

Theoretische Grundlagen der Informatik

Vorlesung am 24.01.2023

Torsten Ueckerdt | 24. Januar 2023

Evaluation

Online:

■ → Email mit TAN von gestern.

Ende:

Freitag, den 27. Januar um 23:59 Uhr

Übersicht

Chomsky-Hierarchie	Wortproblem letzte Vorlesung	Beispiele heute		
Chomsky-0	semi-entscheidbar NTM akzeptiert			
Chomsky-1 kontextsensitiv	\mathcal{NP} -schwer $\mathcal{NTAPE}(n)$			
Chomsky-2 kontextfrei	polynomiell CYK-Algorithmus			
Chomsky-3 regulär	linear DEA			

Pumping-Lemma für reguläre Sprachen.

Sei L eine reguläre Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $w \in L$ mit |w| > neine Darstellung

$$w = uvx \text{ mit } |uv| \le n, \ v \ne \varepsilon,$$

existiert, bei der auch $uv^i x \in L$ ist für alle $i \in \mathbb{N}_0$.

Pumping-Lemma für **kontextfreie** Sprachen.

Sei L eine kontextfreie Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $z \in L$ mit |z| > n eine Darstellung

$$z = uvwxy \text{ mit } |vwx| \le n, vx \ne \varepsilon,$$

existiert, bei der auch $uv^iwx^iy \in L$ ist für alle $i \in \mathbb{N}_0$.

Das Pumping-Lemma für kontextfreie Sprachen

Pumping-Lemma für kontextfreie Sprachen.

Sei L eine kontextfreie Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $z \in L$ mit |z| > n eine Darstellung

$$z = uvwxy \text{ mit } |vwx| \le n, vx \ne \varepsilon,$$

existiert, bei der auch $uv^iwx^iy \in L$ ist für alle $i \in \mathbb{N}_0$.

Für alle $\forall L \subseteq \Sigma^* \text{ mit } L \text{ kontextfrei}$

existiert $\exists n \in \mathbb{N}$

für alle $\forall z \in L \text{ mit } |z| > n$

existiert $\exists u, v, w, x, y \in \Sigma^* \text{ mit } z = uvwxy, |vwx| \le n, vx \ne \varepsilon$

für alle $\forall i \in \mathbb{N}_0$:

gilt $uv^iwx^iy \in L$

Ogden's Lemma für kontextfreie Sprachen

Ogden's Lemma für kontextfreie Sprachen.

Sei *L* eine kontextfreie Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $z \in L$ mit |z| > n gilt:

Wenn wir in z mindestens n Buchstaben markieren, so existiert eine Darstellung

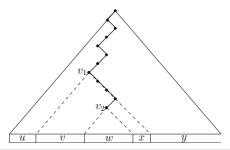
$$z = uvwxy$$

in der von den mindestens n markierten Buchstaben.

- höchstens *n* zu *vwx* gehören und
- mindestens einer zu vx gehört,

bei der auch $uv^iwx^iy \in L$ ist für alle $i \in \mathbb{N}_0$.

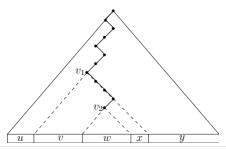
- Sei L kontextfreie Sprache.
- Sei *G* Grammatik zu *L* mit Variablen *V* in Chomsky-Normalform, d.h. alle Regeln sind von der Form $A \rightarrow BC$ oder $A \rightarrow a$.
- Setze $n := 2^{|V|+1}$.
- Wähle beliebiges Wort $z \in L$ mit |z| > n
- Betrachte einen Syntaxbaum T zu z.



Karlsruher Institut für Technologie

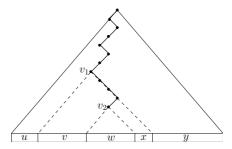
Beweis von Ogden's Lemma

- T hat |z| Blätter, die Vorgänger der Blätter haben 1 Nachfolger und alle weiteren inneren Knoten haben 2 Nachfolger.
- Seien nun mindestens n Blätter markiert.
- Durchlaufe einen Weg von der Wurzel zu einem Blatt wie folgt:
 Wähle stets den Nachfolger, auf dessen Seite die größere Anzahl markierter Blätter liegt.
- Nenne Knoten auf dem Weg, für die rechter und linker Unterbaum markierte Blätter hat, Verzweigungsknoten.



Beweis von Ogden's Lemma

- Wegen $n > 2^{|V|}$ liegen auf dem Weg mindestens |V| + 1 Verzweigungsknoten
- Von den letzten |V| + 1 Verzweigungsknoten entsprechen mindestens zwei Knoten v_1, v_2 derselben Variablen A.
- Sei vwx das Teilwort von z im Unterbaum von v₁.
- Sei w das Teilwort von z im Unterbaum von v₂.
- Damit sind u und y eindeutig bestimmt.



Beweis von Ogden's Lemma

- Da *v*₁ Verzweigungsknoten ist, enthält *vx* mindestens einen markierten Buchstaben.
- Da der Unterbaum von v_1 inkl. v_1 nur |V| + 1 Verzweigungsknoten enthält, gibt es in vwx höchstens $2^{|V|+1} = n$ markierte Buchstaben.
- Zu G existieren die Ableitungen

$$S \stackrel{*}{\rightarrow} uAy$$
, $A \stackrel{*}{\rightarrow} vAx$, $A \stackrel{*}{\rightarrow} w$.

Daraus kann z abgeleitet werden durch

$$S \stackrel{*}{\rightarrow} uAy \stackrel{*}{\rightarrow} uvAxy \stackrel{*}{\rightarrow} uvwxy = z,$$

aber auch uv^iwx^iv für jedes $i \ge 1$ durch

$$S \xrightarrow{*} uAy \xrightarrow{*} uvAxy \xrightarrow{*} uv^2Ax^2y \xrightarrow{*} \cdots \rightarrow uv^iAx^iy \rightarrow uv^iwx^iy$$
.

Also ist auch $uv^i wx^i y \in L$ für $i \ge 0$.

Bemerkung

Ogden's Lemma für kontextfreie Sprachen.

Sei L eine kontextfreie Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $z \in L$ mit |z| > n gilt:

Wenn wir in z mindestens n Buchstaben markieren, so existiert eine Darstellung

$$z = uvwxy$$

in der von den mindestens n markierten Buchstaben

- höchstens n zu vwx gehören und
- mindestens einer zu vx gehört,

bei der auch $uv^iwx^iy \in L$ ist für alle $i \in \mathbb{N}_0$.

Der Spezialfall von Ogden's Lemma, in dem alle Buchstaben von z markiert sind, ist gerade das Pumping-Lemma für kontextfreie Sprachen.

Übersicht

Chomsky-Hierarchie	Wortproblem letzte Vorlesung	Beispiele heute		
Chomsky-0	semi-entscheidbar NTM akzeptiert			
Chomsky-1 kontextsensitiv	$\mathcal{NP} ext{-schwer} \ \mathcal{NTAPE}(n)$			
Chomsky-2 kontextfrei	polynomiell CYK-Algorithmus			
Chomsky-3 regulär	linear DEA			

Satz.

Die Chomsky-Hierarchie ist echt, d.h.

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$
,

wobei \mathcal{L}_i , $0 \le i \le 3$, die Klasse der durch Typ-*i*-Grammatiken erzeugten Sprachen bezeichnet.

Beweis:

Teil 1: Es gibt eine kontextfreie Sprache <i>L</i> ,		$\leadsto L \in \mathcal{L}_2$
	die nicht regulär ist.	$\leadsto L \notin \mathcal{L}_3$

Teil 2: Es gibt eine kontextsensitive Sprache
$$L$$
, $\rightsquigarrow L \in \mathcal{L}_1$ die nicht kontextfrei ist. $\rightsquigarrow L \notin \mathcal{L}_2$

Teil 3: Es gibt eine semi-entscheidbare Sprache
$$L$$
, $\rightsquigarrow L \in \mathcal{L}_0$ die nicht kontextsensitiv ist. $\rightsquigarrow L \notin \mathcal{L}_1$

Es gibt eine kontextfreie Sprache, die nicht regulär ist.

Die Sprache

$$L = \{a^i b^i \mid i \ge 1\}$$

ist kontextfrei und wird durch die Grammatik

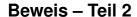
$$V = \{S\}$$

$$\Sigma = \{a, b\}$$

$$R = \{S \rightarrow ab \mid aSb\}.$$

erzeugt. Sie ist aber nicht regulär.

(Siehe auch Beispiele zum Pumping-Lemma für reguläre Sprachen)



Es gibt eine kontextsensitive Sprache, die nicht kontextfrei ist.

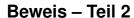
Die Sprache

$$L = \{a^i b^i c^i \mid i \ge 1\}$$

ist kontextsensitiv.

Beweis:

- L kontextsensitiv \Leftrightarrow es gibt NTM mit linearem Speicherbedarf für L
- Eingabe $w \in \{a, b, c\}^*$
- Überprüfe deterministisch, ob $w = a^i b^j c^k$
- Überprüfe deterministisch, ob j = i und k = i
- Speicherbedarf: i + j + k, also linear
- ⇒ L kontextsensitiv



Es gibt eine kontextsensitive Sprache, die nicht kontextfrei ist.

Die Sprache

$$L = \{a^i b^i c^i \mid i \ge 1\}$$

ist nicht kontextfrei.

Pumping-Lemma für kontextfreie Sprachen.

Sei L eine kontextfreie Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $z \in L$ mit |z| > n eine Darstellung

$$z = \underbrace{uvwxy \text{ mit } |vwx| \leq n, \ vx \neq \varepsilon,}_{\text{visitions had denoted by } uvdets \in V}$$

existiert, bei der auch $uv^iwx^iy \in L$ ist für alle $i \in \mathbb{N}_0$.

Durch **Widerlegen** der Aussage des Pumping-Lemmas für eine gegebene Sprache *L* zeigen wir, dass *L* **nicht kontextfrei** ist.

Beweis – Teil 2

Aussage des kontextfreien Pumping-Lemmas für Sprache L:

$$\exists n \ \forall z \in L, |z| > n \ \exists uvwxy = z, |vwx| \le n, vx \ne \varepsilon \ \forall i \in \mathbb{N}_0: \ uv^iwx^iy \in L$$

Widerlegen der Aussage für Sprache L:

$$\forall n \quad \exists z \in L, |z| > n \quad \forall uvwxy = z, |vwx| \le n, vx \ne \varepsilon \quad \exists i \in \mathbb{N}_0: \quad uv^i wx^i y \notin L$$

Die Sprache $L = \{a^i b^i c^i \mid i \ge 1\}$ ist nicht kontextfrei.

Beweis:

- " \forall " Betrachte beliebiges $n \in \mathbb{N}$.
- "\(\exists \)" W\(\alpha\) hle $z = a^n b^n c^n$. Beachte: |z| = 3n > n und $z \in L$.
- "\forall " Betrachte beliebige Zerlegung z = uvwxy, $|vwx| \le n$, $vx \ne \varepsilon$.
- " \exists " Wähle i = 0.

Beweis – Teil 2

Widerlegen der Aussage für Sprache L:

$$\forall n \quad \exists z \in L, |z| > n \quad \forall uvwxy = z, |vwx| \le n, vx \ne \varepsilon \quad \exists i \in \mathbb{N}_0: \quad uv^i wx^i y \notin L$$

Die Sprache $L = \{a^i b^i c^i \mid i \ge 1\}$ ist nicht kontextfrei.

Beweis:

" \forall " Betrachte beliebiges $n \in \mathbb{N}$.

"\(\exists \) W\(\alpha\) hill $z = a^n b^n c^n$. Beachte: |z| = 3n > n und $z \in L$.

"\" Betrachte beliebige Zerlegung z = uvwxy, $|vwx| \le n$, $vx \ne \varepsilon$.

"∃" Wähle i = 0.

Fallunterscheidung, Fall 1: vwx enthält kein c

Dann ist $uv^0wx^0y = a^rb^sc^n \notin L$ weil entweder r < n oder s < n.

Fallunterscheidung, Fall 2: vwx enthält kein a

Dann ist $uv^0wx^0y = a^nb^rc^s \notin L$ weil entweder r < n oder s < n.

Alternativer Beweis mit Ogden's Lemma

Die Sprache $L = \{a^i b^i c^i \mid i \ge 1\}$ ist nicht kontextfrei.

Ogden's Lemma für kontextfreie Sprachen.

Sei L eine kontextfreie Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $z \in L$ mit |z| > n gilt:

Wenn wir in z mindestens n Buchstaben markieren, so existiert eine Darstellung

$$z = uvwxy$$

in der von den mindestens n markierten Buchstaben

- höchstens n zu vwx gehören und
- mindestens einer zu vx gehört,

bei der auch $uv^iwx^iy \in L$ ist für alle $i \in \mathbb{N}_0$.

Alternativer Beweis mit Ogden's Lemma

Die Sprache $L = \{a^i b^i c^i \mid i \ge 1\}$ ist nicht kontextfrei.

Aussage von Ogden's Lemma für Sprache L:

 $\exists n \quad \forall z \in L, |z| > n$, mind. n Markierungen

 $\exists uvwxy = z$, vwx höchst. n Markierungen, vx mind. 1 Markierung

 $\forall i \in \mathbb{N}_0$: $uv^i wx^i y \in L$

Widerlegen der Aussage:

 $\forall n \quad \exists z \in L, |z| > n, \text{ mind. } n \text{ Markierungen}$

 $\forall uvwxy = z$, vwx höchst. n Markierungen, vx mind. 1 Markierung

 $\exists i \in \mathbb{N}_0$: $uv^i wx^i y \notin L$

Alternativer Beweis mit Ogden's Lemma

Die Sprache $L = \{a^i b^i c^i \mid i \ge 1\}$ ist nicht kontextfrei.

Widerlegen der Aussage:

```
\forall n \quad \exists z \in L, |z| > n, mind. n Markierungen \forall uvwxy = z, vwx höchst. n Markierungen, vx mind. 1 Markierung \exists i \in \mathbb{N}_0 : uv^i wx^i y \notin L
```

- " \forall " Betrachte beliebiges $n \in \mathbb{N}$.
- "∃" Wähle $z=a^{n+1}b^{n+1}c^{n+1}$ und markiere alle b. (Beachte: $|z|>n, z\in L$, mind. n Markierungen.)
- " \forall " Betrachte beliebige Zerlegung z = uvwxy, so dass vwx höchst. n Markierungen, vx mind. 1 Markierung hat.
- "∃" Wähle i = 0. Da vwx kein a oder kein c hat, gilt $uv^0wx^0y \notin L$

Satz.

Die Chomsky-Hierarchie ist echt, d.h.

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$
,

wobei \mathcal{L}_i , $0 \le i \le 3$, die Klasse der durch Typ-*i*-Grammatiken erzeugten Sprachen bezeichnet.

Beweis:

Teil 1: Es gibt eine kontextfreie Sprache <i>L</i> ,		$\leadsto L \in \mathcal{L}_2$
	die nicht regulär ist.	$\leadsto L \notin \mathcal{L}_3$

Teil 2: Es gibt eine kontextsensitive Sprache
$$L$$
, $\rightsquigarrow L \in \mathcal{L}_1$ die nicht kontextfrei ist. $\rightsquigarrow L \notin \mathcal{L}_2$

Teil 3: Es gibt eine semi-entscheidbare Sprache
$$L$$
, $\rightsquigarrow L \in \mathcal{L}_0$ die nicht kontextsensitiv ist. $\rightsquigarrow L \notin \mathcal{L}_1$

Beweis - Teil 3

Es gibt eine semi-entscheidbare Sprache, die nicht kontextsensitiv ist.

Es sei L_{ij} die universelle Sprache.

Wiederholung.

Die universelle Sprache L_u über $\{0, 1\}$ ist definiert durch

$$L_u := \{ w \# v \colon v \in L(T_w) \}.$$

 L_u ist also die Menge aller Wörter w # v für die die DTM T_w bei der Eingabe v hält und v akzeptiert.

Beweis - Teil 3

Es gibt eine semi-entscheidbare Sprache, die nicht kontextsensitiv ist.

Es sei L_u die universelle Sprache.

- Kapitel 3: L_u ist semi-entscheidbar (aber nicht entscheidbar).
- Wegen der Semi-entscheidbarkeit gilt $L_u \in \mathcal{L}_0$.
- Da alle Sprachen in \mathcal{L}_1 entscheidbar sind, gilt $L_u \notin \mathcal{L}_1$

Beweis - Teil 3

Es gibt eine semi-entscheidbare Sprache, die nicht kontextsensitiv ist.

Es sei L_{ij} die universelle Sprache.

- Kapitel 3: L_u ist semi-entscheidbar (aber nicht entscheidbar).
- Wegen der Semi-entscheidbarkeit gilt $L_u \in \mathcal{L}_0$.
- Da alle Sprachen in \mathcal{L}_1 entscheidbar sind, gilt $L_u \notin \mathcal{L}_1$
- Sei *L* eine Sprache in \mathcal{L}_1 .

- (Zum Beispiel $L = L_u$.)
- Dann gibt es eine NTM, die L mit linearem Speicher akzeptiert.
- Diese kann durch eine DTM simuliert werden.
- Mit beschränktem Speicher können nur endlich viele verschiedene Konfigurationen auftreten.
- Dann können Endlosschleifen erkannt werden.
- \blacksquare \Longrightarrow Sprache *L* kann sogar entschieden werden.

Chomsky-Hierarchie	Wortproblem letzte Vorlesung	Beispiele heute		
Chomsky-0	semi-entscheidbar NTM akzeptiert	universelle Sprache		
Chomsky-1 kontextsensitiv	$\mathcal{NP} ext{-schwer} \ \mathcal{NTAPE}(n)$	$L = \{a^i b^i c^i \mid i \ge 1\}$		
Chomsky-2 kontextfrei	polynomiell CYK-Algorithmus	$L = \{a^i b^i \mid i \ge 1\}$		
Chomsky-3 regulär	linear DEA	$L = \{a^i \mid i \ge 1\}$		

Satz.

Für eine kontextfreie Grammatik G kann in polynomieller Zeit entschieden werden, ob $L(G) = \emptyset$ ist.

Bemerkung: Für Chomsky-0 Grammatiken ist das nicht entscheidbar.

Satz.

Die Klasse der kontextfreien Sprachen ist abgeschlossen bzgl. Vereinigung, Konkatenation und Kleene'schem Abschluss.

Testen Sie sich: Für welche Sprachen gilt das auch?

Semi-entscheidbare Sprachen? Entscheidbare Sprachen?

Kontextsensitive Sprachen? Reguläre Sprachen?

Nutzlose Variablen

Definition.

Sei G eine kontextfreie Grammatik. Eine Variable A heißt nutzlos, falls es keine Ableitung $S \stackrel{*}{\to} w$ gibt, $w \in \Sigma^*$, in der A vorkommt.

Satz.

Für eine kontextfreie Grammatik kann die Menge der nutzlosen Variablen (in polynomialer Zeit) berechnet werden.

Beweis:

Wir benutzen ein zweistufiges Verfahren.

Bestimme alle Variablen, die ein Wort erzeugen können

Formal: Berechne $V' = \{A \in V \mid \exists w \in \Sigma^* : A \xrightarrow{*} w\}$

- Initialisiere eine leere Queue Q.
- Füge alle $A \in V$ mit $A \to w$ für ein $w \in \Sigma^*$ in Q und V' ein.
- Entferne der Reihe nach jedes Element A aus Q
 - Ersetze jede Regel

$$B \to \alpha A \beta \text{ mit } \alpha, \beta \in (V \cup \Sigma)^*$$

durch die Regeln

$$B \to \alpha w \beta$$
, wobei $w \in \Sigma^*$ und $A \to w$ Regel.

Wenn dabei eine Regel der Form

$$B \rightarrow w', w' \in \Sigma^*$$

entsteht und $B \notin V'$, füge B in Q und V' ein.

Das Verfahren endet, wenn Q leer ist.

Schritt 1

Bestimme alle Variablen, die ein Wort erzeugen können

Formal: Berechne $V' = \{A \in V \mid \exists w \in \Sigma^* : A \xrightarrow{*} w\}$

Bemerkung 1

- Falls S ∉ V', breche das Verfahren ab (kein Schritt 2).
- G erzeugt dann die leere Sprache und alle Variablen sind nutzlos.

Bemerkung 2

- Für jede Variable A mit $A \stackrel{*}{\rightarrow} w$ für ein $w \in \Sigma^*$ gilt:
- Per Induktion über die Länge der kürzesten Ableitungsregel der Form A ^{*}→ w kann für A gezeigt werden, dass A ∈ V'.

Grammatik $G = (\Sigma, V, S, R)$ mit Produktionen R gegeben durch

 $S \rightarrow Aa \mid B \mid Cab$

 $A \rightarrow bc \mid A$

 $B \rightarrow Bd \mid Cd$

 $C \rightarrow aBc$

 $D \rightarrow Ab$

 $E \rightarrow SD$

Füge alle $A \in V$ mit $A \to w$ für ein $w \in \Sigma^*$ in Q und V' ein.

S	\rightarrow	Aa B Cab	S	\rightarrow	Aa B Cab
Α	\rightarrow	bc A	Α	\rightarrow	bc A
В	\rightarrow	Bd Cd	В	\rightarrow	Bd Cd
С	\rightarrow	aBc	С	\rightarrow	aBc
D	\rightarrow	Ab	D	\rightarrow	Ab
E	\rightarrow	SD	Ε	\rightarrow	SD
V'	=	Ø	V'	=	{ <i>A</i> }
\circ	_	0	\circ	_	∫ ∆ `\

- Ersetze jede Regel $B \to \alpha A \beta$ mit $\alpha, \beta \in (V \cup \Sigma)^*$ durch die Regeln $B \to \alpha w \beta$, wobei $w \in \Sigma^*$ und $A \to w$ Regel.
- Wenn dabei eine Regel der Form $B \to w'$, $w' \in \Sigma^*$, entsteht und $B \notin V'$, füge B in Q und V' ein.

$$S \rightarrow Aa \mid B \mid Cab$$
 $S \rightarrow bca \mid B \mid Cab$
 $A \rightarrow bc \mid A$ $A \rightarrow bc \mid A$
 $B \rightarrow Bd \mid Cd$ $B \rightarrow Bd \mid Cd$
 $C \rightarrow aBc$ $C \rightarrow aBc$
 $D \rightarrow Ab$ $D \rightarrow bcb$
 $E \rightarrow SD$ $E \rightarrow SD$
 $V' = \{A\}$ $V' = \{A, S, D\}$
 $Q = \{A\}$ $Q = \{S, D\}$

Karlsrüher Institut für Technologie

Beispiel: Schritt 1

- Ersetze jede Regel $B \to \alpha A \beta$ mit $\alpha, \beta \in (V \cup \Sigma)^*$ durch die Regeln $B \to \alpha w \beta$, wobei $w \in \Sigma^*$ und $A \to w$ Regel.
- Wenn dabei eine Regel der Form $B \to w'$, $w' \in \Sigma^*$, entsteht und $B \notin V'$, füge B in Q und V' ein.

$$S \rightarrow bca |B| Cab$$
 $S \rightarrow bca |B| Cab$
 $A \rightarrow bc |A$ $A \rightarrow bc |A$
 $B \rightarrow Bd |Cd$ $B \rightarrow Bd |Cd$
 $C \rightarrow aBc$ $C \rightarrow aBc$
 $D \rightarrow bcb$ $D \rightarrow bcb$
 $E \rightarrow SD$ $E \rightarrow bcaD$
 $V' = \{A, S, D\}$ $V' = \{A, S, D\}$
 $Q = \{S, D\}$ $Q = \{D\}$

- Ersetze jede Regel $B \to \alpha A \beta$ mit $\alpha, \beta \in (V \cup \Sigma)^*$ durch die Regeln $B \to \alpha w \beta$, wobei $w \in \Sigma^*$ und $A \to w$ Regel.
- Wenn dabei eine Regel der Form $B \to w'$, $w' \in \Sigma^*$, entsteht und $B \notin V'$, füge B in Q und V' ein.

$$S \rightarrow bca | B | Cab$$
 $S \rightarrow bca | B | Cab$
 $A \rightarrow bc | A$ $A \rightarrow bc | A$
 $B \rightarrow Bd | Cd$ $B \rightarrow Bd | Cd$
 $C \rightarrow aBc$ $C \rightarrow aBc$
 $D \rightarrow bcb$ $D \rightarrow bcb$
 $E \rightarrow bcaD$ $E \rightarrow bcabcb$
 $V' = \{A, S, D\}$ $V' = \{A, S, D, E\}$
 $Q = \{D\}$ $Q = \{E\}$

Karlsruher Institut für Technologie

Beispiel: Schritt 1

- Ersetze jede Regel $B \to \alpha A \beta$ mit $\alpha, \beta \in (V \cup \Sigma)^*$ durch die Regeln $B \to \alpha w \beta$, wobei $w \in \Sigma^*$ und $A \to w$ Regel.
- Wenn dabei eine Regel der Form $B \to w'$, $w' \in \Sigma^*$, entsteht und $B \notin V'$, füge B in Q und V' ein.

$$S \rightarrow bca | B | Cab$$
 $S \rightarrow bca | B | Cab$
 $A \rightarrow bc | A$ $A \rightarrow bc | A$
 $B \rightarrow Bd | Cd$ $B \rightarrow Bd | Cd$
 $C \rightarrow aBc$ $C \rightarrow aBc$
 $D \rightarrow bcb$ $D \rightarrow bcb$
 $E \rightarrow bcabcb$ $E \rightarrow bcabcb$
 $V' = \{A, S, D, E\}$ $V' = \{A, S, D, E\}$
 $Q = \{E\}$ $Q = \{\}$

Schritt 2

Bestimme alle Variablen in V', die vom Startsymbol aus "erreicht" werden können.

Formal: Berechne $V'' = \{A \in V' \mid S = A \text{ oder } \exists \alpha, \beta \in (V' \cup \Sigma)^* \colon S \xrightarrow{*} \alpha A \beta \}.$

- Starte mit $V'' = \{S\}$.
- Füge zu allen Regeln $A \to \alpha B\beta$ mit $\alpha, \beta \in (V' \cup \Sigma)^*, A \in V'', B \in V'$ die Variable B in V'' ein.
- Wiederhole den letzten Schritt, bis sich V" nicht mehr ändert.

Per Induktion über die Länge der kürzesten Ableitungsregel der Form $S \to \alpha A \beta, \ \alpha, \beta \in (V' \cup \Sigma)^*$, kann dann wieder die Korrektheit bewiesen werden.

Fazit: Nach Ende von Schritt 2 ist V'' die Menge aller nützlichen Variablen.

Beispiel: Schritt 2

• Starte mit $V'' = \{S\}$.

S	\rightarrow	Aa B Cab	S	\rightarrow	Aa B Cab
Α	\rightarrow	bc A	Α	\rightarrow	bc A
В	\rightarrow	Bd Cd	В	\rightarrow	Bd Cd
С	\rightarrow	aBc	С	\rightarrow	aBc
D	\rightarrow	Ab	D	\rightarrow	Ab
Ε	\rightarrow	SD	E	\rightarrow	SD
V'	=	$\{A, S, D, E\}$	V'	=	$\{A, S, D, E\}$
V''	=	{}	$V^{\prime\prime}$	=	{ <i>S</i> }

Beispiel: Schritt 2

- Starte mit $V'' = \{S\}$.
- Füge zu allen Regeln $A \to \alpha B\beta$ mit $\alpha, \beta \in (V' \cup \Sigma)^*, A \in V'', B \in V'$ die Variable B in V'' ein.

$$S \rightarrow Aa \mid B \mid Cab$$
 $S \rightarrow Aa \mid B \mid Cab$
 $A \rightarrow bc \mid A$ $A \rightarrow bc \mid A$
 $B \rightarrow Bd \mid Cd$ $B \rightarrow Bd \mid Cd$
 $C \rightarrow aBc$ $C \rightarrow aBc$
 $D \rightarrow Ab$ $D \rightarrow Ab$
 $E \rightarrow SD$ $E \rightarrow SD$
 $V' = \{A, S, D, E\}$ $V' = \{A, S, D, E\}$
 $V'' = \{S\}$

Beispiel: Schritt 2

- Starte mit $V'' = \{S\}$.
- Füge zu allen Regeln $A \to \alpha B\beta$ mit $\alpha, \beta \in (V' \cup \Sigma)^*$, $A \in V''$, $B \in V'$ die Variable B in V'' ein. Wiederhole bis sich V'' nicht mehr ändert.

$$S \rightarrow Aa \mid B \mid Cab$$
 $S \rightarrow Aa \mid B \mid Cab$
 $A \rightarrow bc \mid A$ $A \rightarrow bc \mid A$
 $B \rightarrow Bd \mid Cd$ $B \rightarrow Bd \mid Cd$
 $C \rightarrow aBc$ $C \rightarrow aBc$
 $D \rightarrow Ab$ $D \rightarrow Ab$
 $E \rightarrow SD$ $E \rightarrow SD$
 $V' = \{A, S, D, E\}$ $V' = \{A, S, D, E\}$
 $V'' = \{S, A\}$

Leere kontextfreie Sprachen

Korollar.

Für eine kontextfreie Grammatik G kann (in polynomialer Zeit) entschieden werden, ob $L(G) = \emptyset$ ist.

Beweis:

• $L(G) = \emptyset$ genau dann, wenn S nutzlos.

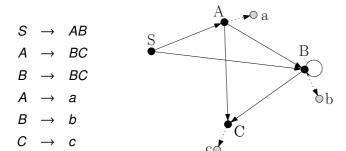
Für kontextfreie Grammatiken G kann in polynomialer Zeit entschieden werden, ob L(G) endlich ist.

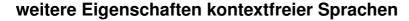
Beweis:

- Entferne alle nutzlosen Variablen.
- Überführe G in eine äquivalente Grammatik in Chomsky-Normalform.
- Betrachte den gerichteten Graphen (*V*, *E*) mit
 - V = die Variablenmenge von G
 - $E = \{(A, B) \mid \exists C \in V : A \rightarrow BC \in R \lor A \rightarrow CB \in R\}$
- Mit Tiefensuche kann entschieden werden, ob dieser Graph einen gerichteten Kreis enthält.
- Man kann sich leicht überlegen, dass L(G) genau dann endlich ist, wenn der entsprechende Graph keinen gerichteten Kreis enthält.

Beispielgraph

- Betrachte den gerichteten Graphen (*V*, *E*) mit
 - V = die Variablenmenge von G
 - $\blacksquare E = \{(A, B) \mid \exists C \in V \colon A \to BC \in R \lor A \to CB \in R\}$





Die Klasse der kontextfreien Sprachen ist abgeschlossen bzgl. Vereinigung, Konkatenation und Kleene'schem Abschluss.

Beweis:

- Seien L_1 kontextfreie Sprache mit Grammatik $G_1 = (\Sigma, V_1, S_1, R_1)$.
- Seien L_2 kontextfreie Sprache mit Grammatik $G_2 = (\Sigma, V_2, S_2, R_2)$.
- O.B.d.A. sei $V_1 \cap V_2 = \emptyset$.

Vereinigung: Die Grammatik

$$V = V_1 \cup V_2 \cup \{S\}$$

$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$$

erzeugt $L_1 \cup L_2$.

Die Klasse der kontextfreien Sprachen ist abgeschlossen bzgl. Vereinigung, Konkatenation und Kleene'schem Abschluss.

Beweis:

- Seien L_1 kontextfreie Sprache mit Grammatik $G_1 = (\Sigma, V_1, S_1, R_1)$.
- Seien L_2 kontextfreie Sprache mit Grammatik $G_2 = (\Sigma, V_2, S_2, R_2)$.
- O.B.d.A. sei $V_1 \cap V_2 = \emptyset$.

Konkatenation: Die Grammatik

$$V = V_1 \cup V_2 \cup \{S\}$$

S neues Startsymbol

$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}$$

erzeugt $L_1 \cdot L_2$.

Die Klasse der kontextfreien Sprachen ist abgeschlossen bzgl. Vereinigung, Konkatenation und Kleene'schem Abschluss.

Beweis:

- Seien L_1 kontextfreie Sprache mit Grammatik $G_1 = (\Sigma, V_1, S_1, R_1)$.
- Seien L_2 kontextfreie Sprache mit Grammatik $G_2 = (\Sigma, V_2, S_2, R_2)$.
- O.B.d.A. sei $V_1 \cap V_2 = \emptyset$.

Kleene'scher Abschluss: Die Grammatik

$$V = V_1 \cup \{S\}$$

$$R = R_1 \cup \{S \rightarrow \varepsilon, S \rightarrow SS, S \rightarrow S_1\}$$

erzeugt L_1^* .

Die Klasse der kontextfreien Sprachen ist nicht abgeschlossen bzgl. Komplementbildung und Durchschnitt.

Beweis:

Schnitt: Betrachte die kontextfreien Sprachen

$$L_1 = \{a^i b^i \mid i \ge 1\}$$
 $L_2 = \{c\}^*$
 $L_3 = \{a\}^*$ $L_4 = \{b^i c^i \mid i \ge 1\}$

Nach dem letzten Satz sind dann auch $L_1 \cdot L_2$ und $L_3 \cdot L_4$ kontextfrei.

Es ist dann

$$L := L_1L_2 \cap L_3L_4 = \{a^ib^ic^i \mid i \geq 1\}.$$

Diese Sprache ist nicht kontextfrei.

Die Klasse der kontextfreien Sprachen ist nicht abgeschlossen bzgl. Komplementbildung und Durchschnitt.

Beweis:

Komplementbildung:

- Angenommen, die Klasse der kontextfreien Sprachen wäre bzgl. Komplementbildung abgeschlossen.
- Dann würde für beliebige kontextfreie Sprachen L_1 , L_2 gelten $(L_1^c \cup L_2^c)^c = L_1 \cap L_2$ ist wieder kontextfrei.
- Dies ist ein Widerspruch zur ersten Aussage des Satzes.