



## Theoretische Grundlagen der Informatik

Vorlesung am 10.01.2023

Torsten Ueckerdt | 10. Januar 2023





**Optimierungsproblem** II (bzw. Optimalwertproblem)

Instanz / → optimale Lösungen haben Wert OPT(/)

Algorithmus  $\mathcal{A} \iff \text{liefert L\"osung mit Wert } \mathcal{A}(I)$ 

#### **Absolute Approximation**

"additiver Fehler"

$$\mathcal{A}(I) \leq \mathsf{OPT}(I) + K$$

vs.

#### **Relative Approximation**

"multiplikativer Fehler"

$$\mathcal{A}(I) \leq \mathsf{OPT}(I) \cdot K$$

(hier für Minimierungsproblem  $\Pi$ )





#### Definition.

Sei  $\Pi$  ein Optimierungsproblem. Ein polynomialer Algorithmus  $\mathcal{A}$ , der für jedes  $I \in \mathcal{D}_{\Pi}$  einen Wert  $\mathcal{A}(I)$  liefert mit  $\mathcal{A}(I) \leq \mathcal{K}$ , wobei  $\mathcal{K} \geq 1$  eine Konstante, und

$$\mathcal{R}_{\mathcal{A}}(\mathit{I}) := \begin{cases} \frac{\mathcal{A}(\mathit{I})}{\mathsf{OPT}(\mathit{I})} & \text{falls $\Pi$ Minimierungsproblem} \\ \\ \frac{\mathsf{OPT}(\mathit{I})}{\mathcal{A}(\mathit{I})} & \text{falls $\Pi$ Maximierungsproblem} \end{cases}$$

heißt Approximationsalgorithmus mit relativer Gütegarantie oder relativer Approximationsalgorithmus.

Einige, aber nicht alle  $\mathcal{NP}$ -schweren Optimierungsprobleme erlauben einen relativen Approximationsalgorithmus.



## **Relative Approximation: Genereller Ansatz**

#### Bei Minimierungsproblemen

- Wir wollen  $\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathcal{A}(I)}{\mathsf{OPT}(I)} \leq K$ , also  $\mathcal{A}(I) \leq K \cdot \mathsf{OPT}(I)$ .
- Wir brauchen:
  - eine **obere** Schranke für  $\mathcal{A}(I)$  " $\mathcal{A}$  ist gut"
  - eine untere Schranke für OPT(I) "viel besser geht es nicht"

$$\mathcal{A}(I) \le X \text{ und } \mathsf{OPT}(I) \ge Y \implies \mathcal{A}(I) \le X = \frac{X \cdot Y}{Y} \le \frac{X}{Y} \cdot \mathsf{OPT}(I)$$





#### Bei Minimierungsproblemen

- Wir wollen  $\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathcal{A}(I)}{\mathsf{OPT}(I)} \leq K$ , also  $\mathcal{A}(I) \leq K \cdot \mathsf{OPT}(I)$ .
- Wir brauchen:
  - eine **obere** Schranke für  $\mathcal{A}(I)$  " $\mathcal{A}$  ist gut"
  - eine **untere** Schranke für OPT(*I*) "viel besser geht es nicht"

$$\mathcal{A}(I) \le X \text{ und } \mathsf{OPT}(I) \ge Y \implies \mathcal{A}(I) \le X = \frac{X \cdot Y}{Y} \le \frac{X}{Y} \cdot \mathsf{OPT}(I)$$

#### Bei Maximierungsproblemen

- Wir wollen  $\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathsf{OPT}(I)}{\mathcal{A}(I)} \leq K$ , also  $\mathcal{A}(I) \geq \frac{1}{K} \cdot \mathsf{OPT}(I)$ .
- Wir brauchen:
  - eine **untere** Schranke für  $\mathcal{A}(I)$  " $\mathcal{A}$  ist gut"

• eine **obere** Schranke für OPT(I) "viel besser geht es nicht"

$$\mathcal{A}(I) \ge X \text{ und } \mathsf{OPT}(I) \le Y \implies \mathcal{A}(I) \ge X = \frac{X \cdot Y}{Y} \ge \frac{X}{Y} \cdot \mathsf{OPT}(I)$$





#### Idee:

Bevorzuge Elemente mit günstigem Kosten-pro-Gewicht Verhältnis, also hoher Kostendichte.

- → Es werden der Reihe nach so viele Elemente wie möglich mit absteigender Kostendichte in die Lösung aufgenommen.
  - Berechne die Kostendichten  $p_i := \frac{C_i}{w_i}$  für i = 1, ..., n
  - Sortiere nach Kostendichten und indiziere:  $p_1 \ge p_2 \ge \cdots \ge p_n$
  - Dies kann in Zeit  $O(n \log n)$  geschehen.
  - Für i = 1 bis n setze  $x_i := \left\lfloor \frac{W}{W_i} \right\rfloor$  und  $W := W \left\lfloor \frac{W}{W_i} \right\rfloor \cdot w_i$ .

Die Laufzeit dieses Algorithmus ist in  $O(n \log n)$ .

#### KNAPSACK-Instanz

$$M = \{1, \dots, n\},$$
  
Kosten  $c_1, \dots, c_n,$   
Gewichte  $w_1, \dots, w_n,$   
Gesamtgewicht  $W.$ 





- Berechne die Kostendichten  $p_i := \frac{c_i}{w_i}$  für i = 1, ..., n
- Sortiere nach Kostendichten und indiziere:  $p_1 \ge p_2 \ge \cdots \ge p_n$
- Dies kann in Zeit  $O(n \log n)$  geschehen.
- Für i = 1 bis n setze  $x_i := \left\lfloor \frac{W}{W_i} \right\rfloor$  und  $W := W \left\lfloor \frac{W}{W_i} \right\rfloor \cdot w_i$ .

#### Satz.

Der Greedy-Algorithmus  $\mathcal{A}$  erfüllt  $\mathcal{R}_{\mathcal{A}}(I) \leq 2$  für alle Instanzen I.

#### Bei Maximierungsproblemen

- Wir wollen  $\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathsf{OPT}(I)}{\mathcal{A}(I)} \leq K$ , also  $\mathcal{A}(I) \geq \frac{1}{K} \cdot \mathsf{OPT}(I)$ .
- Wir brauchen:
  - eine **untere** Schranke für  $\mathcal{A}(I)$

"A ist aut"

eine **obere** Schranke für OPT(I)

"viel besser geht es nicht"

#### KNAPSACK-Instanz

$$M = \{1, \dots, n\},$$
  
Kosten  $c_1, \dots, c_n,$   
Gewichte  $w_1, \dots, w_n,$   
Gesamtgewicht  $W$ .





- Berechne die Kostendichten  $p_i := \frac{c_i}{w_i}$  für i = 1, ..., n
- Sortiere nach Kostendichten und indiziere:  $p_1 \ge p_2 \ge \cdots \ge p_n$
- Dies kann in Zeit  $O(n \log n)$  geschehen.
- Für i = 1 bis n setze  $x_i := \left\lfloor \frac{W}{w_i} \right\rfloor$  und  $W := W \left\lfloor \frac{W}{w_i} \right\rfloor \cdot w_i$ .

#### KNAPSACK-Instanz

$$M = \{1, \dots, n\},$$
  
Kosten  $c_1, \dots, c_n,$   
Gewichte  $w_1, \dots, w_n,$   
Gesamtgewicht  $W.$ 

**Beweis:** (O.B.d.A. sei 
$$w_1 \le W$$
.) Eine untere Schranke für  $\mathcal{A}(I)$ :  $\mathcal{A}(I) \ge c_1 \cdot x_1 = c_1 \cdot \left\lfloor \frac{W}{w_1} \right\rfloor$  Eine obere Schranke für OPT( $I$ ): OPT( $I$ )  $\le p_1 \cdot W = \frac{c_1}{w_1} \cdot W$ 

## Beispiel: Greedy-Algorithmus für KNAPSACK



- Berechne die Kostendichten  $p_i := \frac{c_i}{w_i}$  für i = 1, ..., n
- Sortiere nach Kostendichten und indiziere:  $p_1 \ge p_2 \ge \cdots \ge p_n$
- Dies kann in Zeit  $O(n \log n)$  geschehen.
- Für i = 1 bis n setze  $x_i := \left\lfloor \frac{W}{W_i} \right\rfloor$  und  $W := W \left\lfloor \frac{W}{W_i} \right\rfloor \cdot w_i$ .

#### KNAPSACK-Instanz

$$M = \{1, \dots, n\},$$
  
Kosten  $c_1, \dots, c_n,$   
Gewichte  $w_1, \dots, w_n,$   
Gesamtgewicht  $W.$ 

#### Beweis:

$$(O.B.d.A. sei w_1 \leq W.)$$

Eine untere Schranke für  $\mathcal{A}(I)$ :  $\mathcal{A}(I) \geq c_1 \cdot x_1 = c_1 \cdot \left| \frac{W}{w_1} \right|$ Eine obere Schranke für OPT(I): OPT(I)  $\leq p_1 \cdot W = \frac{c_1}{W} \cdot W$ Dann gilt

$$\mathsf{OPT}(\mathit{I}) \leq c_1 \cdot \frac{\mathit{W}}{\mathit{w}_1} \leq c_1 \cdot \left( \left| \frac{\mathit{W}}{\mathit{w}_1} \right| + 1 \right) \leq 2 \cdot c_1 \cdot \left| \frac{\mathit{W}}{\mathit{w}_1} \right| \leq 2 \cdot \mathcal{A}(\mathit{I}) \; .$$

Also  $\mathcal{R}_{\mathcal{A}}(I) \leq 2$ .

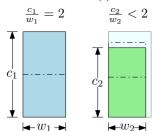


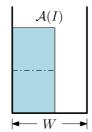
## Grenzen für den Greedy-Algorithmus

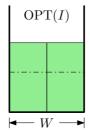
**Bemerkung:** Die Schranke  $\mathcal{R}_{\mathcal{A}}(I) \leq 2$  ist in gewissem Sinne scharf.

- Sei n = 2,  $w_2 = w_1 1$ ,  $c_1 = 2 \cdot w_1$ ,  $c_2 = 2 \cdot w_2 1$ ,  $W = 2 \cdot w_2$ .
- Dann ist  $\frac{c_1}{w_1} = 2$  aber  $\frac{c_2}{w_2} < 2$ .
- Es gilt  $\mathcal{A}(I) = c_1$  und  $OPT(I) = 2c_2$ , also

$$\frac{\mathsf{OPT}(I)}{\mathcal{R}(I)} = \frac{2c_2}{c_1} = \frac{4w_1 - 6}{2w_1} \longrightarrow 2 \qquad \text{für } w_1 \to \infty$$











#### **Pseudopolynomiale Algorithmen**

polynomial in 
$$|I|$$
 und  $\max(I)$ 

• 
$$\mathcal{A}(I) = \mathsf{OPT}(I)$$

optimal, kein Fehler

#### **Absolute Approximations algorithmen**

Laufzeit: poly(|/|)

polynomial

 $\blacksquare$   $|\mathcal{A}(I) - \mathsf{OPT}(I)| < K$ 

absoluter Fehler

- $\mathcal{A}(I) \leq \mathsf{OPT}(I) + K$  bei Minimierungsproblem
- $\mathcal{A}(I) \geq \mathsf{OPT}(I) K$  bei Maximierungsproblem

#### Relative Approximationsalgorithmen

Laufzeit: poly(|/|)

polynomial

•  $\mathcal{A}(I) \leq K \cdot \mathsf{OPT}(I)$  bei Minimierungsproblem

relativer Fehler

•  $\mathcal{A}(I) \geq \frac{1}{\kappa} \cdot \mathsf{OPT}(I)$  bei Maximierungsproblem

#### Bemerkung:

Es gibt noch weitere Ansätze.





#### Definition.

Zu einem polynomialen Approximationsalgorithmus  $\mathcal{A}$  sei

$$\mathcal{R}^{\infty}_{\mathcal{A}} := \inf \left\{ r \geq 1 : \begin{array}{c} \text{es gibt ein } N_0 > 0, \text{ so dass } \mathcal{R}_{\mathcal{A}}(I) \leq r \\ \text{für alle } I \text{ mit } \mathsf{OPT}(I) \geq N_0 \end{array} \right\}$$

#### Beispiel:

- Angenommen  $\mathcal{A}(I) \leq K \cdot \mathsf{OPT}(I) + 3$  für alle I.
- Dann ist  $\mathcal{R}_{\mathcal{A}}(I) = K + 1$  für  $\mathsf{OPT}(I) = 3$ und  $\mathcal{R}_{\mathcal{A}}(I) = K + \frac{1}{2}$  für  $\mathsf{OPT}(I) = 6$ , usw.
- Wir haben aber  $\mathcal{R}_{\mathcal{A}}^{\infty} = K$ .

#### **Erinnerung:**

$$\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathcal{A}(I)}{\mathsf{OPT}(I)}$$
 für Minimierungsproblem

$$\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathsf{OPT}(I)}{\mathcal{A}(I)}$$
 für Maximierungsproblem





#### Definition.

Zu einem polynomialen Approximationsalgorithmus  ${\mathcal A}$  sei

$$\mathcal{R}^{\infty}_{\mathcal{A}} := \inf \left\{ r \geq 1 : \begin{array}{c} \text{es gibt ein } N_0 > 0, \text{ so dass } \mathcal{R}_{\mathcal{A}}(I) \leq r \\ \text{für alle } I \text{ mit } \mathsf{OPT}(I) \geq N_0 \end{array} \right\}$$

#### Beispiel:

- Angenommen  $\mathcal{A}(I) \leq K \cdot \mathsf{OPT}(I) + 3$  für alle I.
- Dann ist  $\mathcal{R}_{\mathcal{A}}(I) = K + 1$  für OPT(I) = 3und  $\mathcal{R}_{\mathcal{A}}(I) = K + \frac{1}{2}$  für  $\mathsf{OPT}(I) = 6$ , usw.
- Wir haben aber  $\mathcal{R}_{\mathcal{A}}^{\infty} = K$ .

$$\mathcal{A}(I) \leq \mathsf{OPT}(I) + K \text{ für alle } I \implies \mathcal{R}^{\infty}_{\mathcal{A}} = 1$$

#### **Erinnerung:**

$$\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathcal{A}(I)}{\mathsf{OPT}(I)}$$
 für Minimierungsproblem

$$\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathsf{OPT}(I)}{\mathcal{A}(I)}$$
 für Maximierungsproblem

### relative Approximation

$$\mathcal{A}(I) \leq K \cdot \mathrm{OPT}(I) \text{ bzw. } \mathcal{R}_{\mathcal{A}}^{\infty} \leq K \\ \mathrm{poly}(|I|)$$

## absolute Approx.

 $|\mathcal{A}(I) - \text{OPT}(I)| \le K$  $\mathsf{poly}(|I|)$ 



#### relative Approximation

$$\mathcal{A}(I) \leq K \cdot \mathrm{OPT}(I) \text{ bzw. } \mathcal{R}_{\mathcal{A}}^{\infty} \leq K \\ \mathrm{poly}(|I|)$$

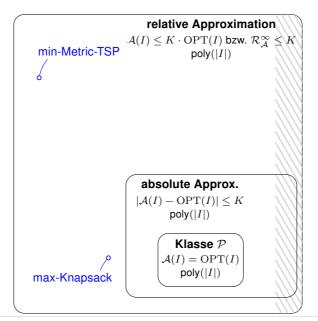


### absolute Approx.

$$|\mathcal{A}(I) - \mathrm{OPT}(I)| \le K$$
 $\mathsf{poly}(|I|)$ 

## Klasse $\mathcal{P}$

 $\mathcal{A}(I) = \mathrm{OPT}(I)$ poly(|I|)





#### Metrisches TSP



#### Optimalwertproblem min-METRIC-TSP

**Gegeben:** vollständiger Graph G = (V, E),

Gewichtsfunktion  $c: E \to \mathbb{Q}$ 

mit  $c(u, w) \le c(u, v) + c(v, w)$  für alle  $u, v, w \in V$ 

Aufgabe: Minimiere die Länge bezüglich c von einer Tour zu G.

#### Satz.

Für das Optimalwertproblem min-METRIC-TSP existiert ein relativer Approximationsalgorithmus  $\mathcal{A}$  mit  $\mathcal{R}_{\mathcal{A}}^{\infty} \leq 2$ .

#### Bemerkung:

Es gilt sogar  $\mathcal{R}_{\mathcal{A}}(I) \leq 2$  für alle Instanzen I.





#### Beweis.

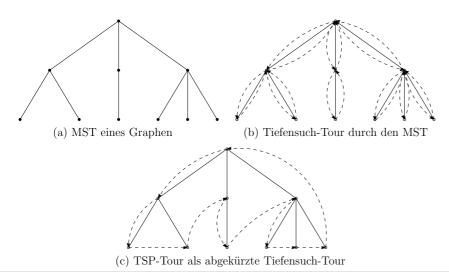
Sei I = (G = (V, E), c) eine Instanz von min-METRIC-TSP.

Betrachte folgenden Algorithmus  $\mathcal{A}$ :

- Berechne einen MST (Minimum Spanning Tree) von G.
- Wähle einen beliebigen Knoten w als Wurzel.
- Ourchlaufe den MST in einer Tiefensuche mit Startpunkt w
- Dies liefert: Tour T mit Start- und Endpunkt w, die jede Kante genau zweimal durchläuft.
- Sonstruiere entlang T eine abgekürzte Tour T', indem bereits besuchte Knoten übersprungen werden und die Tour T' beim nächsten unbesuchten Knoten fortgesetzt wird.
- **1 Ergebnis:**  $\mathcal{A}(I) = c(T') = \sum_{e \in T'} c(e)$

## 2-Approximation von min-METRIC-TSP









- $O(n^2)$  für n = |V|.
- Das ist poly(|I|).





#### Bei Minimierungsproblemen

- Wir wollen  $\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathcal{A}(I)}{\mathsf{OPT}(I)} \le K$ , also  $\mathcal{A}(I) \le K \cdot \mathsf{OPT}(I)$ .
- Wir brauchen:
  - eine **obere** Schranke für  $\mathcal{A}(I)$

"A ist gut"

eine untere Schranke für OPT(I) "viel besser geht es nicht"

- $O(n^2)$  für n = |V|.
- Das ist poly(|I|).





#### Bei Minimierungsproblemen

- Wir wollen  $\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathcal{A}(I)}{\mathsf{OPT}(I)} \leq K$ , also  $\mathcal{A}(I) \leq K \cdot \mathsf{OPT}(I)$ .
- Wir brauchen:
  - eine **obere** Schranke für  $\mathcal{A}(I)$

"A ist gut"

- eine **untere** Schranke für OPT(*I*) "viel besser geht es nicht"
- Obere Schranke für  $\mathcal{A}(I)$ :  $\mathcal{A}(I) = c(T') \le c(T) = 2 \cdot c(MST)$
- Untere Schranke für OPT(I): OPT(I)  $\geq c(MST)$ .

**Denn:** Eine TSP-Tour kann als ein aufspannender Baum plus eine zusätzliche Kante betrachtet werden. Und MST ist ein kürzester aufspannender Baum.

- $O(n^2)$  für n = |V|.
- Das ist poly(|I|).





- Obere Schranke für  $\mathcal{A}(I)$ :  $\mathcal{A}(I) = c(T') \le c(T) = 2 \cdot c(MST)$
- Untere Schranke für OPT(I): OPT(I)  $\geq c(MST)$ .

**Denn:** Eine TSP-Tour kann als ein aufspannender Baum plus eine zusätzliche Kante betrachtet werden. Und MST ist ein kürzester aufspannender Baum.

Insgesamt erhält man

$$\mathcal{R}_{\mathcal{A}}(I) \leq \frac{\text{obere Schranke}}{\text{untere Schranke}} = \frac{2 \cdot c(MST)}{c(MST)} = 2.$$
 Das heißt  $\mathcal{A}(I) \leq 2 \cdot c(MST) \leq 2 \cdot \text{OPT}(I).$ 

 $\sim \mathcal{R}^{\infty}_{\alpha} \leq 2.$ 

- $O(n^2)$  für n = |V|.
- Das ist poly(|I|).





## Bemerkungen zur Approximierbarkeit

#### min-METRIC-TSP

- Wir haben eine 2-Approximation mit  $O(n^2)$  Laufzeit gesehen.
- Christofides 1976: Es gibt eine 1.5-Approximation mit  $O(n^3)$  Laufzeit.
- Karpinski et al. 2015: Es gibt keine 123/122-Approximation mit polynomialer Laufzeit.
- **Karlin et al. 2021:** Es gibt eine  $\alpha$ -Approximation mit  $\alpha$  < 1.5 mit polynomialer Laufzeit.





- Wir haben eine 2-Approximation mit  $O(n^2)$  Laufzeit gesehen.
- Christofides 1976: Es gibt eine 1.5-Approximation mit  $O(n^3)$  Laufzeit.
- Karpinski et al. 2015: Es gibt keine 123/122-Approximation mit polynomialer Laufzeit.
- **Karlin et al. 2021:** Es gibt eine  $\alpha$ -Approximation mit  $\alpha$  < 1.5 mit polynomialer Laufzeit.

- Wir haben eine 2-Approximation mit O(n log n) Laufzeit gesehen.
   → Greedy Algorithmus
- **E**s gibt eine 1.5-Approximation mit  $O(n^3)$  Laufzeit.





- Wir haben eine 2-Approximation mit  $O(n^2)$  Laufzeit gesehen.
- Christofides 1976: Es gibt eine 1.5-Approximation mit  $O(n^3)$  Laufzeit.
- Karpinski et al. 2015: Es gibt keine 123/122-Approximation mit polynomialer Laufzeit.
- **Karlin et al. 2021:** Es gibt eine  $\alpha$ -Approximation mit  $\alpha$  < 1.5 mit polynomialer Laufzeit.

- Wir haben eine 2-Approximation mit  $O(n \log n)$  Laufzeit gesehen.
- Es gibt eine 1.5-Approximation mit  $O(n^3)$  Laufzeit.
- Es gibt eine 1.25-Approximation mit  $O(n^3)$  Laufzeit.





- Wir haben eine 2-Approximation mit  $O(n^2)$  Laufzeit gesehen.
- Christofides 1976: Es gibt eine 1.5-Approximation mit  $O(n^3)$  Laufzeit.
- Karpinski et al. 2015: Es gibt keine 123/122-Approximation mit polynomialer Laufzeit.
- **Karlin et al. 2021:** Es gibt eine  $\alpha$ -Approximation mit  $\alpha$  < 1.5 mit polynomialer Laufzeit.

- Wir haben eine 2-Approximation mit  $O(n \log n)$  Laufzeit gesehen.
- Es gibt eine 1.5-Approximation mit  $O(n^3)$  Laufzeit.
- Es gibt eine 1.25-Approximation mit O(n³) Laufzeit.
- Es gibt eine 1.0001-Approximation mit O(n³) Laufzeit.





- Wir haben eine 2-Approximation mit  $O(n^2)$  Laufzeit gesehen.
- Christofides 1976: Es gibt eine 1.5-Approximation mit  $O(n^3)$  Laufzeit.
- Karpinski et al. 2015: Es gibt keine 123/122-Approximation mit polynomialer Laufzeit.
- **Karlin et al. 2021:** Es gibt eine  $\alpha$ -Approximation mit  $\alpha$  < 1.5 mit polynomialer Laufzeit.

- Wir haben eine 2-Approximation mit  $O(n \log n)$  Laufzeit gesehen.
- Es gibt eine 1.5-Approximation mit  $O(n^3)$  Laufzeit.
- Es gibt eine 1.25-Approximation mit  $O(n^3)$  Laufzeit.
- **E**s gibt eine 1.0001-Approximation mit  $O(n^3)$  Laufzeit.







#### Definition.

Ein Approximationsschema für ein Optimierungsproblem  $\Pi$  ist eine Familie von Algorithmen  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ , so dass für alle  $\varepsilon > 0$ :

•  $\mathcal{R}_{\mathcal{A}_{\varepsilon}} \leq 1 + \varepsilon$ 

Ein PTAS ist ein Approximationsschema bei dem

• die Laufzeit von  $\mathcal{A}_{\varepsilon}$  polynomial in |I| ist.

Ein FPTAS ist ein Approximationsschema bei dem

• die Laufzeit von  $\mathcal{A}_{\varepsilon}$  polynomial in |I| und  $\frac{1}{\varepsilon}$  ist.

(F)PTAS steht für

(**F**ully)

**P**olynomial

**T**ime

**A**pproximation

**S**cheme

## **Approximationsschemata**



#### Definition.

Ein Approximationsschema für ein Optimierungsproblem  $\Pi$  ist eine Familie von Algorithmen  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ , so dass für alle  $\varepsilon > 0$ :

 $\mathbb{R}_{\mathcal{A}_c} \leq 1 + \varepsilon$ 

→ beliebig gute Approximation

Ein PTAS ist ein Approximationsschema bei dem

• die Laufzeit von  $\mathcal{A}_{\varepsilon}$  polynomial in |/| ist.

Ein FPTAS ist ein Approximationsschema bei dem

- die Laufzeit von  $\mathcal{A}_{\varepsilon}$  polynomial in |/| und  $\frac{1}{\varepsilon}$  ist.  $\rightsquigarrow \text{poly}(|I|, 1/\varepsilon)$
- **Ein PTAS** erlaubt Laufzeiten von  $O(n^{1/\varepsilon})$ . n = |I|z.B. O(n) für 2-Approx.,  $O(n^2)$  für 1.5-Approx.,  $O(n^4)$  für 1.25-Approx.
- **Ein FPTAS** erlaubt Laufzeiten von  $O(\frac{1}{c} \cdot n)$ . z.B. O(n) für 2-Approx., O(n) für 1.5-Approx., O(n) für 1.25-Approx.

(**F**)**PTAS** steht für

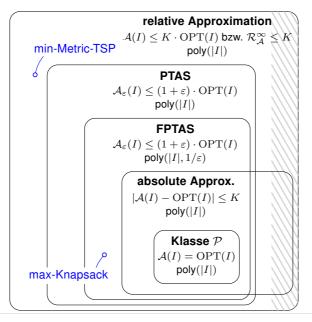
(Fully)

**P**olynomial

Time

**A**pproximation

**S**cheme









## Optimierungsproblem max-KNAPSACK

**Gegeben:** Eine endliche Menge M,

eine Gewichtsfunktion  $w: M \to \mathbb{N}_0$ ,

eine Kostenfunktion  $c: M \to \mathbb{N}_0, W \in \mathbb{N}$ .

**Aufgabe:** Maximiere c(M') für eine Teilmenge M' von M mit  $w(M') \leq W$ .





## Optimierungsproblem max-KNAPSACK

**Gegeben:** Eine endliche Menge M,

eine Gewichtsfunktion  $w: M \to \mathbb{N}_0$ ,

eine Kostenfunktion  $c: M \to \mathbb{N}_0, W \in \mathbb{N}$ .

**Aufgabe:** Maximiere c(M') für eine Teilmenge M' von M mit  $w(M') \leq W$ .

**Unser Vorgehen:** Variiere den pseudopolynomialen Algorithmus  $\mathcal{A}$  aus letzter Vorlesung.

 $\rightsquigarrow$  Laufzeit:  $O(|M| \cdot c(M))$ 

• Für  $\varepsilon > 0$  entwerfe  $(1 + \varepsilon)$ -Approximation  $\mathcal{A}_{\varepsilon}$  wie folgt:

**1** Bei Eingabe I = (M, w, c, W), berechne ein k aus |I|, max(I) und  $\varepsilon$ .

2 Skaliere Kostenfunktion  $c'(i) = \lfloor c(i)/k \rfloor$ .

**3** Berechne  $\mathcal{A}$  auf Eingabe (M, w, c', W).

■ Beweise: Laufzeit von  $\mathcal{A}_{\varepsilon} = \text{poly}(|I|, \frac{1}{\varepsilon})$  und  $\mathcal{R}_{\mathcal{A}_{\varepsilon}} \leq 1 + \varepsilon$ .

# Ein pseudopolynomialer, optimaler Algorithmus für max-KNAPSACK



Für 
$$i \in M$$
,  $r \le c(M)$  berechne
$$w_r^i := \min\{w(M') \mid M' \subseteq \{1, \dots, i\}, c(M') = r\}.$$

Initialisierung

Für 
$$i = 1, ..., |M|$$
 setze  $w_0^i := 0$ 

Berechung

Für 
$$r = 1, ..., c(M)$$
 und  $i = 1, ..., |M|$  setze

$$w_r^i := \min \left\{ w_{r-c(i)}^{i-1} + w(i), w_r^{i-1} \right\}$$

• Ausgabe  $\mathcal{A}(I) := \max\{r \mid w_r^{|M|} \leq W\} = \mathsf{OPT}(I)$ 

## Ein pseudopolynomialer, optimaler Algorithmus für max-KNAPSACK



Für  $i \in M$ ,  $r \leq c(M)$  berechne

$$w_r^i := \min\{w(M') \mid M' \subseteq \{1, \ldots, i\}, c(M') = r\}.$$

Initialisierung

Für 
$$i = 1, ..., |M|$$
 setze  $w_0^i := 0$ 

Berechung

Für 
$$r = 1, ..., c(M)$$
 und  $i = 1, ..., |M|$  setze

$$w_r^i := \min \left\{ w_{r-c(i)}^{i-1} + w(i), w_r^{i-1} \right\}$$

 $\mathcal{A}(I) := \max\{r \mid w_r^{|M|} < W\} = \mathsf{OPT}(I)$ Ausgabe

- $\rightsquigarrow$  Laufzeit: in  $O(|M| \cdot c(M))$ .
- $\rightsquigarrow$  **Lösung:** optimal, d.h.  $\mathcal{A}(I) = \mathsf{OPT}(I)$ .
- $\rightsquigarrow$  Optimaler pseudopolynomialer Algorithmus  $\mathcal{A}$ .





Bezeichne  $\mathcal{A}$  den vorigen pseudopolynomialen Algorithmus für KNAPSACK mit Laufzeit  $O(|M| \cdot c(M))$ .

#### **Definiere Algorithmus** $\mathcal{A}_{\varepsilon}$ für $\varepsilon > 0$ :

• Bei Eingabe I = (M, w, c, W), berechne

$$c_{\max} := \max\{c(i) \mid i \in M\}$$
 und  $k := \frac{c_{\max}}{\left(\frac{1}{\varepsilon} + 1\right) \cdot |M|}$ 

- **2** Betrachte die skalierte Instanz  $I_k$  mit  $c'(i) := \left| \frac{c(i)}{k} \right|$  für alle  $i \in M$ .
- **3** Berechne  $\mathcal{A}$  mit Eingabe  $I_k = (M, w, c', W)$ .





Bezeichne  $\mathcal{A}$  den vorigen pseudopolynomialen Algorithmus für KNAPSACK mit Laufzeit  $O(|M| \cdot c(M))$ .

### **Definiere Algorithmus** $\mathcal{A}_{\varepsilon}$ für $\varepsilon > 0$ :

• Bei Eingabe I = (M, w, c, W), berechne

$$c_{\max} := \max\{c(i) \mid i \in M\} \quad \text{und} \quad k := \frac{c_{\max}}{\left(\frac{1}{\varepsilon} + 1\right) \cdot |M|}$$

- **2** Betrachte die skalierte Instanz  $I_k$  mit  $c'(i) := \left| \frac{c(i)}{k} \right|$  für alle  $i \in M$ .
- **3** Berechne  $\mathcal{A}$  mit Eingabe  $I_k = (M, w, c', W)$ .

#### Satz.

 $\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) \leq 1 + \varepsilon$  für alle  $I \in D_{\Pi}$  und die Laufzeit von  $\mathcal{A}_{\varepsilon}$  ist in  $O(|I|^3 \cdot \frac{1}{\varepsilon})$  für alle  $\varepsilon > 0$ , d.h.  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$  ist ein FPTAS für max-KNAPSACK.





 $\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) \leq 1 + \varepsilon$  für alle  $I \in D_{\Pi}$  und die Laufzeit von  $\mathcal{A}_{\varepsilon}$  ist in  $O(|I|^3 \cdot \frac{1}{\varepsilon})$  für alle  $\varepsilon > 0$ , d.h.  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$  ist ein FPTAS für max-KNAPSACK.

#### Beweis:

Die Laufzeit von  $\mathcal{A}_{\varepsilon}$  ist  $O(|M| \cdot c'(M))$  wobei

$$C'(M) = \sum_{i=1}^{|M|} \left\lfloor \frac{c(i)}{k} \right\rfloor \leq \sum_{i=1}^{|M|} \frac{c_i}{k} \leq |M| \cdot \frac{c_{\max}}{k} = \left(\frac{1}{\varepsilon} + 1\right) |M|^2.$$

Also ist die Laufzeit von  $\mathcal{A}_{\varepsilon}$  in  $O(|M|^3 \cdot \frac{1}{\varepsilon})$  für alle  $\varepsilon > 0$ .





 $\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) \leq 1 + \varepsilon$  für alle  $I \in D_{\Pi}$  und die Laufzeit von  $\mathcal{A}_{\varepsilon}$  ist in  $O(|I|^3 \cdot \frac{1}{\varepsilon})$  für alle  $\varepsilon > 0$ , d.h.  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$  ist ein FPTAS für max-KNAPSACK.

▶ Für die Abschätzung OPT(I) ≤  $(1 + \varepsilon) \cdot \mathcal{A}_{\varepsilon}(I)$ .

## Bei Maximierungsproblemen

- Wir wollen  $\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathsf{OPT}(I)}{\mathcal{A}(I)} \leq K$ , also  $\mathcal{A}(I) \geq \frac{1}{K} \cdot \mathsf{OPT}(I)$ .
- Wir brauchen:
  - eine untere Schranke für  $\mathcal{A}(I)$  " $\mathcal{A}$  ist gut"
  - eine **obere** Schranke für OPT(I) "viel besser geht es nicht"





 $\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) \leq 1 + \varepsilon$  für alle  $I \in D_{\Pi}$  und die Laufzeit von  $\mathcal{A}_{\varepsilon}$  ist in  $O(|I|^3 \cdot \frac{1}{\varepsilon})$  für alle  $\varepsilon > 0$ , d.h.  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$  ist ein FPTAS für max-KNAPSACK.

▶ Für die Abschätzung OPT(I) ≤  $(1 + \varepsilon) \cdot \mathcal{A}_{\varepsilon}(I)$ .

### Bei Maximierungsproblemen

- Wir wollen  $\mathcal{R}_{\mathcal{A}}(I) = \frac{\mathsf{OPT}(I)}{\mathcal{A}(I)} \leq K$ , also  $\mathcal{A}(I) \geq \frac{1}{K} \cdot \mathsf{OPT}(I)$ .
- Wir brauchen:
  - eine untere Schranke für  $\mathcal{A}(I)$  " $\mathcal{A}$  ist gut"
  - eine **obere** Schranke für OPT(*I*) "viel besser geht es nicht"

Wenn  $M^*$  optimal für I, also  $OPT(I) = c(M^*)$ , dann

$$\mathsf{OPT}(I_k) \ge c'(M^*) = \sum_{i \in M^*} \left\lfloor \frac{c(i)}{k} \right\rfloor \ge \sum_{i \in M^*} \left( \frac{c(i)}{k} - 1 \right) \ge \frac{c(M^*)}{k} - |M|$$





 $\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) \leq 1 + \varepsilon$  für alle  $I \in D_{\Pi}$  und die Laufzeit von  $\mathcal{A}_{\varepsilon}$  ist in  $O(|I|^3 \cdot \frac{1}{\varepsilon})$  für alle  $\varepsilon > 0$ , d.h.  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$  ist ein FPTAS für max-KNAPSACK.

▶ Für die Abschätzung OPT(I) ≤  $(1 + \varepsilon) \cdot \mathcal{A}_{\varepsilon}(I)$ .

Wenn  $M^*$  optimal für I, also  $OPT(I) = c(M^*)$ , dann

$$\mathsf{OPT}(I_k) \ge c'(M^*) = \sum_{i \in M^*} \left\lfloor \frac{c(i)}{k} \right\rfloor \ge \sum_{i \in M^*} \left( \frac{c(i)}{k} - 1 \right) \ge \frac{c(M^*)}{k} - |M|$$

■ Eine obere Schranke für OPT(
$$I$$
):  $\mathcal{A}_{\mathcal{E}}(I) \geq k \cdot \mathcal{A}(I_k) = k \cdot \mathsf{OPT}(I_k) \stackrel{!}{\geq} c(M^*) - k \cdot |M| = \mathsf{OPT}(I) - k \cdot |M|$ 

Also 
$$OPT(I) \leq \mathcal{R}_{\varepsilon}(I) + k \cdot |M|$$

## Ein FPTAS für max-KNAPSACK



#### Satz.

 $\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) \leq 1 + \varepsilon$  für alle  $I \in D_{\Pi}$  und die Laufzeit von  $\mathcal{A}_{\varepsilon}$  ist in  $O(|I|^3 \cdot \frac{1}{\varepsilon})$  für alle  $\varepsilon > 0$ , d.h.  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$  ist ein FPTAS für max-KNAPSACK.

- ▶ Für die Abschätzung OPT(I)  $\leq$  (1 +  $\varepsilon$ )  $\cdot$   $\mathcal{A}_{\varepsilon}(I)$ .
  - Eine obere Schranke für OPT(I):

The obere Schränke für OPT(I): 
$$\mathcal{A}_{\varepsilon}(I) \geq k \cdot \mathcal{A}(I_k) = k \cdot \mathsf{OPT}(I_k) \geq c(M^*) - k \cdot |M| = \mathsf{OPT}(I) - k \cdot |M|$$

Also 
$$OPT(I) \leq \mathcal{A}_{\varepsilon}(I) + k \cdot |M|$$

**Eine untere Schranke** für  $\mathcal{A}_{\varepsilon}(I)$ :

$$\mathcal{A}_{\varepsilon}(I) \geq \mathsf{OPT}(I) - k \cdot |M| \geq c_{\mathsf{max}} - k \cdot |M|$$

Mit der Definition von k also  $|\mathcal{A}_{\varepsilon}(I)| \ge k \cdot |M| \cdot (1/\varepsilon)$ 

## Ein FPTAS für max-KNAPSACK



#### Satz.

 $\mathcal{R}_{\mathcal{A}_c}(I) \leq 1 + \varepsilon$  für alle  $I \in D_{\mathrm{II}}$  und die Laufzeit von  $\mathcal{A}_{\varepsilon}$  ist in  $O(|I|^3 \cdot \frac{1}{\varepsilon})$  für alle  $\varepsilon > 0$ , d.h.  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$  ist ein FPTAS für max-KNAPSACK.

- ▶ Für die Abschätzung OPT(I) ≤  $(1 + \varepsilon) \cdot \mathcal{A}_{\varepsilon}(I)$ .
  - Eine obere Schranke für OPT(*I*):

$$\mathcal{A}_{\varepsilon}(I) \geq k \cdot \mathcal{A}(I_k) = k \cdot \mathsf{OPT}(I_k) \stackrel{!}{\geq} c(M^*) - k \cdot |M| = \mathsf{OPT}(I) - k \cdot |M|$$

Also 
$$|\mathsf{OPT}(I) \leq \mathcal{R}_{\varepsilon}(I) + k \cdot |M|$$

**Eine untere Schranke** für  $\mathcal{A}_{\varepsilon}(I)$ :

$$\mathcal{A}_{\varepsilon}(I) \ge \mathsf{OPT}(I) - k \cdot |M| \ge c_{\mathsf{max}} - k \cdot |M|$$

Mit der Definition von 
$$k$$
 also  $\mathcal{A}_{\varepsilon}(I) \geq k \cdot |M| \cdot (1/\varepsilon)$ 

 $\mathsf{OPT}(I) \leq \mathcal{A}_{\varepsilon}(I) + k \cdot |M| \leq \mathcal{A}_{\varepsilon}(I) + \varepsilon \cdot \mathcal{A}_{\varepsilon}(I) = (1 + \varepsilon) \cdot \mathcal{A}_{\varepsilon}(I)$ Zusammen:

## Übersicht

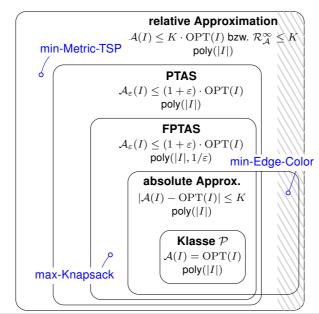




# Übersicht



min-Vertex-Color







## Optimierungsproblem min-VERTEX-COLOR

**Gegeben:** Graph G = (V, E)

**Aufgabe:** Färbe die Knoten in *V* mit möglichst wenig Farben,

so dass je zwei adjazente Knoten verschiedene Farben

besitzen.

Beide

Entscheidungsprobleme "höchstens drei Farben"

sind  $\mathcal{NP}$ -schwer.

## Optimierungsproblem min-EDGE-COLOR

**Gegeben:** Graph G = (V, E)

**Aufgabe:** Färbe die Kanten in *E* mit möglichst wenig Farben,

so dass je zwei adjazente Kanten verschiedene Farben

besitzen.





## Optimierungsproblem min-VERTEX-COLOR

**Gegeben:** Graph G = (V, E)

**Aufgabe:** Färbe die Knoten in *V* mit möglichst wenig Farben,

so dass je zwei adjazente Knoten verschiedene Farben

besitzen.

#### Satz.

Sei  $\Pi$  ein  $\mathcal{NP}$ -schweres Optimierungsproblem mit

■ OPT(I) ∈  $\mathbb{N}$  für alle I ∈  $D_{\Pi}$ , und

• es existiert ein Polynom q mit  $\mathsf{OPT}(I) < q(|I|)$  für alle  $I \in \mathcal{D}_{\Pi}$ .

Falls  $\mathcal{P} \neq \mathcal{NP}$ , so gibt es kein FPTAS  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$  für  $\Pi$ .





Sei  $\Pi$  ein  $\mathcal{NP}$ -schweres Optimierungsproblem mit

- OPT(I)  $\in \mathbb{N}$  für alle  $I \in D_{\Pi}$ , und
- es existiert ein Polynom q mit OPT(I) < q(|I|) für alle  $I \in D_{\Pi}$ .

Falls  $\mathcal{P} \neq \mathcal{NP}$ , so gibt es kein FPTAS  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$  für  $\Pi$ .

**Beweis:** (O.B.d.A. für ein Maximierungsproblem  $\Pi$ )

- Angenommen  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$  sei ein FPTAS für  $\Pi$ .
- Wir konstruieren optimalen, polynomialen Algorithmus  $\mathcal{A}$  für  $\Pi$ :
  - **1** Bei Eingabe  $I \in D_{\Pi}$ , berechne ein  $\varepsilon_0 \leq \frac{1}{q(|I|)}$ .
  - **3** Gebe  $\mathcal{A}_{\varepsilon_0}(I)$  zurück. (Berechne Algorithmus  $\mathcal{A}_{\varepsilon_0}$  auf Eingabe I.)

 $\text{Laufzeit von } \mathcal{A}_{\varepsilon_0} \text{ ist poly}(|\mathit{I}|, \tfrac{1}{\varepsilon_0}) = \text{poly}(|\mathit{I}|), \text{ da } \tfrac{1}{\varepsilon_0} = q(|\mathit{I}|) = \text{poly}(|\mathit{I}|).$ 





Sei  $\Pi$  ein  $\mathcal{NP}$ -schweres Optimierungsproblem mit

- OPT(I)  $\in \mathbb{N}$  für alle  $I \in D_{\Pi}$ , und
- es existiert ein Polynom q mit OPT(I) < q(|I|) für alle  $I \in D_{\Pi}$ .

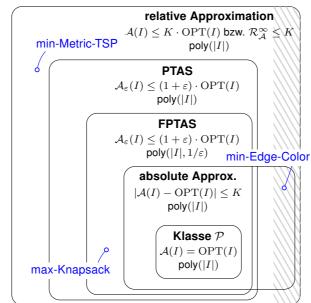
Falls  $\mathcal{P} \neq \mathcal{NP}$ , so gibt es kein FPTAS  $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$  für  $\Pi$ .

- Für die Güte beobachte:  $\mathsf{OPT}(I) \leq (1 + \varepsilon_0) \mathcal{A}_{\varepsilon_0}(I)$  und  $\mathsf{OPT}(I) < q(|I|) = \frac{1}{\varepsilon_0}$ .
- Also gilt  $0 \le \mathsf{OPT}(I) \mathcal{A}_{\varepsilon_0}(I) \le \varepsilon_0 \cdot \mathcal{A}_{\varepsilon_0}(I) \le \varepsilon_0 \cdot \mathsf{OPT}(I) < 1$ .
- Da OPT(I),  $\mathcal{A}_{\varepsilon_0}(I) \in \mathbb{N}$ , ist OPT(I) =  $\mathcal{A}_{\varepsilon_0}(I)$ .
- Demnach ist  $\mathcal{A}(I) = \mathcal{A}_{\varepsilon_0}(I) = \mathsf{OPT}(I)$ , also  $\Pi \in \mathcal{P}$ .
- Da  $\Pi$   $\mathcal{NP}$ -schwer ist, folgt  $\mathcal{P} = \mathcal{NP}$ .

# Übersicht











## Optimierungsproblem min-VERTEX-COLOR

**Gegeben:** Graph G = (V, E)

**Aufgabe:** Färbe die Knoten in *V* mit möglichst wenig Farben,

so dass je zwei adjazente Knoten verschiedene Farben

besitzen.

#### Satz.

Falls  $\mathcal{P} \neq \mathcal{NP}$ , dann existiert kein relativer Approximationsalgorithmus  $\mathcal{A}$  für min-VERTEX-COLOR mit  $\mathcal{R}^\infty_{\mathcal{A}} < \frac{4}{3}$ .





# Optimierungsproblem min-VERTEX-COLOR

**Gegeben:** Graph G = (V, E)

**Aufgabe:** Färbe die Knoten in *V* mit möglichst wenig Farben,

so dass je zwei adjazente Knoten verschiedene Farben

besitzen.

### Satz.

Falls  $\mathcal{P} \neq \mathcal{NP}$ , dann existiert kein relativer Approximationsalgorithmus  $\mathcal{H}$  für min-Vertex-Color mit  $\mathcal{R}^{\infty}_{\mathcal{H}} < \frac{4}{3}$ .

- Angenommen es gibt einen relativen Approximationsalgorithmus  $\mathcal{A}$  für min-VERTEX-COLOR mit  $\mathcal{R}^{\infty}_{\mathcal{A}} < \frac{4}{3}$ .
- lacktriangle Wir benutzen  $\mathcal A$  um Entscheidungsproblem 3COLOR zu lösen.
- Da 3COLOR  $\mathcal{NP}$ -schwer ist, folgt  $\mathcal{P} = \mathcal{NP}$ .



# Approximierbarkeit von min-VERTEX-COLOR

Zu zwei Graphen 
$$G_1 = (V_1, E_1)$$
 und  $G_2 = (V_2, E_2)$  sei  $G := (V, E) := G_1[G_2]$ 

definiert durch

$$V := V_1 \times V_2$$

und

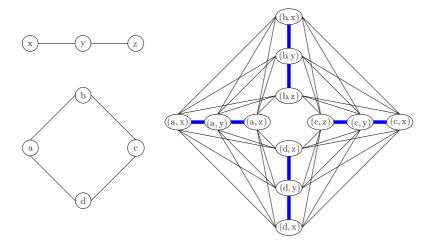
$$E := \left\{ \{(u_1, u_2), (v_1, v_2)\} \mid \begin{array}{c} \text{entweder } \{u_1, v_1\} \in E_1, \text{ oder} \\ u_1 = v_1 \text{ und } \{u_2, v_2\} \in E_2 \end{array} \right\}$$

#### **Anschaulich**

- Jeder Knoten aus G<sub>1</sub> wird durch eine Kopie von G<sub>2</sub> ersetzt
- Jede Kante aus E<sub>1</sub> durch einen vollständig bipartiten Graphen zwischen den entsprechenden Kopien.



# Approximierbarkeit von min-VERTEX-COLOR







$$\mathcal{R}^{\infty}_{\mathcal{A}} := \inf \left\{ r \geq 1 \mid \begin{array}{l} \text{es gibt ein } N_0 > 0, \text{ so dass } \mathcal{R}_{\mathcal{A}}(I) \leq r \\ \text{für alle } I \text{ mit OPT}(I) \geq N_0 \end{array} \right\}$$

- Angenommen es gibt einen relativen Approximationsalgorithmus  $\mathcal{A}$  für min-VERTEX-COLOR mit  $\mathcal{R}^{\infty}_{\mathcal{A}} < \frac{4}{3}$ .
- Dann existiert ein  $N_0 \in \mathbb{N}$  so, dass  $\mathcal{A}(G) < \frac{4}{3} \mathsf{OPT}(G)$  für alle Graphen G mit  $\mathsf{OPT}(G) \ge N_0$ .





- Dann existiert ein  $N_0 \in \mathbb{N}$  so, dass  $\mathcal{A}(G) < \frac{4}{3} \mathsf{OPT}(G)$  für alle Graphen G mit  $\mathsf{OPT}(G) \geq N_0$ .
- Sei also G = (V, E) eine beliebige Instanz von 3COLOR.
- Dann definiere  $G^* := K_{N_0}[G]$ , wobei  $K_{N_0}$  der vollständige Graph mit  $N_0$  Knoten ist.
- Dann gilt:  $OPT(G^*) = N_0 \cdot OPT(G) \ge N_0$ .

### Fallunterscheidung:

Falls G Ja-Instanz (also dreifärbbar) ist, gilt:

$$\mathcal{A}(G^*) < \frac{4}{3} \, \mathsf{OPT}(G^*) = \frac{4}{3} \cdot N_0 \cdot \mathsf{OPT}(G) \le \frac{4}{3} \cdot N_0 \cdot 3 = 4N_0.$$

Andererseits, falls G Nein-Instanz (also nicht dreifärbbar) ist, gilt

$$\mathcal{A}(G^*) \ge \mathsf{OPT}(G^*) = N_0 \cdot \mathsf{OPT}(G) \ge 4N_0.$$

**Fazit:** *G* ist Ja-Instanz (dreifärbbar) genau dann, wenn  $\mathcal{A}(G^*) < 4N_0$ .



# Approximierbarkeit von min-VERTEX-COLOR

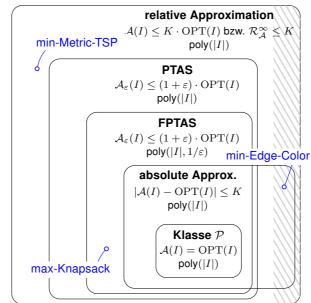
**Fazit:** *G* ist Ja-Instanz (dreifärbbar) genau dann, wenn  $\mathcal{A}(G^*) < 4N_0$ .

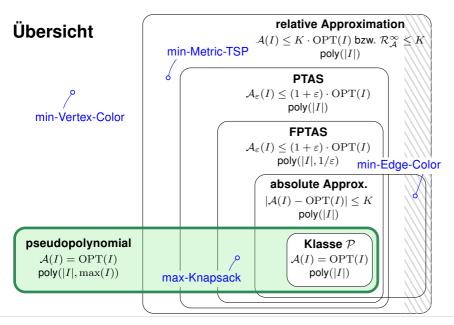
- Die Größe von G\* ist polynomial in der Größe von G.
- Also kann G\* in polynomialer Zeit konstruiert werden.
- **Damit** ist die Anwendung von  $\mathcal{A}$  auf  $G^*$  polynomial in der Größe von G.
- Also haben wir einen polynomialen Algorithmus zur Lösung von 3COLOR konstruiert.
- Da 3COLOR  $\mathcal{NP}$ -schwer ist, folgt damit dass  $\mathcal{P} = \mathcal{NP}$ .

# Übersicht











# **Ein allgemeines Resultat**



#### Satz.

Sei  $\Pi$  ein Optimierungsproblem für das gilt:

- OPT(I) ∈  $\mathbb{N}$  für alle I ∈  $D_{\Pi}$
- es existiert ein Polynom q mit  $OPT(I) \le q(|I| + max(I))$

Falls  $\Pi$  ein FPTAS hat, so hat es einen pseudopolynomialen optimalen Algorithmus.





- Wir haben heute das Kapitel Komplexitätstheorie abgeschlossen.
- Wir werden aber nochmal über Turing-Maschinen sprechen.

#### **Testen Sie sich:**

```
Können Sie mit folgenden Begriffen etwas anfangen?
                        polynomiale Transformation
                                                            3SAT
          CLIQUE
                                   Turing-Maschine
                                                          Approximation
  Zeitkomplexitätsfunktion
                                       Orakel
                                                   Eingabekodierung
                            \mathcal{NP}
Optimierungsproblem
                                         \mathcal{NP}-vollständig
                                                                (F)PTAS
    Instanz
                 pseudopolynomial
                                            Nichtdeterminismus
  Entscheidungsproblem
                                    \mathcal{P}
```

