

Theoretische Grundlagen der Informatik

Vorlesung am 1.12.2022

Torsten Ueckerdt | 1. Dezember 2022

Letzte Vorlesung

Probleme

- Optimierungsprobleme, Optimalwertprobleme, Entscheidungsprobleme
- Problem Π ist Klasse D_{Π} von Instanzen I.

Eingabegrößen

- Kodierungsschema $s: D_{\Pi} \to \Sigma^*$ über Alphabet Σ^* .
- Kodierung s(I) einer Instanz I ist ein Wort aus Σ^* .
- Inputlänge |s(I)| ist Länge des Wortes.

Entscheidungsprobleme

- Ja–Instanzen J_{Π} und Nein–Instanzen N_{Π}
- Sprache $L[\Pi, s]$ der Kodierungen aller Ja–Instanzen
- TM M löst Π wenn M Sprache L[Π, s] entscheidet.

Laufzeiten

- **Teitkomplexitätsfunktion** $T_{\mathcal{M}}(n)$ von \mathcal{M} bei Eingaben der Länge n
- Die Klasse \mathcal{P} : Sprachen von \mathcal{M} mit $T_{\mathcal{M}}(n)$ polynomiell in n.
- **Jetzt:** Am Beispiel TSP: Entscheidung → Optimalwert → Optimierung

Satz.

Falls es einen Algorithmus A gibt, der das Entscheidungsproblem des TSP in polynomialer Zeit löst, so gibt es auch einen Algorithmus, der das Optimierungsproblem in polynomialer Zeit löst.

Entscheidungsproblem TSP:

Gibt es eine Tour in G, c mit Länge $\leq k$?

$$\rightsquigarrow \mathcal{A}(G, c, k) = \text{"ja"}$$

 $\rightsquigarrow \mathcal{A}(G, c, k) = \text{"nein"}$

Satz.

Falls es einen Algorithmus A gibt, der das Entscheidungsproblem des TSP in polynomialer Zeit löst, so gibt es auch einen Algorithmus, der das Optimierungsproblem in polynomialer Zeit löst.

Beweis: Algorithmus, der das Optimierungsproblem löst.

Input:
$$G = (V, E), c_{ij} = c(\{i, j\})$$
 für

$$i, j \in V := \{1, \dots, n\}$$
, Algorithmus \mathcal{A}

Output: d_{ii} (1 $\leq i, j \leq n$), so dass alle bis auf n der

 d_{ii} -Werte den Wert 1 + max{ c_{ii} | 1 $\leq i, j \leq n$ } haben. Die restlichen n di-Werte haben den

Wert cii und geben genau die Kanten einer

optimalen Tour an.

Entscheidungsproblem TSP:

Gibt es eine Tour in G. c mit Länge $\leq k$?

$$\rightsquigarrow \mathcal{A}(G, c, k) = \text{"ja"}$$

 $\rightsquigarrow \mathcal{A}(G, c, k) = \text{"nein"}$

Algorithmus OPT-TOUR (als Beweis) 1/2

• berechne
$$m := \max\{c_{ii} \mid 1 \le i, j \le n\};$$

setze L(ow) := 0 und H(igh) :=
$$n \cdot m$$
; // $L \leq OPT \leq H$

3 Solange
$$H - L > 1$$
 gilt, führe aus: // binäre Suche nach *OPT*

Falls
$$\mathcal{A}(G, c, \lceil \frac{1}{2}(H+L) \rceil) = \text{"nein"}, \quad \text{// OPT} > \lceil \frac{1}{2}(H+L) \rceil$$

• setze
$$L := \left[\frac{1}{2} (H + L) \right] + 1;$$

$$// OPT \le \lceil \frac{1}{2}(H+L) \rceil$$

setze
$$H := \left\lceil \frac{1}{2}(H+L) \right\rceil$$
;

8 Falls
$$\mathcal{A}(G, c, L) =$$
 "nein"

// hier gilt
$$H - L \le 1$$

setze
$$OPT := H;$$

- Sonst
- \bigcirc setze OPT := L;

Entscheidungsproblem TSP:

Gibt es eine Tour in G, cmit Länge $\leq k$?

$$\rightsquigarrow \mathcal{A}(G, c, k) = \text{"ja"}$$

 $\rightsquigarrow \mathcal{A}(G, c, k) = \text{"nein"}$

Algorithmus OPT-TOUR (als Beweis) 2/2

Wir kennen den Optimalwert *OPT* und finden jetzt eine optimale Tour.

- **Pir** $i = 1 \dots n$ führe aus
- **Für** $j = 1 \dots n$ führe aus
- 14 setze $R := c_{ii}$; // merke Länge der Kante ij
- 15 setze $c_{ii} := m + 1$; // mache Kante ij zu lang
- 16 **Falls** $\mathcal{A}(G, c, OPT) =$ "nein", // Kante ij in opt. Tour
- 1 setze $c_{ii} := R$; // Kante ij wie vorher
- setze $d_{ii} := c_{ii}$;

Entscheidungsproblem TSP:

Gibt es eine Tour in G. c mit Länge $\leq k$?

$$\rightsquigarrow \mathcal{A}(G, c, k) = \text{"ja"}$$

 $\rightsquigarrow \mathcal{A}(G, c, k) = \text{"nein"}$

Bemerkungen zum Algorithmus

Die Schleife der binären Suche bricht ab, und danach ist die Differenz H - L gleich 1 oder 0, denn:

- Solange H-L>1, ändert sich bei jedem Schleifendurchlauf einer der Werte H,L:
 - Für H L > 1 gilt, dass $L \neq \left[\frac{1}{2}(H + L)\right] + 1$ und $H \neq \left[\frac{1}{2}(H + L)\right]$ ist.
- Die Differenz H L verkleinert sich mit jedem Durchlauf
- Da H und L ganzzahlig sind, tritt der Fall $H L \le 1$ ein.
- Zu jedem Zeitpunkt gilt $H L \ge 0$:
 - H L = 0 ist möglich, wenn zum Beispiel L auf $\left[\frac{1}{2}(H + L)\right] + 1$ erhöht wird und vorher H - L = 2 oder H - L = 3 war.

Laufzeit des Algorithmus

- $\mathcal{A}(G, c, k)$ wird (für verschiedene k) etwa $\log(n \cdot m)$ -mal aufgerufen.
- $\mathcal{A}(G, c, OPT)$ wird etwa n^2 -mal aufgerufen.
- Es finden also $O(n^2 + \log(nm))$ Aufrufe von \mathcal{A} statt.
- Die Inputlänge ist $O(n^2 \cdot \max \langle c_{ii} \rangle) = O(n^2 \cdot \max \log c_{ii})$.
- Da \mathcal{A} polynomiell ist, ist dies also auch OPT-TOUR.

Zwischenstand Komplexitätstheorie

Probleme

- Optimierungsprobleme, Optimalwertprobleme, Entscheidungsprobleme
- Problem Π ist Klasse D_{Π} von Instanzen I.

Eingabegrößen

- Kodierungsschema $s: D_{\Pi} \to \Sigma^*$ über Alphabet Σ^* .
- Kodierung s(I) einer Instanz I ist ein Wort aus Σ^* .
- Inputlänge |s(I)| ist Länge des Wortes.

Entscheidungsprobleme

- Ja–Instanzen J_{Π} und Nein–Instanzen N_{Π}
- Sprache $L[\Pi, s]$ der Kodierungen aller Ja–Instanzen
- TM M löst Π wenn M Sprache L[Π, s] entscheidet.

Laufzeiten

- **Teitkomplexitätsfunktion** $T_{\mathcal{M}}(n)$ von \mathcal{M} bei Eingaben der Länge n
- Die Klasse \mathcal{P} : Sprachen von \mathcal{M} mit $T_{\mathcal{M}}(n)$ polynomiell in n.
- **Gerade:** Am Beispiel TSP: Entscheidung \rightarrow Optimalwert \rightarrow Optimierung

- Probleme
 - Optimierungsprobleme, Optimalwertprobleme, Entscheidungsprobleme
 - Problem Π ist Klasse D_{Π} von Instanzen I.

Eingabegrößen

- Kodierungsschema $s: D_{\Pi} \to \Sigma^*$ über Alphabet Σ^* .
- Kodierung s(I) einer Instanz I ist ein Wort aus Σ^* .
- Inputlänge |s(I)| ist Länge des Wortes.

Entscheidungsprobleme

- Ja–Instanzen J_{Π} und Nein–Instanzen N_{Π}
- Sprache $L[\Pi, s]$ der Kodierungen aller Ja–Instanzen
- TM M löst Π wenn M Sprache L[Π, s] entscheidet.

Laufzeiten

- **Teitkomplexitätsfunktion** $T_{\mathcal{M}}(n)$ von \mathcal{M} bei Eingaben der Länge n
- Die Klasse \mathcal{P} : Sprachen von \mathcal{M} mit $T_{\mathcal{M}}(n)$ polynomiell in n.
- **Gerade:** Am Beispiel TSP: Entscheidung \rightarrow Optimalwert \rightarrow Optimierung

Testen Sie sich!

Die Nichtdeterministische Turing-Maschine (NTM)

Die deterministische TM ist von der Form $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma, s, \delta, F)$

- wobei $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$
- z.B. $\delta(q_1, a) = (q_2, b, L)$

Die nichtdeterministische TM ist von der Form $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma, s, \delta, F)$

- wobei $\delta: Q \times (\Gamma \cup \{\varepsilon\}) \to 2^{Q \times \Gamma \times \{L, N, R\}}$
- z.B. $\delta(q_1, a) = \{(q_2, b, L), (q_3, b, R), (q_1, a, N)\}$ $\delta(q_2, a) = \emptyset$ oder $\delta(q_2, \varepsilon) = \{(q_2, a, L), (q_1, \sqcup, N)\}$
- **E**s gibt also ε -Übergänge und Wahlmöglichkeiten

Die Nichtdeterministische Turing-Maschine (NTM)

Die deterministische TM ist von der Form $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma, s, \delta, F)$

- wobei $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$
- z.B. $\delta(q_1, a) = (q_2, b, L)$

Die nichtdeterministische TM ist von der Form $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma, s, \delta, F)$

- wobei $\delta: Q \times (\Gamma \cup \{\varepsilon\}) \to 2^{Q \times \Gamma \times \{L, N, R\}}$
- z.B. $\delta(q_1, a) = \{(q_2, b, L), (q_3, b, R), (q_1, a, N)\}$ $\delta(q_2, a) = \emptyset \text{ oder } \delta(q_2, \varepsilon) = \{(q_2, a, L), (q_1, \sqcup, N)\}$
- **E**s gibt also ε -Übergänge und Wahlmöglichkeiten

Eine NTM \mathcal{M} akzeptiert eine Eingabe w, wenn es mindestens eine akzeptierende Abarbeitung von w gibt.

- $L_M = \{ w \in \Sigma^* : M \text{ akzeptiert } w \}$
- → analog zu Nichtdeterminismus bei endlichen Automaten

Den Nichtdeterminismus "auslagern"

Sei \mathcal{M} eine NTM und w eine Eingabe.

- Während der Abarbeitung von w gibt es zu jedem Zeitpunkt höchstens X < ∞ mögliche Übergänge.
- Jeder mögliche (endliche) Berechnungsweg (= Abarbeitung) ist eindeutig beschrieben durch eine (endliche) Folge von Zahlen aus 1,..., X.
- Ist diese Folge schon vorher nichtdeterministisch gegeben, so k\u00f6nnte die Turing-Maschine danach deterministisch arbeiten.

Sei \mathcal{M} eine NTM und w eine Eingabe.

- Während der Abarbeitung von w gibt es zu jedem Zeitpunkt höchstens X < ∞ mögliche Übergänge.
- Jeder mögliche (endliche) Berechnungsweg (= Abarbeitung) ist eindeutig beschrieben durch eine (endliche) Folge von Zahlen aus 1,..., X.
- Ist diese Folge schon vorher nichtdeterministisch gegeben, so könnte die Turing-Maschine danach deterministisch arbeiten.

Dies ist die Idee hinter der Orakel-Turing-Maschine:

- 1. Stufe: Es wird nichtdeterministisch vor die Eingabe auf das Band geschrieben.
- 2. Stufe: Es wird deterministisch das gesamte Band bearbeitet.

Orakel-Turing-Maschine als NTM

Karlsruher Institut für Technologie

- 1. Stufe: Es wird nichtdeterministisch vor die Eingabe auf das Band geschrieben.
 - Alphabet $\Sigma = \{0, 1\}$, Startzustand $s \in Q$, Orakelzustand $q^* \in Q$, Trennzeichen $\# \in \Gamma$
 - definiere Übergange

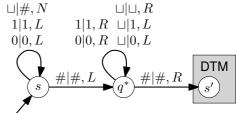
$$\delta(s,0) = \{(s,0,L)\} \text{ und } \delta(s,1) = \{(s,1,L)\}$$

$$\delta(s,\sqcup) = \{(q^*,\#,L)\}$$

$$\delta(q^*,\sqcup) = \{(q^*,1,L), (q^*,0,L), (q^*,\sqcup,R)\}$$

$$\delta(q^*,\#) = \{(s',\#,R)\}$$

- $\delta(q^*, \sqcup) = \{(q^*, 1, L), (q^*, 0, L), (q^*, \delta(q^*, \#)) = \{(s', \#, R)\}$ s' Startzustand für 2. Stufe
- 2. Stufe: Es wird deterministisch das gesamte Band bearbeitet.
 - $|\delta(q, a)| = 1$ für alle $q \in Q \{s, q^*\}, a \in \Gamma$
 - keine Übergänge zu s oder q*
 - kein Entfernen oder Schreiben von #



NTM und Orakel-TM

Die "klassische" nichtdeterministische Turing-Maschine:

- lacktriangle Übergangsfunktion δ zu Übergangsrelation erweitert
- ermöglicht Wahlmöglichkeiten und ε-Übergänge
 ∞ vergleiche endliche Automaten

Die Orakel-Turing-Maschine:

- äquivalentes Modell einer nichtdeterministischen Turing-Maschine
- basiert auf nichtdeterministischem Orakel und deterministischer endlicher Kontrolle
- Dies kommt der Intuition n\u00e4her und wird von uns (fast ausschlie\u00e4lich) verwendet werden.

NTM und Orakel-TM

Die "klassische" nichtdeterministische Turing-Maschine:

- lacktriangle Übergangsfunktion δ zu Übergangsrelation erweitert
- ermöglicht Wahlmöglichkeiten und ε-Übergänge
 √ vergleiche endliche Automaten

Die Orakel-Turing-Maschine:

- äquivalentes Modell einer nichtdeterministischen Turing-Maschine
- basiert auf nichtdeterministischem Orakel und deterministischer endlicher Kontrolle
- Dies kommt der Intuition n\u00e4her und wird von uns (fast ausschlie\u00dflich) verwendet werden.

NTM und Orakel-TM akzeptieren ein Wort $x \in \Sigma^*$ genau dann, wenn es mindestens eine akzeptierende Berechnung gibt.

Übertragung auf Entscheidungsprobleme Π

Die Eingabe ist ein Wort aus Σ^* , zum Beispiel eine Kodierung einer Instanz $I \in D_{\Pi}$ des Entscheidungsproblems Π .

- 1. Stufe: Es wird ein Orakel aus Γ* berechnet, zum Beispiel ein Lösungsbeispiel für *I*, also ein Indikator, warum *I* ∈ J_Π gelten sollte.
- **2. Stufe:** Hier wird nun dieser Lösungsvorschlag überprüft, d.h. es wird geprüft ob $I \in J_{\Pi}$.

Beispiel TSP

- **1. Stufe:** Es wird zum Beispiel eine zykl. Permutation $x_1 x_2 \cdots x_n$ der Knotenmenge V vorgeschlagen.
 - D.h. $(x_1, x_2, ..., x_n) \# G = (V, E), c, k$ ist die Eingabe für 2. Stufe.
- **2. Stufe:** Es wird nun überprüft, ob $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_n$ eine Tour in G = (V, E) darstellt, deren Länge bezüglich c nicht größer als k ist.

Bemerkungen zur Orakel-TM

- Das Orakel kann ein beliebiges Wort aus Γ* sein.
- Darum muss in der Überprüfungsphase (2.Stufe) geprüft werden, ob das Orakel ein zulässiges Lösungsbeispiel für die gegebene Eingabe ist.
- Ist dies der Fall, so kann die Berechnung zu diesem Zeitpunkt mit der Antwort "Ja" beendet werden.
 - → gehe in Zustand q_J
- Ist dies nicht der Fall, so kann die Berechnung zu diesem Zeitpunkt mit der Antwort "Nein" beendet werden.
 - \rightsquigarrow gehe in Zustand q_N
- Jede Orakel-TM \mathcal{M} hat zu einer gegebenen Eingabe x eine unendliche Anzahl möglicher Berechnungen, eine zu jedem Orakel aus Γ^* .
- Endet mindestens eine in q_J , so wird x akzeptiert.

- Die **Zeit**, die eine nichtdeterministische Turing-Maschine \mathcal{M} benötigt, um ein Wort $x \in L_{\mathcal{M}}$ zu akzeptieren, ist definiert als die minimale Anzahl von Schritten, die \mathcal{M} in den Zustand q_J überführt.
- Die **Zeitkomplexitätsfunktion** $T_{\mathcal{M}} : \mathbb{Z}^+ \to \mathbb{Z}^+$ einer NTM \mathcal{M} ist definiert durch

```
T_{\mathcal{M}}(n) := \max \left( \{1\} \cup \left\{ m \colon \text{ es gibt ein } x \in L_{\mathcal{M}} \text{ mit } |x| = n, \text{ so dass die Zeit, } \atop \text{die } \mathcal{M} \text{ benötigt, um } x \text{ zu akzeptieren, } m \text{ ist} \right\} \right)
```

Zeitkomplexität für NTM

- Die **Zeit**, die eine nichtdeterministische Turing-Maschine \mathcal{M} benötigt, um ein Wort $x \in L_{\mathcal{M}}$ zu akzeptieren, ist definiert als die minimale Anzahl von Schritten, die \mathcal{M} in den Zustand q_J überführt.
- Die **Zeitkomplexitätsfunktion** $T_M : \mathbb{Z}^+ \to \mathbb{Z}^+$ einer NTM M ist definiert durch

$$T_{\mathcal{M}}(n) := \max \left(\{1\} \cup \left\{ m \colon \text{ es gibt ein } x \in L_{\mathcal{M}} \text{ mit } |x| = n, \text{ so dass die Zeit, } \atop \text{die } \mathcal{M} \text{ benötigt, um } x \text{ zu akzeptieren, } m \text{ ist} \right\} \right)$$

Bemerkung 1

- Zur Berechnung von $T_{\mathcal{M}}(n)$ wird für jedes $x \in L_{\mathcal{M}}$ mit |x| = n eine kürzeste akzeptierende Berechnung betrachtet.
- Anschließend wird von diesen kürzesten die längste bestimmt.
- Somit ergibt sich eine worst-case Abschätzung.

Zeitkomplexität für NTM

- Die **Zeit**, die eine nichtdeterministische Turing-Maschine \mathcal{M} benötigt, um ein Wort $x \in L_{\mathcal{M}}$ zu akzeptieren, ist definiert als die minimale Anzahl von Schritten, die \mathcal{M} in den Zustand q_J überführt.
- Die **Zeitkomplexitätsfunktion** T_M : $\mathbb{Z}^+ \to \mathbb{Z}^+$ einer NTM M ist definiert durch

$$T_{\mathcal{M}}(n) := \max \left(\{1\} \cup \left\{ m \colon \text{ es gibt ein } x \in L_{\mathcal{M}} \text{ mit } |x| = n, \text{ so dass die Zeit, } \atop \text{die } \mathcal{M} \text{ benötigt, um } x \text{ zu akzeptieren, } m \text{ ist} \right\} \right)$$

Bemerkung 2

- Die Zeitkomplexität h\u00e4ngt nur von der Anzahl der Schritte ab, die bei einer akzeptierenden Berechnung auftreten.
- Hierbei umfasst die Anzahl der Schritte auch die Schritte der Orakelphase.
- Per Konvention ist $T_{\mathcal{M}}(n) = 1$, falls es keine Eingabe x der Länge n gibt, die von \mathcal{M} akzeptiert wird.

Die Klasse \mathcal{NP}

Die Klasse \mathcal{NP} ist die Menge aller Sprachen L (Entscheidungsprobleme), für die eine nichtdeterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial beschränkt ist, d.h. es existiert ein Polynom p mit

$$T_{\mathcal{M}}(n) \leq p(n).$$

 $(\mathcal{NP}$ steht für **nichtdeterministisch polynomial**.)

Die Klasse \mathcal{NP}

Die Klasse \mathcal{NP} ist die Menge aller Sprachen L (Entscheidungsprobleme), für die eine nichtdeterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial beschränkt ist, d.h. es existiert ein Polynom p mit

$$T_{\mathcal{M}}(n) \leq p(n).$$

 $(\mathcal{NP}$ steht für **nichtdeterministisch polynomial**.)

Bemerkung

 Informell ausgedrückt gehört Π zu NP, falls Π folgende Eigenschaft hat:
 Ist die Antwort bei Eingabe eines Beispiels I von Π Ja, dann kann die Korrektheit der Antwort in polynomialer Zeit überprüft werden.

Die Klasse \mathcal{NP}

Die Klasse \mathcal{NP} ist die Menge aller Sprachen L (Entscheidungsprobleme), für die eine nichtdeterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial beschränkt ist, d.h. es existiert ein Polynom p mit

$$T_{\mathcal{M}}(n) \leq p(n)$$
.

 $(\mathcal{NP}$ steht für nichtdeterministisch polynomial.)

Beispiel: TSP $\in \mathcal{NP}$:

Denn zu gegebenem G = (V, E), c, k und einer festen zykl. Permutation $x_1x_2 \cdots x_n$ von V kann in $O(|V| \cdot \log C)$ (wobei C die größte vorkommende Zahl ist) Schritten überprüft werden, ob

$$\{x_i, x_{i+1}\} \in E \text{ für } i = 1, \dots, n-1 \quad \text{und} \quad \sum_{i=1}^{n-1} c(\{x_i, x_i + 1\}) \le k$$

gilt.

\mathcal{P} vs. $\mathcal{N}\mathcal{P}$

Die Klasse \mathcal{P} ist die Menge aller Sprachen L (Entscheidungsprobleme), für die eine deterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial beschränkt ist.

 \leadsto Bei Eingabe einer Instanz / von Π kann die Existenz einer Lösung in polynomialer Zeit überprüft werden.

Die Klasse \mathcal{NP} ist die Menge aller Sprachen L (Entscheidungsprobleme), für die eine nichtdeterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial beschränkt ist.

Existiert für die Eingabe einer Instanz I von Π eine Lösung, dann kann die Korrektheit einer Lösung in polynomialer Zeit überprüft werden. Große Frage:

 $Ist \mathcal{P} = \mathcal{NP}?$

Große Frage der Theoretischen Informatik

- Trivialerweise gilt: $\mathcal{P} \subseteq \mathcal{NP}$ (Da jede DTM auch eine NTM ist.)
- Frage: Gilt $\mathcal{P} \subset \mathcal{NP}$ oder $\mathcal{P} = \mathcal{NP}$?
- Die Vermutung ist, dass $\mathcal{P} \neq \mathcal{N}\mathcal{P}$ gilt.

Satz.

Alle Sprachen in \mathcal{NP} sind entscheidbar.

Beweis.

- Sei L eine Sprache in \mathcal{NP} und \mathcal{M} eine zugehörige Orakel-TM.
- Für jedes Polynom p betrachte die folgende DTM:
 - Berechne Länge n der Eingabe.
 - Schreibe nacheinander jedes mögliche Orakelwort der Länge höchstens p(n) vor die Eingabe.
 - lacktriangle Überprüfe für jedes Orakelwort mit endlicher Kontrolle von \mathcal{M} .
 - Aber: Stoppe endliche Kontrolle nach p(n) Schritten.
 - Lehne Eingabe ab, wenn kein Orakelwort von der endlichen Kontrolle akzeptiert wurde.
- Mindestens eine solche DTM entscheidet L.

Große Frage der Theoretischen Informatik

- Trivialerweise gilt: $\mathcal{P} \subseteq \mathcal{NP}$ (Da jede DTM auch eine NTM ist.)
- Frage: Gilt $\mathcal{P} \subset \mathcal{NP}$ oder $\mathcal{P} = \mathcal{NP}$?
- Die Vermutung ist, dass $\mathcal{P} \neq \mathcal{N}\mathcal{P}$ gilt.
- \blacksquare Dazu betrachten wir Probleme, die zu den schwersten Problemen in \mathcal{NP} gehören.
- Dabei ist am schwersten im folgenden Sinne gemeint:
- Wenn ein schwerstes \mathcal{NP} -Problem trotzdem in \mathcal{P} liegt, so kann man folgern, dass alle \mathcal{NP} -Probleme in \mathcal{P} liegen, d.h. $\mathcal{P} = \mathcal{NP}$.
- Diese schwersten NP-Probleme sind also Kandidaten, um P und NP zu trennen.
- Es wird sich zeigen, dass alle diese schwersten \mathcal{NP} -Probleme im Wesentlichen gleich schwer sind.

Definition.

Eine polynomiale Transformation einer Sprache $L_1 \subseteq \Sigma_1^*$ in eine Sprache $L_2 \subseteq \Sigma_2^*$ ist eine Funktion $f \colon \Sigma_1^* \to \Sigma_2^*$ mit den Eigenschaften:

- es existiert eine polynomiale deterministische Turing-Maschine, die f berechnet;
- für alle $x \in \Sigma_1^*$ gilt: $x \in L_1 \Leftrightarrow f(x) \in L_2$.

Wir schreiben dann $L_1 \propto L_2$ (L_1 ist polynomial transformierbar in L_2).

Eine Sprache L heißt \mathcal{NP} -vollständig, falls gilt:

- $L \in \mathcal{NP}$ und
- für alle $L' \in \mathcal{NP}$ gilt $L' \propto L$.

Definition.

Ein Entscheidungsproblem Π_1 ist polynomial transformierbar in das Entscheidungsproblem Π_2 , wenn eine Funktion $f \colon D_{\Pi_1} \to D_{\Pi_2}$ existiert mit folgenden Eigenschaften:

- *f* ist durch einen polynomialen Algorithmus berechenbar;
- $\forall I \in D_{\Pi_1}: I \in J_{\Pi_1} \Longleftrightarrow f(I) \in J_{\Pi_2}.$

Wir schreiben dann $\Pi_1 \propto \Pi_2$.

Ein Entscheidungsproblem Π heißt \mathcal{NP} -vollständig, falls gilt:

- $\Pi \in \mathcal{NP}$ und
- für alle $\Pi' \in \mathcal{NP}$ gilt $\Pi' \propto \Pi$.

Eine polynomiale Transformation einer Sprache $L_1 \subseteq \Sigma_1^*$ in eine Sprache $L_2 \subseteq \Sigma_2^*$ ist eine Funktion $f \colon \Sigma_1^* \to \Sigma_2^*$ mit den Eigenschaften:

- es existiert eine polynomiale deterministische Turing-Maschine, die f berechnet;
- für alle $x \in \Sigma_1^*$ gilt: $x \in L_1 \Leftrightarrow f(x) \in L_2$.

Wir schreiben dann $L_1 \propto L_2$ (L_1 ist polynomial transformierbar in L_2).

Lemma.

Die Relation ∞ ist transitiv, d.h. aus $L_1 \propto L_2$ und $L_2 \propto L_3$ folgt $L_1 \propto L_3$.

Beweis. Die Hintereinanderausführung zweier polynomialer Transformationen ist wieder eine polynomiale Transformation.

Beobachtung

Korollar.

Falls $L_1, L_2 \in \mathcal{NP}, L_1 \propto L_2$ und L_1 ist \mathcal{NP} -vollständig, dann ist auch L_2 \mathcal{NP} -vollständig.

Bedeutung.

Um also zu zeigen, dass ein Entscheidungsproblem Π \mathcal{NP} -vollständig ist, gehen wir folgendermaßen vor. Wir beweisen:

- \blacksquare $\Pi \in \mathcal{NP}$ und
- $\Pi' \propto \Pi$ für ein bekanntes \mathcal{NP} -vollständiges Problem Π' .

Hindernis.

- Wir haben noch kein "bekanntes \mathcal{NP} -vollständiges Problem".
- Das erste \mathcal{NP} -vollständige Problem ist das Erfüllbarkeitsproblem SAT (satisfiability).

Sei $U = \{u_1, \dots, u_m\}$ eine Menge von booleschen Variablen.

Es heißen $u_i, \overline{u_i}$ Literale.

Eine Wahrheitsbelegung für U ist eine Funktion $t: U \to \{wahr, falsch\}$.

Eine Klausel ist ein Boolescher Ausdruck der Form

$$y_1 \vee \ldots \vee y_s$$
 mit $y_i \in \{u_1, \ldots, u_m\} \cup \{\overline{u_1}, \ldots, \overline{u_m}\}$ Literale

Problem SAT

Gegeben: Menge U von Variablen, Menge C von Klauseln über U.

Frage: Existiert eine Wahrheitsbelegung von *U*, so dass

jede Klausel in C erfüllt wird?

Beispiel:

 $U = \{u_1, u_2\}$ mit $C = \{u_1 \vee \overline{u_2}, \overline{u_1} \vee u_2\}$ ist Ja-Instanz von SAT.

Wahrheitsbelegung $t(u_1) = t(u_2) = \text{wahr erfüllt alle Klauseln in } C$.

Weitere Beispiele für SAT-Instanzen

Erfüllbar (Ja-Instanz):

$$U = \{a, b, c, d, e\}, C = \{c \lor \overline{d}, \overline{a} \lor b \lor \overline{c} \lor d \lor e, \overline{c} \lor d\}$$

eine Lösung:
$$t(a) = \text{falsch}, t(b) = t(c) = t(d) = t(e) = \text{wahr}$$

Nicht erfüllbar (Nein-Instanz):

$$U = \{a, b, c\}, C = \{a \lor b, \overline{a}, \overline{b} \lor c, \overline{c}\}$$

а	b	C	a∨b	ā	$\overline{b} \lor c$	\overline{c}
wahr	wahr	wahr	wahr	falsch	wahr	falsch
:	:	:	:	:	:	:
falsch	falsch	falsch	falsch	wahr	wahr	wahr

- Problem Π ist \mathcal{NP} -vollständig wenn
 - $\Pi \in \mathcal{NP}$ und
 - $\Pi' \propto \Pi$ für alle $\Pi' \in \mathcal{NP}$

Satz von Cook.

SAT ist \mathcal{NP} -vollständig.

- Problem Π ist \mathcal{NP} -vollständig wenn
 - $\Pi \in \mathcal{NP}$ und
 - $\Pi' \propto \Pi$ für alle $\Pi' \in \mathcal{NP}$

Satz von Cook.

SAT ist \mathcal{NP} -vollständig.

Beweis: Nächste Vorlesung!

- Problem Π ist \mathcal{NP} -vollständig wenn
 - $\Pi \in \mathcal{NP}$ und
 - $\Pi' \propto \Pi$ für alle $\Pi' \in \mathcal{NP}$
 - $\Pi' \propto \Pi$ für ein \mathcal{NP} -vollständiges Π'

Satz von Cook.

SAT ist \mathcal{NP} -vollständig.

Beweis: Nächste Vorlesung!

- Problem Π ist \mathcal{NP} -vollständig wenn
 - $\Pi \in \mathcal{NP}$ und
 - $\Pi' \propto \Pi$ für alle $\Pi' \in \mathcal{NP}$
 - $\Pi' \propto \Pi$ für ein \mathcal{NP} -vollständiges Π'

Satz von Cook.

SAT ist \mathcal{NP} -vollständig.

Beweis: Nächste Vorlesung!

- Polynomiale Transformation $\Pi' \propto \Pi$
 - Instanzen von $\Pi' \longrightarrow$ Instanzen von Π
 - in polynomialer Zeit berechenbar
 - Ja-Instanz von Π' → Ja-Instanz von Π
 Nein-Instanz von Π' → Nein-Instanz von Π