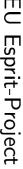
Integrating Column Generation and Heuristic Tree Search Crew Assignment via Constraint Programming:

University of Athens Panagiotis Stamatopoulos Kyriakos Zervoudakis

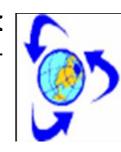
University of Paderborn Meinolf Selmann Torsten Fahle



Content

- The Airline Crew Assignment Problem
- 2. Quick Tour: Constraint Programming
- 3. Column Generation for the ACA
- Heuristic Tree Search for the ACA
- 5. Integrating the Approaches: 1+1>2
- 6 Conclusion

Airline Crew Assignment



Modeling Market

Fleet Assignment

Rotation Aircraft

Crew Assignment

Rostering Crew

Operation Day of

Design

Network

 \approx 8 month

 \approx 3 month

 \approx 2 month

pprox 2 weeks

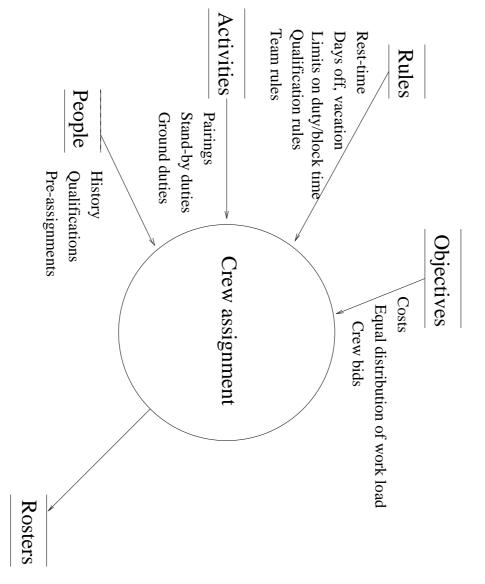
Airline Crew Assignment II

the set of activities. Let $k, m, n \in \mathbb{N}$ and let $C := \{1, \ldots, m\}$ the set of crew members and $T := \{1, \ldots, n\}$

- Assign to each crew member c_i a legal subset of activities $t_i \subseteq$ $\{(c_i,t_i),\ldots,(c_m,t_m)\}$ is the set of rosters. 2^T , R;; ||
- 2. $f: R \to \mathbb{Q}^+$ is called a *cost function*
- 3. The Crew Assignment Problem (ACA) is to minimize $\sum_{1 \leq i \leq m} f((c_i, t_i))$ s.t. $\{c_1,\ldots,c_m\}=C$ and $\left(egin{array}{ccc} t_i = T \end{array}
 ight.$

 $1 \le i \le m$

Airline Crew Assignment III



The Need for Flexibility and Efficiency

one software to be designed for three airline companies

- There is a need for a flexible modeling of rather complex European airline rules and regulations.
- There is a need for modeling e.g. nonlinear constraints, etc.
- There is a need for fast/efficient algorithms

Our approach:

Combine the flexibility of Constraint Programming with the efficiency of Operations Research

Constraint Programming – A Quick Tour

Given a CSP:

- A finite set of variables $X = \{x_1, \dots, x_n\}$
- With each variable $x \in \mathcal{X}$ a finite domain D(x) is associated
- Constraints $C \in C$
- couple one or more variables $C(x_{i_1},\ldots,x_{i_k})$ define a relation $R(C)\subseteq D(x_{i_1})\times\cdots\times D(x_{i_k})$

We ask for a value assignment $v(x) \ \forall \ x \in X$ such that

- all constraints are satisfied, i.e. $\forall C: (v(x_1), \dots, v(x_n)) \in R(C)$
- the values respect the corresponding domains, i.e. $v(x) \in D(x) \ \forall \ x \in X$

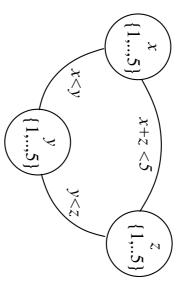
CSP is \mathcal{NP} -complete

Constraint Programming – A Simple Example

We need a solution for: <

$$x < y$$

 $y < z$
 $x + z < 5$
 $x, y, z \in \{1, 2, 3, 4, 5\}$

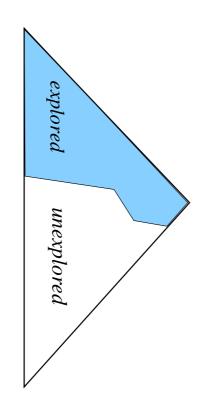


Domain reduction:

C		\		x	y	N
x < y	\Downarrow	$x \neq 5$, $y \neq 1$	\Downarrow	$\{1, 2, 3, 4\}$,	$\{2,3,4,5\}$	
y < z	\Downarrow	$y \neq 5$, $z \neq 1$	\Downarrow		$\{2, 3, 4\},\$	$\{2,3,4,5\}$
x + z < 5	\Downarrow	$x \notin \{3, 4\}, z \notin \{4, 5\},$	\Downarrow	$\{1, 2\},\$		$\{2,3\}$
y < z	\Downarrow	$y \notin \{3, 4\}, z \neq 2$	\Downarrow		{2}	{3}
x < y	\Downarrow	$x \neq 2$		{1}		

Constraint Programming – Solution Techniques

- Domain reduction removes inconsistent values from the set of possible variable assignments
- Branching on subproblems where domains are not unique after domain reduction (tree search)



Various notions of consistency, various tree search variants,

Example: Constraint Programming for Airline Crew Assignment

Rules:

- Earliest Start time at A is 10:00
- IF arriving at B after 16:00 THEN earliestStart := 9:00 ELSE earliestStart := 6:00
- Arrival at C before 15:00
- $A \to B$ takes 12h, $A \to C$ takes 10h, $B \to C$ takes 8h

Decision: Fly B o C

- \Rightarrow Arrival at C before 15:00 (Rule 3)
- \Rightarrow Departure at B before 7:00 (time)
- \Rightarrow Arrival at B before 16:00 (Rule 2)
- **A cannot be successor of** B (as start at A+ flight time > 16:00)
- \Rightarrow remove edge (A,B) and propagate. . .

Approach 1: Heuristic tree Search

ACA can be regarded as a complex assignment problem:

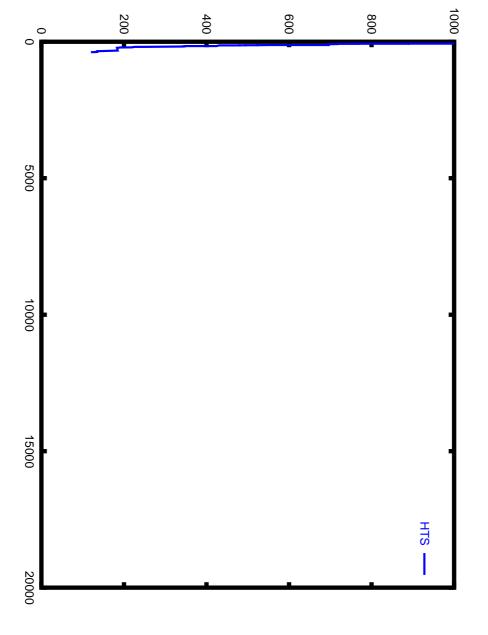
- Try "all" possible assignments
- (with the help of some heuristics: We'll find a good one early)

Approach: use Constraint Programming alone

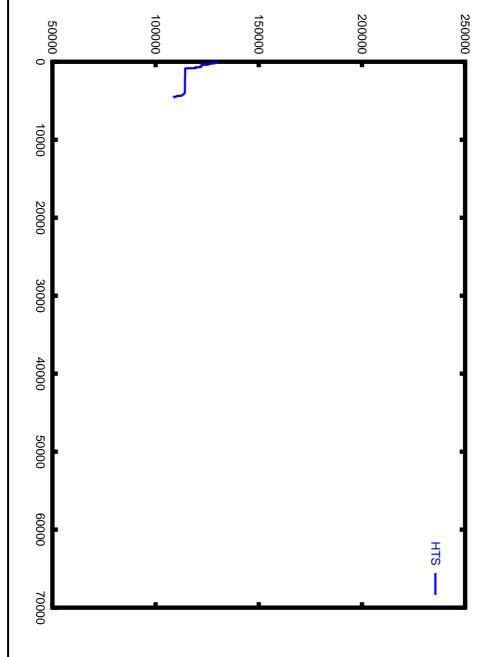


Heuristic Tree Search

- ACA formulation
- Pairings are represented by constrained variables
- Crew members are represented by values in the variable domains
- Problem solving as search in the tree of possible values for variables
- Heuristics and search methods tailored for a specific airline case control search tree traversal
- LDS, DDS
- cost and feasibility oriented variable selection
- Incremental solution construction

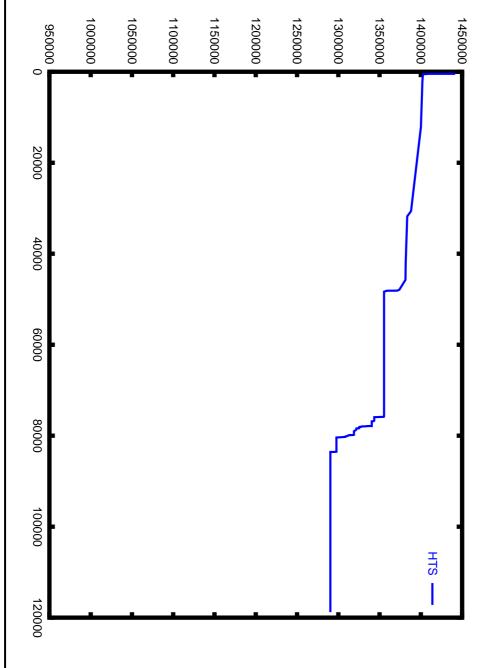


Results: 30 Crew Member, 279 Pairings



Torsten Fahle
University of Paderborn

Results: 65 Crew Member, 959 Pairings



Observation: Heuristic Tree Search

- Feasible solutions can be found quickly
- Heuristic information and search methods guide the search towards good initial solutions
- Search gets stuck in local minima
- Convergence "stops" after initial bunch of solutions

Approach 2: Column Generation

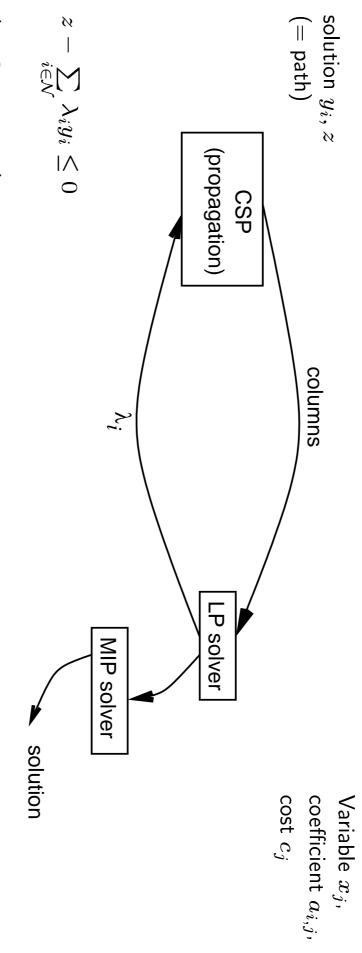
ACA decomposes naturally into:

- Masterproblem: combine a selection of rosters to generate feasible schedule ightarrow Set Partitioning
- Subproblem: generate feasible *rosters* for each person \rightarrow constrained shortest path

Approach:

- use linear programming for combining rosters
- use Constraint Programming for the complex European rule sets

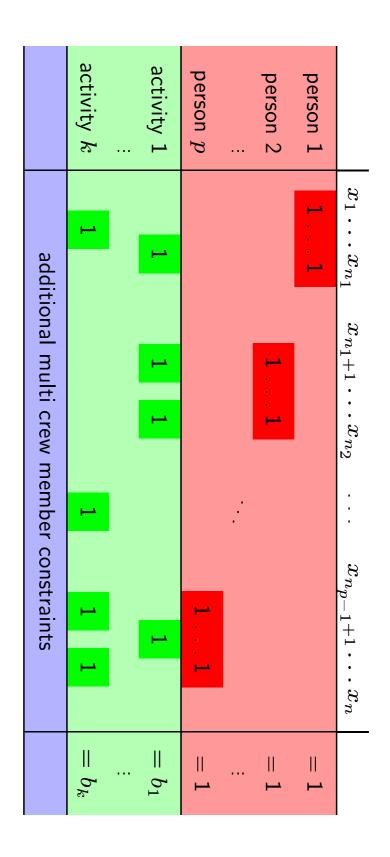
Constraint Programming based Column Generation Integrate OR and CP



(NRC constraint)

 \Rightarrow Constraint Programming based Column Generation [Junker et al 1999]

The IP Masterproblem — Basic Model



find: solution $x \in \{0, 1\}^n$ with minimal costs $\sum_j c_j x_j$, where c_j is the cost value of roster j.

Constraints

assignment constraints

person
$$a$$
 $x_{n_a} + \cdots + x_{n_{a'}} = 1$, $x_{n_b} + \cdots + x_{n_{b'}} = 1$, .

SCP/SPP constraints
$$x_{j_1} + \cdots + x_{j_{n_\ell}} = b_\ell$$

cabin crew often $b_\ell \geq 1)$ (cockpit crew usually $b_\ell=1$,

additional constraints

person a is *not allowed to* fly together with persons b,c:

$$\underbrace{3x_{n_a} + \cdots + 3x_{n_{a'}}}_{\text{person } a} + \underbrace{x_{n_b} + \cdots + x_{n_{b'}}}_{\text{person } b} + \underbrace{x_{n_c} + \cdots + x_{n_{c'}}}_{\text{person } c} \leq 3$$

person a has to fly together with persons b:

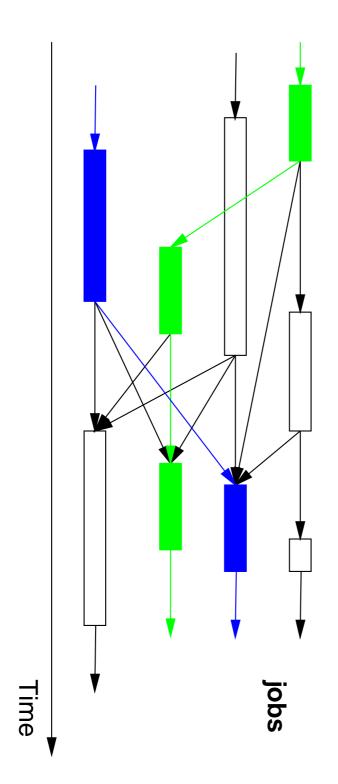
$$\underbrace{x_{n_a} + \dots + x_{n_{a'}} - x_{n_b} \dots - x_{n_{b'}}}_{\text{person } b} = 0$$

Constraint Shortest Path

Crew Rostering

- Assign rosters to named individuals
- respect many rules and regulations

shortest path (= lower bound for feasible roster) (edge costs \approx dual values)



Outline of Column Generation

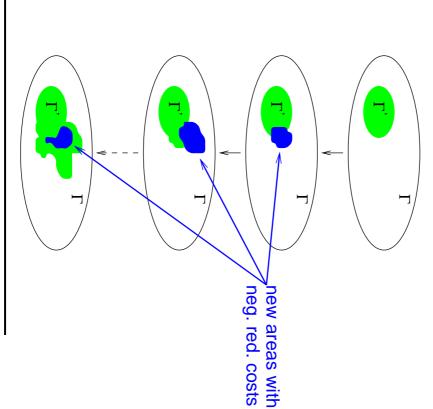
Subproblem:

- Generate further columns with negative reduced costs
- Use dual values of LP solution to determine reduced costs

$$\Gamma':= exttt{getInitialColumns()}$$

repeat

$$\begin{array}{l} \lambda := \mathtt{solveLP}(\Gamma') \ \{\mathtt{get} \ \mathtt{new} \ \mathtt{duals}\} \\ \{x_{j_1}, \dots, x_{j_k}\} := \mathtt{solveSubproblem}(\lambda) \\ \Gamma' = \Gamma' \cup \{x_{j_1}, \dots, x_{j_k}\} \\ \mathbf{until} \ (\{x_{j_1}, \dots, x_{j_k}\} = \emptyset) \end{array}$$



The Subproblem: Generate a single 'good' path

Modify Network: Add source s, sink t, edges (s,i), (i,t) to DAG $\rightarrow \mathcal{N}$

Subproblem: Find an (s,t)-path with negative reduced costs

$$y_i \in \{0,1\}$$
 $y_i = 1 \iff \text{node } i \text{ is on that path}$ z cost of that path

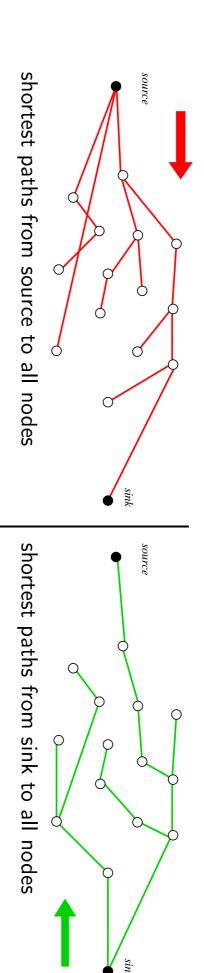
For the simple problem: $y_s=1$, $y_t=1$, z=1

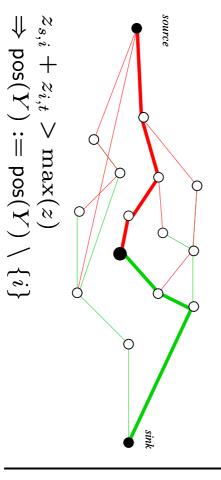
negative reduced costs constraint (NRC)

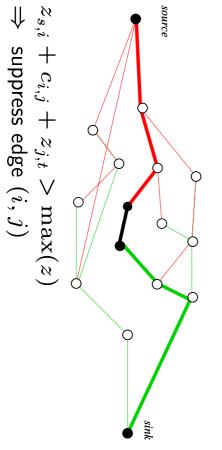
$$|z-\sum_{i\in V}\lambda_iy_i\leq 0$$

(where λ_i is the dual value of the constraint corresponding to node i in the master problem)

Example



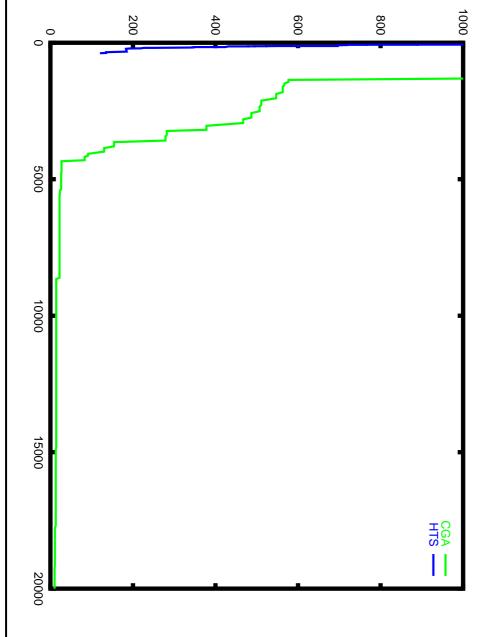




Interference with other Airline Rules

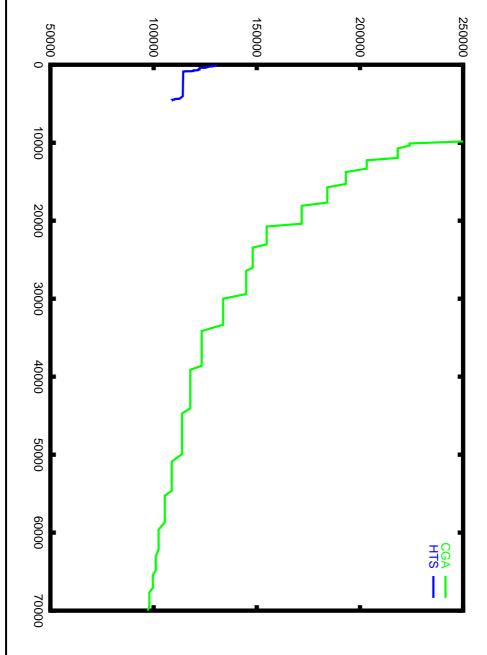
- Each time an edge/node is required it is added to the required set of the path
- This may trigger propagation of other constraints (work time limits, exclude overlapping jobs,
- This may trigger the shortest path constraint again.
- ⇒ all constraints communicate via *domains*.
- \Rightarrow an incremental shortest path algorithm may save a lot of computational effort.

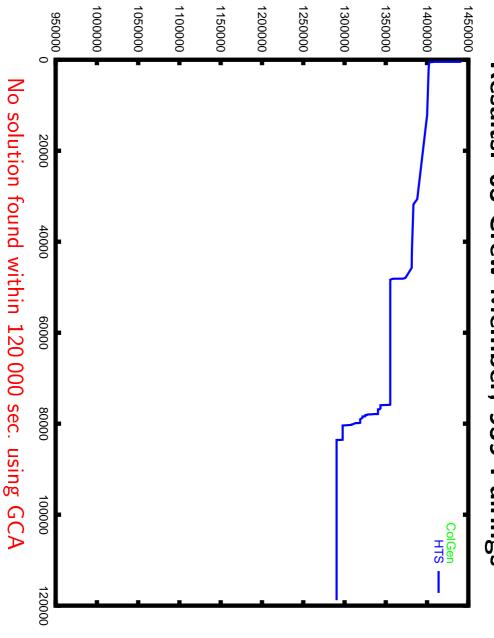
Results: 7 Crew Member, 129 Pairings



Torsten Fahle
University of Paderborn

Results: 30 Crew Member, 279 Pairings

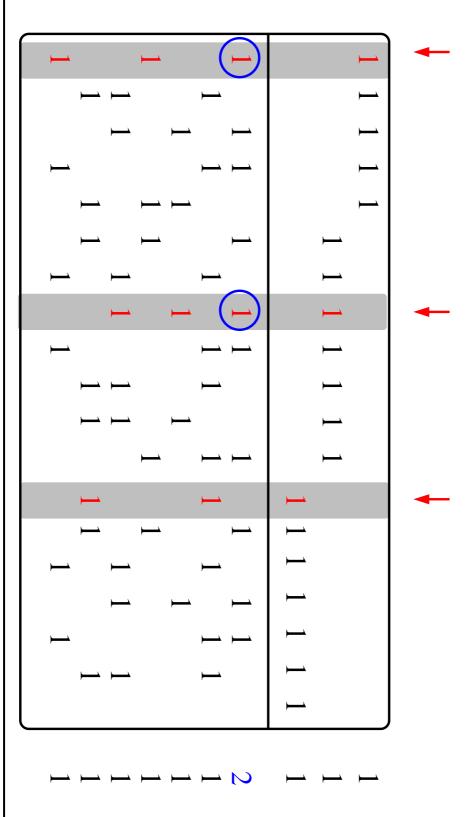




Observation: Column Generation

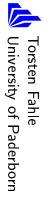
- First Solution needs long time
- Initial solution is of bad quality
- Converges nicely towards optimal solution
- Problems when combining roster (next slide ...)

Conflicts when Combining Rosters



Integrated Approach: 1+1 > 2

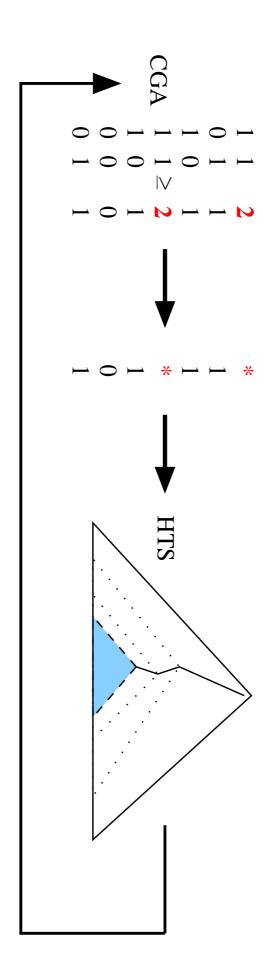
Column Generation (CGA)	Heuristic Tree Search (HTS)
First Solution needs long time	Feasible solutions can be found quickly
Bad initial solution	Heuristic information and search methods guide the search towards good initial solutions
converges nicely towards optimal solution	Search gets stuck in local minima Convergence "stops" after initial bunch of solutions
problems when combining roster	(there is no "combining" in HTS)



First Integration: Set Covering + Repair

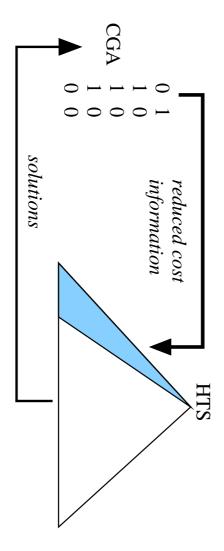
- Increase startup-time of column generation by feeding it with solutions of heuristic tree search
- Increase convergence by relaxing set partitioning structure of IP to set covering
- Now over covered pairings/crew member are infeasible!
- Deassign over covered pairings and perform a HTS on the partial solution.

First Integration: Set Covering + Repair



Second Integration: Dual Values guiding HTS

- Increase startup-time of column generation by feeding it with solutions of heuristic tree search
- cost optimization Increase convergence of CGA by adding solutions that are found by HTS based on reduced



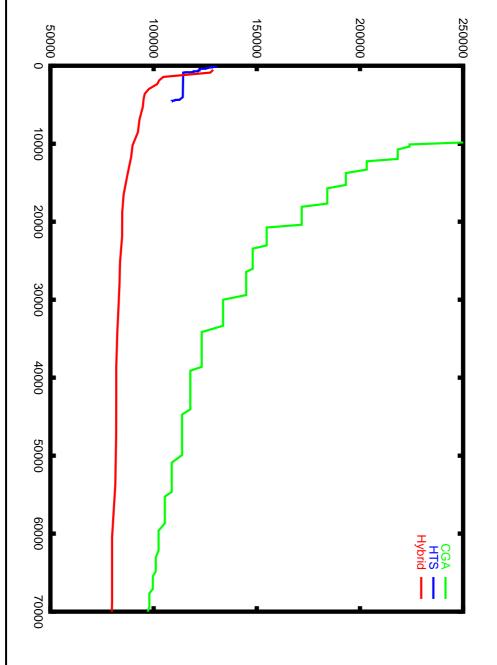
Second Integration: Dual Values guiding HTS

- to poor regions of the solution space In the CGA approach first solutions are poor because dual values of initial dummy rosters lead
- HTS heuristics offer good initial solutions
- by feeding HTS with reduced cost information HTS can quickly search for combine-able solutions that are good with resp. to dual values
- hence convergence is improved

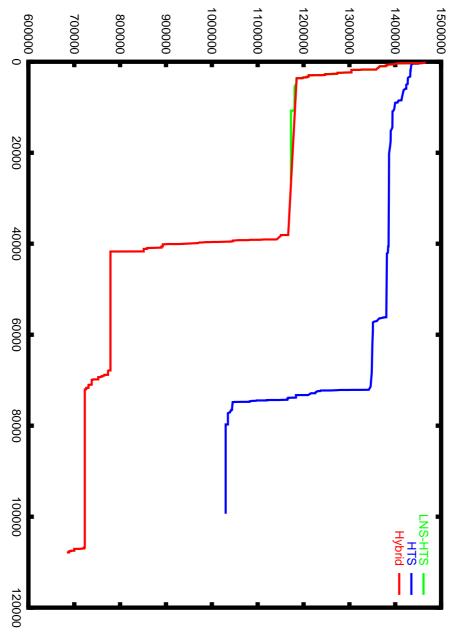
Results: 7 Crew Member, 129 Pairings CGA HTS — Hybrid —

Torsten Fahle
University of Paderborn

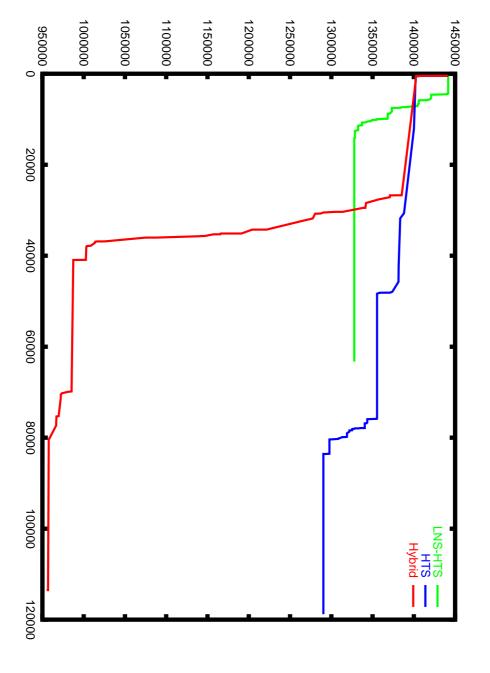
Results: 30 Crew Member, 279 Pairings



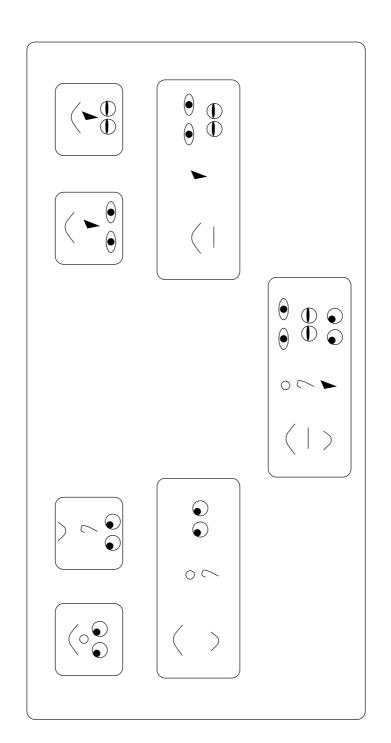
Results: 50 Crew Member, 766 Pairings



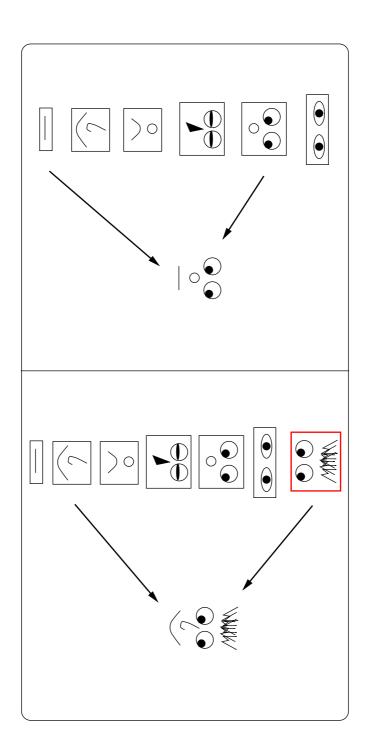
Results: 65 Crew Member, 959 Pairings



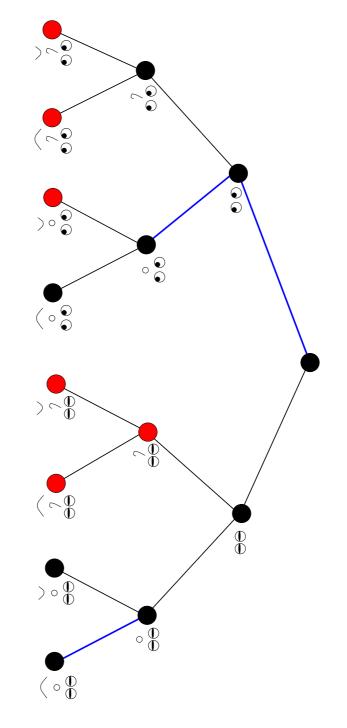
Constraint Programming



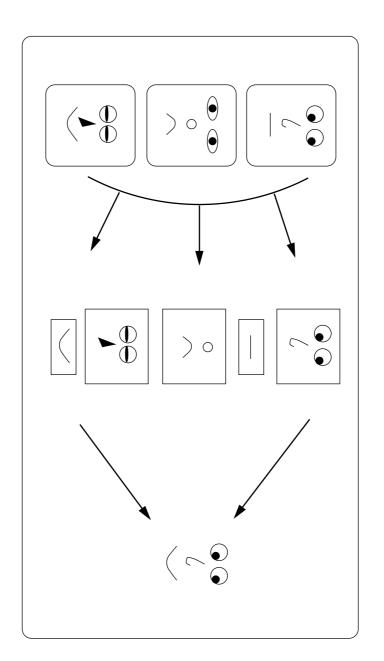
Column Generation



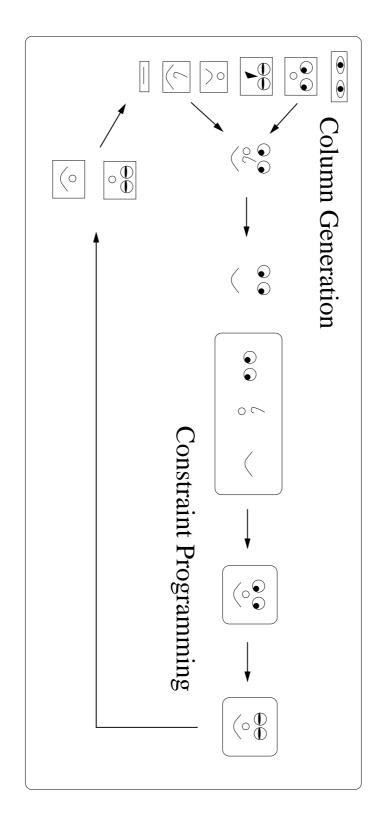
The Decision Tree



Initial Columns



An Integrated Approach



Conclusions

Isolated Approach

Constraint **Programming**

- + generic potential, resolves local conflicts
- non-local constraints, stuck local gets in optima

Column Generation

- + global view, bounds
- initial columns, suffers from local conflicts

Integration

Constraint **Programming**

- + provides good first solutions quickly
- + resolves overcoverings in the master problem

Column Generation

- + guides to promising regions of the search space
- + provides bounds for pruning

of Operations Research Combination and Constraint Programming offers flexible and still efficient modeling and solving of practical Airline Crew Assignment Problems.