constraints X ≤ u, X ≥ b, X ≠ v

• MIP: addition of cuts
– cuts are primitive constraints

     <(c ∪ C) ∪ P,S> p: primitive, c: non primitive

<(p ∪ (c ∪ C)) ∪ P,S> Prim(C) → p       Prim(C) ∧ c → p
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UNIFYING FRAMEWORK

• Branching: splitting the problem into subproblems

– bi_branch :

• Branching can be avoided if a subproblem is infeasible

– bi_clash:

– The infeasibility test is performed only on the relaxation generated
by primitive constraints

     < C ∪ P,S> C ≡ C ∧ (∨ ci )

<{c1∪ C,…, ck∪ C} ∪ P,S>      if ci primitive Prim(C) → ci

     < C ∪ P,S>  Prim(C) → 

         <P,S>
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UNIFYING FRAMEWORK

• Solving Combinatorial Problems:

– bi_sol :

• Solving Combinatorial Optimization Problems: B&B a-la CP

– bi_climb:

– extract: responsible of extracting a feasible solution of the relaxation

     < C ∪ P,S> S* = extract(Prim(C))

     <P,S ∪ S*>     S* → C

           <{C1,…,Cn}, {s}>                   s* = extract(Prim(C)) 

 <{c∪C,c∪C1,…, c∪Cn},{s*}>      f(s*)>f(s), c≡ (f(x) > f(s*))
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UNIFYING FRAMEWORK

• Solving Combinatorial Optimization Problems: B&B a-la IP

– bi_bound :

– bi_opt:

– the lub should be computed efficiently

     < C ∪ P,{s}> if max{f(x): x∈sol(C)} ≤ lub ≤ f(s)

       <P, {s}>     C is fathomed

 < C ∪ P,{s}>               f(s*) = max{f(x): x∈sol(Prim(C))}

   <P, {s*}>  s∈sol(C)       f(s*) > f(s)
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UNIFYING FRAMEWORK

• Combinatorial Problems in CP(FD)
– bi_infer, bi_branch, bi_clash, bi_sol

• Combinatorial Optimization Problems in CP(FD)
– bi_infer, bi_branch, bi_clash, bi_climb

• Combinatorial Optimization Problems in IP B&B
– bi_branch, bi_clash, bi_bound, bi_opt

• Combinatorial Optimization Problems in IP B&C
– bi_infer, bi_branch, bi_clash, bi_bound, bi_opt
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BASIS FOR INTEGRATION

• Branch and Infer allows to identify possible directions
for the integration [Kasper PhD98]

– First direction
• Primitive constraints: Prim(ILP)
• Non primitive constraints: N_Prim(ILP) and N_Prim(FD): restrict

the inference of FD constraints to bound reductions

– Second direction
• Primitive constraints: Prim(FD)
• Non primitive constraints: N_Prim(FD) and a linear constraint

providing bounds and variable fixing

– Third direction
• Primitive constraints: Prim(ILP) and Prim(FD) excluding integer

• Non primitive constraints: N_Prim(ILP) and N_Prim(FD) including
the integer constraint
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FINAL REMARKS on COMPARISONS

• There are no general guidelines to know in advance
which technique is the most appropriate

• Unifying frameworks and problem class features can
help in deciding the best technique

• The integration can lead to exploit advantages of both
sides.
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OVERVIEW
• Preliminaries:

– Combinatorial Optimization Problems

– CSP and OR techniques

• Comparisons
• Integration:

– problem modelling
– problem solving

• Feasibility: Global Constraint Filtering Algorithms
• Optimality

– branch & bound
– branch & cut
– column generation
– dynamic programming

• Search
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INTEGRATION: MOTIVATIONS

• The main motivations for integrating modeling and
solving techniques from AI and MIP are:

– Combine the advantages of the two approaches
• CSP: modelling capabilities, interaction among constraints

• MIP: global reasoning on optimality, solution methods

– Overcome the limitations of both
• CSP: poor reasoning on the objective function
• MIP: not flexible models, no symbolic constraints

• Integration directions:
– Problem modelling

– Problem solving
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INTEGRATION: MODELLING

• CSP have flexible, declarative, easily understandable
models often described through CP languages

– Different models for the same problem lead to different
performances in finding solutions (expertise required)

– Global constraints: powerful modelling abstractions

– The addition of new problem constraints straightforward

• MIP provides less flexible mathematical models
suitable for sophisticated problem solving techniques

– Different models for the same problem lead to different
performances in finding solutions (expertise required)

– The addition of new problem constraints requires the re-
definition of solution strategies



67

INTEGRATION: MODELLING

CSP model

• variables

• domains

• constraints

• objective f

MIP model

• variables

• coeff.matrices

• cost matrix

• rhs vector

• objective f

mapping

correspondence
between variables

values and constraints
in the two models
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INTEGRATION: MODELLING

• CSP and MIP models should coexist, cooperate or
even merge in a single language.

• Different levels of integration can be achieved:
– approaches which provide the user only the CP language and

hide the OR model and a mapping between the CP and OR
models which is transparent to the user

– approaches which provide the user both models and allow to
state both constraints on the CP part and the OR part

– approaches which merge the two models in order to provide a
unique model embedding both the OR and CP side
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TRANSPARENT MODEL INTEGRATION

• The user works with a Constraint Programming language
• The mapping and the MIP model are hidden
• Need of a translation of the CP model in terms of MIP

model [Rodosek, Wallace,Hajian AnnalsOR98, Refalo CPAIOR00]

– automatic transformation of CLP programs in non-disjunctive form
through auxiliary binary variables

• optimization on the number of binary variables

– mapping of global constraints

• After the translation
– Model = ( CP store, MIP store)

handled by the CP solver handled by the MIP solver

Possible duplication: same 
constraint to both solvers
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• [Rodosek, Wallace,Hajian 98] automatic transformation of CLP
programs in non-disjunctive form through auxiliary binary variables

p(Args1):- q11(Args11),….,q 1k(Args 1k).

…

p(Args r):- q r1(Args r1),….,q rk(Args rk).

– translated in
p(Args,B):- p1(Args,B1),…,p r(Args,B r),B 1+…+Br=B.

p1(Args 1,B 1):- q 11(Args 11),…,q 1k(Args 1k),binary(B 1).

...

pr(Args r,B r):- q r1(Args r1),…,q rk(Args rk),binary(B r).

– If one qr1(Argsr1) is a linear constraint X ≤ Y is translated in
X + M*B ≤ Y + M  with M large enough

TRANSPARENT MODEL INTEGRATION
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• Automatic translating constraints

Var::[minV..maxV] binary(BminV),…,binary(B maxV)

BminV + ... + B maxV = 1

if Var i = j the corresponding B ij = 1

alldifferent([V1,…,Vn])     B 11 + ... + B n1 ≤ 1

        ……..
         B1k + ... + Bnk ≤ 1

TRANSPARENT MODEL INTEGRATION
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• Disjunction and inequality constraints

X ≠ Y
X::[minx..maxx]

Y::[minY..maxY]

• or equivalently

X < Y ∨ X > Y
X::[minx..maxx]

Y::[minY..maxY]

TRANSPARENT MODEL INTEGRATION

X + B1M - Y ≤ M - 1
Y + B2M - X ≤ M - 1
B1 + B2 = 1
minY ≤ Y ≤ maxY
minX ≤ X ≤ maxX
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HIDDEN

INTEGRATION: MODELLING

CSP model

• variables

• domains

• constraints

• objective f

LP model

• variables

• coeff.matrices

• cost matrix

• rhs vector

• objective f

mapping

74

TRANSPARENT TRANSLATION
OF GLOBAL CONSTRAINTS

• The user works with a CP language
– global constraints embed a linear model [Focacci,Lodi,Milano

CP99, Regin CP99] which allows to perform a propagation
based on costs

– same translation as before, inside the constraint not for the
whole problem

Var::[minV..maxV]   BminV + ... + BmaxV = 1

if Vari = j the corresponding Bij = 1

alldifferent([V1,…,Vk])     B 11 + ... + B n1 ≤ 1

        ……..
         B1k + ... + Bnk ≤ 1
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INTEGRATION: MODELLING

CSP model

• variables

• domains

• constraints

• objective f

HIDDEN

LP model

• variables

• coeff.matrices

• cost matrix

• rhs vector

• objective f

mapping
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EXPLICIT MODEL COOPERATION
• The user explicitly states constraints to the two solvers. More

complex programs. [Beringer, De Backer 95] [Heipcke PhD99]

• The user does not control the mapping between the two models
which is in general achieved through shared variables

• In the same program:

Vars::Domains, Vars ≥ 0,
constraints_CP(Vars), linear_inequal(Vars),

Objective :: DomObj,

link(Objective, Vars) link(Objective, Vars)

Same variables involved in 
different constraints
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HIDDEN

INTEGRATION: MODELLING

CSP model

• variables

• domains

• constraints

• objective f

LP model

• variables

• coeff.matrices

• cost matrix

• rhs vector

• objective f

mapping
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   UNIQUE MODEL
• The user designs a unique model suitable for the hybrid solver:

MLLP: Mixed Logical/Linear Programming [Hooker et al. AAAI99]
• More complex model but closer to the hybrid architecture

min  z =  c x
– subject to

      hi (y)   →   Ai x ≤  bi

      xi ∈ Rn      y ∈ FD

Constraints handled by 
the CP finite domain solver

Constraints handled 
by the linear solver

Linear constraints added to 
the linear solver when 
the finite domain constraint 
is entailed by the FD store
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   UNIQUE MODEL: GLOBAL CONSTRAINTS
• Global constraints can be introduced in MLLP: example on

Variable Subscripts in Linear Constraints [Ottoson,Thorsteinsson
CPAIOR00]

• z ≥ Σj  cj yj    sum of costs of assigning worker yj to job j

• cj yj can be substituted by zj   z ≥ Σj zj

 yj = k  →  zj = cj k     ∀ j ∈ {1…n}, k ∈ {1…m}

or alternatively z ≥ Σj zj

element(y,[c11,…,c 1n],z1), element(y,[c 21,…,c 2n],z2),

   …………           , element(y,[c m1,…,c mn),z m).
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INTEGRATION: MODELLING

CP model

• variables

• domains

• constraints

• objective f

LP model

• variables

• coeff.matrices

• cost matrix

• rhs vector

• objective f

mapping
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WHICH PARTS OF THE PROBLEM ?

• The mapping defines a correspondence between the CP
model and the MIP (or LP) model.

• Which parts of the problem are involved ?
– the whole problem is represented in both models

• transparent model integration [Rodosek, Wallace,Hajian AnnalsOR98]

• explicit model integration of the whole problem

– only some parts of the problem are represented in both models:
• translation of global constraints [Refalo CP2000]

• LP/IP model within global costraints [Focacci,Lodi,Milano CP99]

• explicit model integration of some parts of the problem

– some parts of the problem are represented in the CP model and other
parts in the IP/LP model

• problem decomposition [El Sakkout, Wallace Constraints 2000]
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TRANSLATION OF THE WHOLE PROBLEM
 AUTOMATIC OR EXPLICIT TRANSLATION

Vars::Domains, Vars ≥ 0,
constraints_CP(Vars), linear_inequal(Vars),

Objective :: DomObj,

link(Objective, Vars) link(Objective, Vars)

CP solver LP solver

Exchange information on the 
same entities (variables and 
objective function)
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TRANSLATION OF PART OF THE PROBLEM
 AUTOMATIC OR EXPLICIT TRANSLATION

Vars::Domains, Vars’ ≥ 0,

constraints_CP(Vars), linear_inequal(Vars’),

Objective :: DomObj,

link(Objective, Vars) link(Objective’, Vars’)

CP solver LP solver

Vars’ ⊂ Vars
Exchange information on the 
common entities (variables and 
objective function)

For example: non linear
parts are not translated

84

TRANSLATION OF PART OF THE PROBLEM
TRANSLATION OF GLOBAL CONSTRAINTS

cumulative

element

alldiff

cardinality

cycle

FD store

Vars::Domains

LP store

Linear
inequalities

CP solver

...
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• The user works with a CP language
– global constraints embed a linear model [Focacci,Lodi,Milano

CP99, Regin CP99] which allows to perform a propagation
based on costs

TRANSLATION OF PART OF THE PROBLEM
LP/IP MODEL WITHIN GLOBAL CONSTRAINTS

GLOBAL CONSTRAINT

COST-BASED
FILTERING

ALGORITHM

OPTIMIZATION
COMPONENT:

LP MODEL

FILTERING
ALGORITHM

CP solver
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PROBLEM DECOMPOSITION

• If a problem can be decomposed in subproblems choose
the best technique/solver to solve it. Interaction among
subproblems should be handled

– CP: subproblems are single constraints

• Application to Dynamic Scheduling [El Sakkout, Wallace
Constraints 2000]

PROBLEM

Modelled in IP

Modelled in CP

Handled only by
the IP solver

Handled only by
the CP solver
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OVERVIEW
• Preliminaries:

– Combinatorial Optimization Problems

– CP and OR techniques

• Comparisons
• Integration:

– problem modelling
– problem solving

• Feasibility: Global Constraint Filtering Algorithms
• Optimality

– branch & bound
– branch & cut
– column generation
– dynamic programming

• Search
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INTEGRATION: SOLVING
• CP solving is based on interleaved search and

inference (constraint propagation)
– constraint propagation rules in global constraints exploit global

problem-dependent knowledge to perform pruning

– different constraints interact through shared variables

– problem dependent branching strategies

• MIP solving is based on interleaved search and the
computation of the optimal solution of a relaxation

– pruning is performed on nodes for which the relaxation is
infeasible or proven sub-optimal

– branching is guided by relaxation information (relaxation
provides a point in space where search should be centered)
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OVERVIEW

• Preliminaries:
– Combinatorial Optimization Problems

– CP and OR techniques

• Comparisons
• Integration:

– problem modelling
– problem solving
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– branch & bound
– branch & cut
– column generation

• Search
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INTEGRATION: SOLVING
• Integration on solving: two aspects

– feasibility

– optimality

• Concerning feasibility, global constraints embed
powerful filtering algorithms that prune the search
space

• Many of them coming from OR
– Edge Finder

– Network flow based algorithms
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EDGE FINDER

• Useful for scheduling application [Carlier Pinson 90] [Baptiste,
Le Pape, Nuijten, IJCAI95]

Consider a unary resource and three activities.

1

0 17

11

6

4

1
3

12

S1

S2

S3
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EDGE FINDER

S1

S2

S3

We can deduce that earliest start time of S1 is 8.

This is based on the fact that S1 must be scheduled after S2 and S3.

Global reasoning: suppose either S2 or S3 is scheduled after S1. Then
the maximum of the completion times of S2 and S3 is at least 13 (out of
the domain of S2 and S3).

1

8 17

11

6

4

1
3

12
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EDGE FINDER

Basic Theorem: [Carlier, Pinson, Man.Sci.95]

Let o be an activity and S a set of activities all to be scheduled on the
same unary resource (o not in S). The earliest start time is e, the sum
of durations is D and the latest completion time C. If

e(S+{o}) + D(S+{o}) > C(S)

then no schedule exists in which o precedes any of the operations in
S. This implies that the earliest start time of o can be set to

max {e(S’) + D(S’)}.
(S’ ⊆ S)

94

GLOBAL CARDINALITY CONSTRAINT

• gcc(Var,Val,LB,UB) [Regin AAAI96] Var are variables, Val
are values and LB and UB are the minimum and the
maximum number of occurrences of each value in Val
assigned to Var

• example:

peter

paul

mary

john

bob

mike

julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

peter

paul

mary

john

bob

mike

julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Assigned together to max 4 persons
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GLOBAL CARDINALITY CONSTRAINT

• Notion of consistency based on network maximum flow
algorithm on the value network N(C)

• gcc on k variables is consistent

• there is a max flow from s to t of value k

peter

paul

mary

john

bob

mike

julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

t s

(1,2)
(1,2)

(1,1)

(0,2)

(0,2)

(0,1)

(0,7)

(0,1)
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GLOBAL CARDINALITY CONSTRAINT

• Filtering algorithm based on network maximum flow
algorithm on the residual graph R w.r.t. flow f:  R(f)

– if f(u,v) < ub(u,v)   then res(u,v) = ub(u,v) - f(u,v)

– if f(u,v) > lb(u,v)   then res(v,u) = f(u,v) - lb(u,v)

– the residual capacity of a path: min res(u,v) in path

• Let C a consistent gcc and f a maximum flow on N(C) from
s to t. A value a for x is not consistent with C iff f(a,x)=0
and a and x do not belong to the same strongly connected
component in R(f) - {(s,t)}
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GLOBAL CONSTRAINTS
• References:

– Global constraints in CHIP [Beldiceanu Contejean, Math.Comp.Mod.94]

– Task Intervals [Caseau Laburthe ICLP94] [Caseau Laburthe LNCS1120]
[Caseau Laburthe JICSLP96] [Caseau Laburthe LNCS1120]

– alldifferent [Regin AAAI94] Symmetric alldifferent [Regin IJCAI99]

– Edge Finder [Baptiste Le Pape Nuijten, IJCAI95], [Nuijten Le Pape JoH98]
[Nuijten Aarts Eur.J.OR96]

– Sequencing [Regin Puget CP97]

– Cardinality [Regin AAAI96]

– Sortedness [Bleuzen Colmerauer Constraints 2000]
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INTEGRATION: SOLVING

• Optimization Problems

• CP and MIP/LP solvers should interact and cooperate
by exchanging information

• Different levels of integration can be achieved:
– approaches which keep the two solvers separate and

independent exchanging information
• sequential computations
• interleaved computations

– approaches which integrate an optimization component (LP
solver) in global constraints
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LOOSE INTEGRATION
SEQUENTIAL COMPUTATION

• CP and MIP solvers are used in sequence:
– the CP solver computes the first feasible solution (rather

quickly)

– the MIP solver uses this solution as warm start for a Simplex
based Branch & Bound

• Approach used in the British Airways Fleet Assignment
[Hajiaan et al. TR95/09-01]

CP solver MIP solver

feasible solution
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TIGHTER INTEGRATION
INTERLEAVED COMPUTATION

• CP and LP solvers are interleaved:
– the CP solver performs propagation

– LP solver optimally solves the linear relaxation

• CP and LP solvers exchange information:
– variable bounds

– variable fixing

– optimal solution of LP/reduced costs

• Branching performed on the CP or on the MIP side
– CP branching based on problem structure or on var. domains

– MIP branching based on optimal solution of the relaxation
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TIGHTER INTEGRATION
INTERLEAVED COMPUTATION

• Solving technique for modelling approaches where the
CP and the LP model are kept separate

– CASE A: the user can explicitly impose which constraints are
handled by the CP solver and which ones are handled by the
LP solver [Beringer-De Backer95] [Heipcke PhD99]

– CASE B: the automatic linearization of global constraints is
sent to the LP solver while the propagation of global constraints
is  performed as usual by the CP solver [Refalo CP2000,
Focacci Lodi Milano CP99]
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TIGHTER INTEGRATION
INTERLEAVED COMPUTATION: CASE A

Vars::Domains, Vars ≥ 0,
constraints_CP(Vars), linear_inequal(Vars),

Objective :: DomObj,

link(Objective, Vars) link(Objective, Vars)

Same variables involved in 
different constraints

Events trigger propagation/recomputation

CP solver LP solver
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TIGHTER INTEGRATION
INTERLEAVED COMPUTATION: CASE B

cumulative

element

alldiff

cardinality

cycle

FD store

Vars::Domains

LP store

Linear
inequalities

CP solver

...
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TIGHTER INTEGRATION
INFORMATION EXCHANGES

• Results of the CP solver inference
– domain bound reduction
– domain value removal

– variable instantiation

– solution found

• Results of the LP solver inference
– variable fixing

– solution found (relaxed problem)

– reduced costs
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variable bounds
variable fixing
solution found
failure

CP solver LP/MIP solver

reduced costs
variable fixing
solution found
failure

TIGHTER INTEGRATION
INFORMATION EXCHANGES
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TIGHTER INTEGRATION
EXPLOITATION OF RESULTS

• Where results of the CP solver can be used
– domain bound reduction           sent to the LP solver which

adds the new bounds to the problem formulation (cut)

– domain value removal           the corresponding binary variable
fixed to 0

– variable instantiation          the corresponding binary variable
fixed to 1

– solution found         upper bound available
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• Where results of the LP solver can be used

        to 0           corresponding value removed

– variable fixing

           to 1 corresponding variable instantiated

– reduced costs            domain filtering

– solution found           lower bound on the objective function variable

Suggestions for
guiding the search
more on this later...

TIGHTER INTEGRATION
EXPLOITATION OF RESULTS
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EXAMPLE

• Timetabling problem from [Caseau Laburthe CP97]

– 4-Hours Slots - 1 to 4 Hours Courses
– Two courses cannot overlap

– A course must be contained in a single slot

– Preferences are associated with: Course-Slot assignments

– Maximize Sum of Preferences

day1

day2

day3

slot1 slot2 slot3 slot4 slot5 slot6
course

0    1    2    3     4   5   6    7     8  . . .
time

time

time
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EXAMPLE

• Variables associated to each course lasting Nh hours
– Start time st:  domain contains possible starting time for the course

– Single hours h[i] i=1..Nh: domain contains hours along the time
line

– Course course: domain contains slots

• Constraints link the different variables

st

h[1] h[2] h[3] h[4]

course
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EXAMPLE

• Course lasting Nh=3 hours
– st::[0,1,4,5,8,9,…]

– h[1]::[0,1,4,5,8,9,…]  h[2]::[1,2,3,4,9,10,…]

– h[3]::[2,3,6,7,10,11,…]

– course::[day1slot1,day1slot2,…,day2slot1,…,daynslotm]

day1

day2

day3

slot1 slot2 slot3 slot4 slot5 slot6
course

0    1    2    3     4   5   6    7     8  . . .
time

time

time
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EXAMPLE

• Constraints
– TimeTable(startVars, durations);

– // relaxing the contiguity constraint

– AllDiffCost(singleHours,objective,costsMtx);

– // subproblem defined by 3 and 4 hour courses

– AllDiffCost(courses34Hours,objective1,costsMtx1);

day1

day2

day3

slot1 slot2 slot3 slot4 slot5 slot6
course

0    1    2    3     4   5   6    7     8  . . .
time

time

time
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MODEL MAPPING

ILP-Model
min z = ∑ ∑ cij xij

∑ xij = 1 j = 1..n (A)

∑ xij = 1 i = 1..n (B)
xij  integer

n n

i=1

n

j=1

n

i=1 j=1

AllDiffCost(singleHours,objective,costsMtx);

– singleHours: array of SumOfDurations variables
whose domain contains single hours

singleHours[i]=j    xij=1

singleHours[i]≠j    xij=0

costMtx[i][j]   cij
costMtx[i][j] = ∞  if xij=0
costMtx[i][j] = pref[i][j]/dur

LB    reduced costs
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INTERACTIONS AMONG SOLVERS

• LB-based Propagation
from LB towards objective function Z::[Zmin..Zmax]

 LB ≤ Z

• Reduced Cost-based Propagation
from reduced costs towards decision variables

Xi::[i1,i2,…,i m]   each i j has a gradient function
grad(X i,i j) measuring the cost to pay if Xi = i j

if LB  + grad(Xi,ij)≥ Zmax   then Xi ≠ ij
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TRIGGERING EVENTS

• In CP constraint propagation is triggered each time the
domain of one variable appearing in it is modified

– Variable domains are changed both due to
• other constraint propagation

• variable fixing from the linear solver
• reduced cost based propagation

– In particular reduced cost based propagation triggered when LP
computes a new solution or when the upper bound of the objective
function changes

• LP solver triggered each time a value in the solution of the
LP is deleted from the variable domain
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TIGHTER INTEGRATION
BASED ON PROBLEM DECOMPOSITION

• If a problem can be decomposed in subproblems choose
the best technique/solver to solve it. Interaction among
subproblems should be handled

– CP: subproblems are single constraints

• Application to Dynamic Scheduling [El Sakkout, Wallace
Constraints 2000]

– Notion of distance among solutions. Minimize the distance

Problem
solver

Schedule
Required changes

New schedule
minimal perturbation
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TIGHTER INTEGRATION
BASED ON PROBLEM DECOMPOSITION

• Example on Dynamic Scheduling [El Sakkout, Wallace
Constraints 2000], [El Sakkout,PhD99]: possible changes

– Temporal constraints (e.g., distance between activities)

– Activity constraints (e.g., changing the set of activities, duration,
required resources)

– Resource constraints (e.g. reductions in resource availability)

– Piecewise constraints (considered in [Ajili, El Sakkout CPAIOR2001])

Temporal subproblem: totally unimodular        LP provides optimal
integer solutions satisfying temporal constraints and minimizing the
differences to the given (temporally inconsistent solution)

Activity subproblem: same feature after a transformation
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TIGHTER INTEGRATION
BASED ON PROBLEM DECOMPOSITION

• Temporal and Activity subrpoblem are solved via LP

• Remaining violations: resource utilization
– aim: reduce contention in the constraints

– contention exists when the resource used at a given time point
exceeds the limited (modified) capacity

– degree of contention: the difference

• Search interleaved with LP re-optimization
– select a set of constraints subject to contention

– select a decision with minimal impact

– …more on this later
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TIGHTER INTEGRATION
BRANCH AND CHECK

• Recent framework [Thorsteinson CP2001] generalizing problem
decomposition

• Branch and check heavily relies on Benders Decomposition
• Idea: a part of the problem is considered BASIC
            the remaining part is considered DELAYED

• Branch and Check is based on a branching search on the
basic part. The delayed part is checked as late or as seldom
as possible

– min  cx + f(x)
– s.t  A x ≤ b
–       H(x,y)            non linear part + mapping
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TIGHTER INTEGRATION
BRANCH AND CHECK

• Completely ignoring the delayed part does not work: a
relaxation of the delayed part is added to the basic model.

– If the non linear part is a CSP model with alldifferent or piecewise
linear constraints, the linearization of these constraines should be
added to the basic part.

• When a delayed part is solved, bounding cuts are added to
the model

• Benders decomposition has been recently  introduced in a
Constraint Programming language ECLiPSe  [Eremin and
Wallace CP2001]
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ADVANTAGES OF THE INTEGRATION

• Relaxation and inference combined
– Constraint propagation meets Linear Programming

• Relaxation of overlapping constraint: yet another channel of
communication among subproblems

– example of timetabling two alldifferent constraint providing two Linear
Relaxations in the same problem

• Integration of different optimization constraints through
Lagrangian Relaxation [Sellman, Fahle CP-AI-OR01]

• LP store is a separate means of interaction
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SPECIAL PURPOSE ALGORITHMS

• Instead of using an LP solver, we can embed in global
constraints special purpose algorithms when the linear
relaxation of the constraint represents a well structured
problem

• Characteristics of the algorithm
– polynomial time complexity

– incremental behaviour
– should provide the optimal solution of the relaxed problem

– should (possibly) provide reduced costs for enhancing propagation
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HUNGARIAN ALGORITHM FOR THE AP

• Primal-dual algorithm
– starts with an initial solution where all variables are set to 0 which is

optimal and not feasible for the primal

– at each iteration, it looks for an alternating (possibly augmenting)
path of zero cost. If it is augmenting a new assignment is performed,
otherwise the value of dual variables is changed

• Incrementality
– each time an arc in the current AP solution is removed, the

algorithms looks for a single augmenting path.

• Complexity n nodes: O(n3) the first time O(n2) incrementally
• Reduced costs provided with no extra cost
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FLOW ALGORITHMS FOR COST BASED
FILTERING

• Consider the flow algorithm for the global cardinality
constraint. Extension with costs [Regin CP99]

• gcc(Var,Val,LB,UB,Costs,H) same semantics of the gcc
but with the sum of costs of assignments less or equal than H

• In the value network:
– c(s,val)=0 and c(var,t)=0

– c(t.s)=0

– c(val,var)=cost(var,val)
peter
paul
mary
john

bob
mike
julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

t s

0

0

cost(var,val)

0
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FLOW ALGORITHMS FOR COST BASED
FILTERING

• Notion of consistency based on network minimum cost
flow algorithm on the value network N(C)

• gccCost on k variables is consistent

• there is a min cost flow in N(C) <= H
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FLOW ALGORITHMS FOR COST BASED
FILTERING

• Filtering algorithm based on the redisual graph R w.r.t. flow f:
R(f) plus costs

– if f(u,v)<ub(u,v) then res(u,v)=ub(u,v)-f(u,v);c(u,v)=cost(u,v)

– if f(u,v)>lb(u,v) then res(v,u)=f(u,v)-lb(u,v);c(v,u)=cost(u,v)

– x0 optimal solution of minimum flow in N(C)

– potential of each node π(i)
– reduced cost cijπ=c(i,j)- π(i)+ π(j)
– di,j(k) shortest path distance from i to k in R(x0)-{(i,j)}

• Let C a consistent gcc + costs. A value a for y is not
consistent with C iff

– x0(a,y) = 0 OR

– dy,a(a) > H - cost(x
0)- cay

π



127

GLOBAL CONSTRAINTS for OPTIMIZATION

• References:
– Global constraint for TSP [Caseau Laburthe ICLP97] [Focacci Lodi

Milano Elect.Notes on DM 99], TSPTW [Focacci Lodi Milano ICLP99]

– Matching problems [Caseau Laburthe CP97] [Focacci Lodi Milano
CP-AI-OR 99]

– Reduced cost fixing in global constraints [Focacci Lodi Milano CP99]

– Cardinality constraints + costs [Regin CP99]
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OVERVIEW
• Preliminaries:

– Combinatorial Optimization Problems

– CP and OR techniques

• Comparisons
• Integration:

– problem modelling
– problem solving

• Feasibility: Global Constraint Filtering Algorithms
• Optimality

– branch & bound
– branch & cut
– column generation
– dynamic programming

• Search
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CUTTING PLANES IN CP

• When the LP is used, the linear relaxation of constraints can
be enhanced with the addition of cutting planes

• New LP, called LPcut which provides:
– more precise bound: Sol(LPcut) ≥ Sol(LP)
– reduced costs

• Different ways of adding cuts to LP formulation:
– at the root node only in order to restrict the initial LP formulation

– at the root node are relaxed in a lagrangian way in order to obtain a
structured problem

– at each node (global or local cuts)
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CUTTING PLANES IN CP

cumulative

element

alldiff

cardinality

cycle

FD store

Vars::Domains

LP
constraints

CP solver

...

Cuts 1

Cuts 2

LP store

Cuts are added to
the LP store

[Refalo CP2000]
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CUTTING PLANES IN CP

Cuts are added within
each constraint [Focacci,

Lodi, Milano CP2000]

GLOBAL CONSTRAINT

COST-BASED
FILTERING

ALGORITHM

OPTIMIZATION
COMPONENT:

LP MODEL

FILTERING
ALGORITHM

CP solver

Cuts 1

Cuts 2
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EXAMPLE: cycle CONSTRAINT

• Relaxation of the constraint: Assignment Problem
– the AP finds a set of (possibly) disjoint subtours that minimizes the

sum of costs

– the CP optimal solution satisfies the integrality constraints

• Sub-tour constraints are relaxed

• Sub-tour elimination cuts (SECs) can be separated in
polynomial time [Padberg, Rinaldi 90]

– find the subtour polytope: in general provides a fractional solution
where no subtour is present
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EXAMPLE: cycle CONSTRAINT

ILP-Model
min z = ∑ ∑ cij xij

∑ xij = 1  j∈V (A)

∑ xij = 1  i∈V (B)

∑   ∑ xij ≥ 1 S⊂V S≠∅

xij  integer

CP-Model:
Xi::[i1, i2,….,i m] i=1..n

cycle([X 1,X 2,...,X n])

Ci::[c i1,c i2,…,c im] i=1..n

C1+…+Cn = Z

minimize(Z)

Mapping

Xi = i j

cycle ([X1, X2, ….., Xn])
Ci=cij

xij=1
(A) + (B)
cij in z

i∈V j∈V

i∈V

j∈V

i∈S j∈V\S

relaxed in
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EXAMPLE: cycle CONSTRAINT

• Addition of cuts at the root node
– computed cuts are added to the LP and the new problem is solved

through the linear solver along the whole search tree

– computation of cuts is efficient

– drawback: cuts can be no longer effective during the search

– Example: subtour elimination cut
x21+x12+x31+x13+x32+x23 ≤ 2 2

5 4
6

3

1

7
8
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EXAMPLE: cycle CONSTRAINT

– Example: subtour elimination cut
x21+x12+x31+x13+x32+x23 ≤ 2

when during search X2 is assigned to

5 (x25=1,x21=0,x23=0), from X1 values

2 and 3 are removed (x12=0, x13=0)

from X3 values 2 is removed (x32=0)

the cut is satisfied  (with <) and no longer needed

The new problem is LPcut

– Sol(LPcut) ≤ Sol(LP)
– when all cuts are satisfied Sol(LPcut) = Sol(LP)

2

5 4
6

3

1

7
8
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EXAMPLE: cycle CONSTRAINT

• Alternative: generate cuts during search
– at each node compute valid cuts and add to the LP

– subtour elimination cuts are globally valid

– can be removed upon backtracking

– Example: subtour elimination cut
x21+x12+x31+x13+x32+x23 ≤ 2

when during search X2 is assigned to
5 and X1 is assigned to 6 the cut is

trivially satisfied but another can be computed
x25+x26+x21+x52+x56+x51+x62+x65+x61+x16+x15+x12 ≤ 3

2

5 4
6

3

1

7
8
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EXAMPLE: cycle CONSTRAINT

• Addition of cuts at the root node in the lagrangian relaxation
– motivation: if we have a special purpose algorithm to solve the LP,

say the Hungarian Algorithm, we cannot simply add cuts to the LP
since the problem structure would be lost

– computed cuts are added to the LP which is optimally solved

– dual values associated to cuts: optimal Lagrangian multipliers λ
– relax cuts in a lagrangian way

LPcut has the same structure than the original LP
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EXAMPLE: cycle CONSTRAINT

• Generated cut   αx ≤ α0

• Initial Linear Problem LP (special structure)
– min  z = Σ  cj xj
– subject to

      Σ  aij xj = bi     i = 1..m
xj ≥ 0            j = 1..n
j=1

n

j=1

n
Σ  αmj xj ≤ α0m     m = 1..k Changes the 

problem structure

Dual values correspond to optimal lagrangian multipliers
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EXAMPLE: cycle CONSTRAINT

• Initial Linear Problem LP (special structure)

– min  z = Σ  cj xj

– subject to

      Σ  aij xj = bi     i = 1..m
xj ≥ 0            j = 1..n

• Drawback: cuts that are no longer effective during the
search introduce a penalty that produces worst lower
bounds

j=1

n

Same 
problem structure

j=1

n
Σ  αmj xj - α0m < 0

j=1

n
+ λ ( Σ αmj xj - α0m )

Cost Matrix
changes
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EXAMPLE: cycle CONSTRAINT

• LB behaviour for LP and LPcut

• Purging techniques: remove non needed cuts

LB value

SearchROOT LEAVES

LB from LPcut

LB from LP
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LOCALLY VALID CUTS

• Cuts added during search can exploit information on
variable domains.

• Tighter integration of cutting planes in CP [RefaloCP99]

– Definition of the convex hull of the LP + variable domain bounds.

T = convex_hull(DX) ∩ { ∩c∈P convex_hull(S(c))}

T’ = ∩c∈P convex_hull(S(c) ∩ DX)

Cartesian product of domains Solution set for c

When added during
search depend on
constraint propagation
LOCALLY VALID
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EXAMPLE: piecewise linear function

x

y

min(Dx) max(Dx)

max(Dy)

min(Dy)
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• Generated Cuts are facets of the convex hull
– from (min(Dx),f(min(Dx)) to (u,f(u)) u∈Dx, f(u)∈Dy

and the slope s1 is maximal
– from (min(Dx),f(min(Dx)) to (u,f(u)) u∈Dx, f(u)∈Dy

and the slope s2 is minimal
– from (max(Dx),f(max(Dx)) to (u,f(u)) u∈Dx, f(u)∈Dy

and the slope s3 is maximal
– from (max(Dx),f(max(Dx)) to (u,f(u)) u∈Dx, f(u)∈Dy

and the slope s4 is minimal

• Other 4 cuts for Dy

• Locally valid cuts must be removed in backtracking

EXAMPLE: piecewise linear function
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• Hooker recognized the equivalence of cutting plane
techniques with resolution for propositional logic

– linear inequalities can be seen as clauses

– valid cuts can be derived by logical inference: a cut is nothing other
than a logical implication of the constraint set.

4x1+2x2+x3 ≥ 3  x1 ∨ x3 
x1 x2 x3   Value  x1 ∨ x2
0  0  0      0
0  0  1      0
0  1  0      0
0  1  1      1
1  0  0      1
1  0  1      1
1  1  0      1
1  1  1      1

LOGICAL CUTS

equivalent

In fact the linear
inequality is satisfied
iff x1 is set to 1 or x2
and x3 are both 1
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• Resolution provides logical cuts:
x1 + x2 + x3 ≥ 1  x1 ∨ x2 ∨ x3
(1-x1)+ x2 +(1-x4) ≥ 1  ¬ x1 ∨ x2 ∨ ¬ x4

x2 + x3 +(1-x4) ≥ 1   x2 ∨ x3 ∨ ¬ x4

• Connections between k-resolution (k-rank cuts) and k-
consistency

– k-resolution generates all resolvent of less than k literals not already
absorbed by other clauses

LOGICAL CUTS

equivalent

Rank 1 cut Resolvent
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• Integration of logical cuts in CLP(PB) [Barth Bockmayr ICLP95]
where variables are finite domains and range on [0,1]

– interpret a CLP(PB) program as an Integer Problem in the form

   Ax ≤ b     x∈{0,1}n . Then consider the linear relaxation LP
– add valid inequalities

• Advantages:
– constraints are translated in a solved form

– entailment decided earlier

– unfeasibility can be detected before enumeration
– use of lower/upper bounds

LOGICAL CUTS IN CLP(PB)
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OVERVIEW
• Preliminaries:
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COLUMN GENERATION and CP

• General Framework [Junker et al. CP99]

• Master Problem: MIP
• Subproblem: CSP

CP solver LP solver

Solution: COLUMNS

Dual values MIP solver

Solution

Uses a NEGATIVE
REDUCED COST

constraint



149

COLUMN GENERATION and CP

• Applied to crew rostering application [Junker et al.CP99]

– Path constraint based on set variables uses dynamic programming
techniques for propagation

– uses shortest path algorithm for Acyclic graphs

• Advantage of using CP: the subproblem can be formulated
by considering many problem dependent constraints

V’:=getInitialColumns()

repeat

   λ:=solveLP(V’)

{xj 1,…,xj k}:=solveSubProblem( λ)

V’:= V’ ∪ {xj 1,…,xj k}

until {xj 1,…,xj k} = ∅
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• [Detcher AIJ 99]: More general scope than optimization
• Bucket elimination: algorithmic framework that generalizes

dynamic programming
• The algorithm inputs are variables and functions on these variables

• Functions are partitioned into buckets each associated with a single
variable

• Given a variable ordering, the bucket on variable X contains all
functions on X but those involving variables higher that X

• Buckets are processed from last to first
• When bucket on X is processed, an elimination procedure produces a

new function that “does not mention X”. The new function is placed in the
lower bucket.

• Complexity limited by the induced width

BUCKET ELIMINATION
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• Adaptive consistency:

Bucket(E): E ≠ D, E ≠ C
Bucket(C): C ≠ B
Bucket(D): D ≠ A
Bucket(B): B ≠ A
Bucket(A):

Bucket(E): E ≠ D, E ≠ C
Bucket(C): C ≠ B || C = D
Bucket(D): D ≠ A || D ≠ B
Bucket(B): B ≠ A || B = A
Bucket(A): ||

BUCKET ELIMINATION

≠ 

≠

≠

≠

≠

A

D

E

C

[green, red]
B

[green, red]

[green, red]

[green, red]

[green, red]
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• Minimize the cost:

C(a,b,c,d,e) = C(a)+C(b,a)+C(c,a)+C(e,b,c)+ C(d,a,b)

   min Σ

Bucket(B): C(a,b,e),C(b,c),C(b,e)

Bucket(C): C(a,c),C(c,e),hB(a,d,c,e)

Bucket(D): hC(a,d,e)

Bucket(E): E=0, hd(a,e)

Bucket(A): he(a)

OPT

COST NETWORKS

A

D E

CB

B
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• Example: SSR of the path constraint [Focacci Milano CP-AI-
OR01]
• for each node: n+3 variables

• previ∈[0..n]  models the node directly preceding i
• posi ∈[0..n] models the position of node i in the path

• cumuli ∈[0..M] models the cost from the start to node i
• cumul2ip∈[0..2M] modeling the cost from the start to node i if node
i is in the position p    meaningless if node i is not in the position p in
which case it is set to values greater than M

• Constraints
– cumul2i,posi = cumuli element constraint
– cumul2ip = cumul2previ,p-1+ cprevi,i
– posi ≠ p ⇒ cumul2ip > M

STATE SPACE RELAXATION IN CP
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• Drawback of the previous formulation:
• cumul2ip∈[0..2M] modeling the cost from the start to node i if

node i is in the position p    meaningless if node i is not in the
position p in which case it is set to values greater than M

• Limited propagation of the element constraint
• inf(cumuli) ≥ min {inf(cumul2ip)}

• sup(cumuli) ≤ max {sup(cumul2ip)} *

• sup(cumul2ip) < inf(cumuli) ⇒ posi ≠ p *

• inf(cumul2ip) > sup(cumuli) ⇒ posi ≠ p

• posi = p ⇒ cumul2ip = cumuli

p∈posi

p∈posi

STATE SPACE RELAXATION IN CP
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• A CP variable
X::Dom ⇔ Dom ≠ ∅

• A conditional variable extends a CP variable with a constraint
Xcst::Dom ⇔ (X::Dom ⇔ cst)

• A conditional is defined true if its definition constraint holds, false
otherwise

• The associated constraint can be referred to as Cst(X)

• Constraints on conditional variables [Focacci Milano CP-AI-OR01]
simply extend classical constraints

Xcst = Y ⇔ (X = Y ⇔ cst)

Xcst1 = Ycst2 ⇔ (X = Y ⇔ (cst1∧cst2))

CONDITIONAL VARIABLES
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• Arithmetical operator can also be defined on conditional
variables
  Zcst3=Xcst1+Ycst2⇔(Z=X+Y ⇔ (cst3=cst1∧cst2))

• Conditional variables can be used to define constructive
disjunction:

xunion(Cvars,Y,X)
• where X and Y are regular variables and Cvars is an array of k

conditional variables

xunion(Cvars,Y,X) holds iff one out of k conditional
variables is true (Cvars[i*]), X = i* and Cvars[X]=Y

CONDITIONAL VARIABLES
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• Propagation of xunion

inf(Y) ≥ min{inf(Cvars[i])}

sup(Y) ≤ max{sup(Cvars[i])}

inf(Cvars[i]) ≥ inf(Y)

sup(Cvars[i]) ≤ sup(Y)
inf(Y) > sup(Cvars[i]) ⇒ X ≠ i
sup(Y) < inf(Cvars[i]) ⇒ X ≠ i
i ∉ Dom(X) ⇔ ¬ cst(Cvars[i])
X = i ⇔ cst(Cvars[i])

i∈Dom(X)

i∈Dom(X)

CONSTRUCTIVE DISJUNCTION
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• The constraint previously used  cumul2i,posi = cumuli
can be replaced by

xunion(cumul2ip,cumuli,posi)

• Bounds on cumul2ip can now be safely modified while in the
previous model the domain should be left open to consider the case
where posi ≠ p

STATE SPACE RELAXATION IN CP
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• We can extend constructive disjunction when also both X and
Y are conditional variables:

xunion(Cvars,Ycst1,Xcst2)

holds iff  xunion(Cvars,Y,X) ⇔ cst1∧cst2

• Interesting case: Y and X  are conditioned by the same constraint.
Propagation in this case enforces also

cst(Y)⇒ (X = i ⇔ cst(Cvars[i]))

cst(Y)⇒ (i∉Dom(X) ⇔ ¬ cst(Cvars[i]))
cst(Y)⇒ inf(Y) ≥ min{inf(Cvars[i])}
cst(Y)⇒ sup(Y) ≤ max{sup(Cvars[i])}

i∈Dom(X)

i∈Dom(X)

EXTENSION TO CONSTRUCTIVE
DISJUNCTION
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• With the extended xunion  constraint we can write

xunion((cumul2j,p-1+ cj)j,cumul2i,p,previ)

• cumul2ip and previp share the same conditioning constraint
posi = p

• in CP we have full exploitation of DP recursion since bounds on
conditional variables can be updated by other constraint

STATE SPACE RELAXATION IN CP

162

• The path constraint can be modeled by using SSR
• for each node: 2n+3 variables

• previ∈[0..n]  models the node directly preceding i
• posi ∈[0..n] models the position of node i in the path

• cumuli ∈[0..M] models the cost from the start to node i

• cumul2ip     ∈[0..M] conditional variables for costs

• prev2ip      ∈[0..N] conditional variables for prev

xunion(cumul2i,p,cumuli,posi)

xunion(prev2i,p,previ,posi)

xunion((cumul2j,p-1+ cj)j,cumul2i,p,prev2i,p)

posi=p

posi=p

SSR MODEL OF TSP
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GUIDING SEARCH

• Exploiting results from the optimal solution of the relaxation
in order to guide the search

– the search is focussed on more “promising” values

• Example of search strategies based on relaxation:
– violated constraints

• subtour elimination strategy
• branching on variables with fractional values

– notion of regret

– probe backtracking
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SUBTOUR ELIMINATION STRATEGY

• Example on TSP: [Focacci Lodi MilanoCP98 Wrk. on LSCO]

– relaxation: Assignment Problem

– optimal solution of AP is integer, but possibly presents subtour

– violation of subtour constraints in TSP

• Start from the optimal AP solution
• Select a subtour and break it

– Example: subtour 1 2 3 4
• Next1≠2 ∨ (Next1=2, Next2≠3) ∨ (Next1=2, Next2=3, Next3≠4) ∨ (Next1=2,

Next2=3, Next3=4, Next4≠1)
• 1>2 ∨ (1<2, 2>3) ∨ (1<2, 2<3, 3>1) ∨ (1<2, 2<3, 3<4, 4>1) more suitable

for CP

1
2

3
4

65
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BRANCHING ON FRACTIONAL VARs

• LP provides a solution with fractional values

• Select variables that are assigned to fractional values
– Example: optimal LP solution Xi = 4.2

– Branching
• Xi ≤ 4 ∨  Xi ≥ 5

• Used in OR Branch and Bound
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NOTION OF REGRET

• Regret: difference between the best value and the second
best

• Select the variable with maximal regret
– should be assigned first to its best values otherwise the solution

would be worsened too much

• Computation of regret on the cost matrix [Caseau Laburthe CP97]

• Computation of regret on reduced costs [Focacci Lodi MilanoCP99]

– select the variable with higher minimal reduced cost

– assign the value suggested by the relaxation
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NOTION OF REGRET

• Computation of regret on the cost matrix [CaseauLaburthe CP97]

• Computation of regret on reduced costs [Focacci Lodi MilanoCP99]

– select the variable with higher minimal reduced cost
– assign the value suggested by the relaxation

Regreti = min{cik}
k=1..n
k≠opt(i)

Regreti = ci,best - ci,second 
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PROBE BACKTRACKING

• Backtrack search supported by lookahead procedures
(probe generators) which dynamically generate potentially
good assignments (probes). [El Sakkout, Wallace Constraints
2000] [Purdom Haven SIAM J. on Computing97]

– the probe generator assigns each variable a tentative value

– focus the backtrack search on regions where the probe violates
constraints

– probe generator should provide good solutions (super-optimal)

• Unimodular Probing Algorithm: the LP finds optimal integer
solutions on unimodular subproblems which are considered
as probes
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INCOMPLETE APPROACHES

• Integration of CP and Local Search
– CP global search is used to find an initial (feasible) solution and LS is

applied to improve this solution;

– within a CP framework, the exhaustive exploration is stopped at a
chosen level of the search tree and the leafs are reached through LS;

– within a LS (metaheuristic) framework, CP global search is used to
exhaustively explore the neighborhood, or to complete in optimal way  a
partial solution.

• References: [Li et al.“Modern Heuristic Search Methods”,John Wiley96],
[Shaw CP98],[Pothos, Richards, Cp98 Wks.on really hard problems],
[Michel, Van Hentenryck CP97],[Psarras et al. European JOR97],[Pesant,
Gendrau CP96],[Nuijten LePape JOH98],[Caseau et al. CP99] [DeBacker,
Furnon,Shaw CPAIOR99], [Caseau, Laburthe CPAIOR99]
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SYSTEMS
– Prolog III [Colmerauer CACM(33) 90],
– CHIP [Dincbas et al., JICSLP88],
– 2LP [McAloon, Tretkoff PPCP93]

– CLP(PB) and COUPE [Barth,Bockmayr ICLP95] [Kasper PhD98],
– OOPDB [Barth PhD 96]

– Eclipse [Wallace et al.97]

– ILOG [Puget SPICIS94], [Puget, Leconte ILPS95]
• Solver Planner Dispatcher Scheduler

– OPL [Van Hentenryck MIT Press99]

– SCHEDEns [Colombani PhD97]

– COME [Heipcke PACT96]

– CLAIRE [Caseau Laburthe JICSLP Wks on Multi Paradigm Logic98],

– SALSA [Caseau Laburthe CP98],

– LOCALIZER [Michel, Van Hentenryck CP97]
– many others……….
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TO KNOW MORE...
• Conferences and Journals

– Conferences on Constraints: CP, PACLP, Constraints...

– Conferences on AI: ECAI, IJCAI, AAAI, AIJ...
– Conferences on OR: IFORS, INFORMS, Annals of OR

• INFORMS Journal on Computing (Special issue vol.10, No.3 1998)

• Annals of Mathematics and AI (Special issue LSCO, to appear)

• Journal of Heuristics (Special issue on CP-AI-OR99, to appear)

• CHIC2 Deliveries

• Workshops on the subject:
– CP98 and CP99 Workshop on Large Scale Combinatorial Optimisation and Constraints
– CP-AI-OR99, CP-AI-OR2000 CP-AI-OR2001 Workshop on integration of AI and OR

techniques in CP for Combinatorial Optimization
– Forthcoming CP-AI-OR’02
– AAAI2000 Workshop on integration of AI and OR techniques for Combinatorial

Optimization
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CONCLUSION & FUTURE DIRECTIONS

• CP advantages:
– easy modeling (less bugs)

– constraint propagation
– guide search

– flexibility

• CP drawbacks:
– no global reasoning
– no optimality reasoning

• OR advantages:
– global problem view (LP)
– exploitation of structure

– optimization problems

• OR drawbacks:
– models are less flexible

– software engineering poor

Integration benefits from
the advantages of both
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CONCLUSION & FUTURE DIRECTIONS

• CP Problem modelling
– composition of basic components (constraints)

• CP Problem solving
– interaction of constraint propagation algorithms

• OR provides new components/algorithms
– relaxation (LP, specific algorithms)

– cut generation

– dynamic programming

– filtering algorithms (e.g. Edge finder)

• Collaboration through the constraint store
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CONCLUSION & FUTURE DIRECTIONS

• Two extremes

• Move away from the black box approach
– let the user compose the best technique:

• composition of different solvers

• composition of constraint propagation algorithms
• composition of relaxations

Branch & Cut

Close the problem
in few nodes

Pure CP

No bound, nodes
explored quickly

What between?

Composition of
techniques by

putting together
basic blocks
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CONCLUSION & FUTURE DIRECTIONS

• Integration can exploit
– problem decomposition

– problem abstraction
– problem special (sub)structure

– problem perspective (cooperative solvers)

– different solvers capabilities

– exchange results

• Guidelines
– each solver manages the sub-problem it is more suitable for

– cheap solvers first, lower solver later

– define events triggering solver computations
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CONCLUSION & FUTURE DIRECTIONS

• Integration: the other way round
– Can OR benefit from the CP paradigm ?

• Software engineering: modelling tools

• Constraint propagation during search

• Global constraints in IP [Bockmayr Kasper INFORMS J. Comp.98]

– TSP structure

– Assignment structure


