

Theoretische Grundlagen der Informatik

Vorlesung am 25.11.2021

Torsten Ueckerdt (Vertretung: Laura Merker) | 25. November 2021

Letzte Vorlesung: \mathcal{P} vs. \mathcal{NP}

Die Klasse \mathcal{P} aller Probleme, die von deterministischen Turing-Maschinen in polynomialer Zeit entschieden werden.

Ist $\mathcal{P} = \mathcal{N}\mathcal{P}$?

- Die Klasse \mathcal{NP} aller Probleme, die von nichtdeterministischen Turing-Maschinen in polynomialer Zeit entschieden werden.
- Polynomiale Transformation $\Pi' \propto \Pi$
 - Instanzen von $\Pi' \longrightarrow$ Instanzen von Π
 - in polynomialer Zeit berechenbar
 - Ja-Instanz von $\Pi' \longrightarrow$ Ja-Instanz von Π Nein-Instanz von $\Pi' \longrightarrow \text{Nein-Instanz}$ von Π
- Problem Π ist \mathcal{NP} -vollständig wenn
 - \blacksquare $\Pi \in \mathcal{NP}$ und
 - $\Pi' \propto \Pi$ für alle $\Pi' \in \mathcal{NP}$

Letzte Vorlesung: \mathcal{P} vs. \mathcal{NP}

Die Klasse \mathcal{P} aller Probleme, die von deterministischen Turing-Maschinen in polynomialer Zeit entschieden werden.

Ist $\mathcal{P} = \mathcal{N}\mathcal{P}$?

- Die Klasse \mathcal{NP} aller Probleme, die von nichtdeterministischen Turing-Maschinen in polynomialer Zeit entschieden werden.
- Polynomiale Transformation $\Pi' \propto \Pi$
 - Instanzen von $\Pi' \longrightarrow$ Instanzen von Π
 - in polynomialer Zeit berechenbar
 - Ja-Instanz von $\Pi' \longrightarrow$ Ja-Instanz von Π Nein-Instanz von $\Pi' \longrightarrow \text{Nein-Instanz}$ von Π
- Problem Π ist \mathcal{NP} -vollständig wenn
 - \blacksquare $\Pi \in \mathcal{NP}$ und
 - $\Pi' \propto \Pi$ für alle $\Pi' \in \mathcal{NP}$
 - $\Pi' \propto \Pi$ für ein \mathcal{NP} -vollständiges Π'

Letzte Vorlesung: \mathcal{P} vs. \mathcal{NP}

Die Klasse \mathcal{P} aller Probleme, die von deterministischen Turing-Maschinen in polynomialer Zeit entschieden werden.

Ist $\mathcal{P} = \mathcal{N}\mathcal{P}$?

- Die Klasse \mathcal{NP} aller Probleme, die von nichtdeterministischen Turing-Maschinen in polynomialer Zeit entschieden werden.
- Polynomiale Transformation $\Pi' \propto \Pi$
 - Instanzen von $\Pi' \longrightarrow$ Instanzen von Π
 - in polynomialer Zeit berechenbar
 - Ja-Instanz von $\Pi' \longrightarrow$ Ja-Instanz von Π Nein-Instanz von $\Pi' \longrightarrow \text{Nein-Instanz}$ von Π
- Problem Π ist \mathcal{NP} -vollständig wenn
 - \blacksquare $\Pi \in \mathcal{NP}$ und
 - $\Pi' \propto \Pi$ für alle $\Pi' \in \mathcal{NP}$
 - $\Pi' \propto \Pi$ für ein \mathcal{NP} -vollständiges Π'

Satz von Cook. SAT ist \mathcal{NP} -vollständig.

Sei $U = \{u_1, \dots, u_m\}$ eine Menge von booleschen Variablen.

Es heißen u_i , $\overline{u_i}$ Literale.

Eine Wahrheitsbelegung für U ist eine Funktion $t: U \rightarrow \{wahr, falsch\}$.

Eine Klausel ist ein Boolescher Ausdruck der Form

$$y_1 \lor \ldots \lor y_s$$
 mit $y_i \in \{u_1, \ldots, u_m\} \cup \{\overline{u_1}, \ldots, \overline{u_m}\}$ Literale

Problem SAT

Gegeben: Menge *U* von Variablen, Menge *C* von Klauseln über *U*.

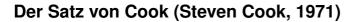
Frage: Existiert eine Wahrheitsbelegung von *U*, so dass

jede Klausel in C erfüllt wird?

Beispiel:

 $U = \{u_1, u_2\}$ mit $C = \{u_1 \vee \overline{u_2}, \overline{u_1} \vee u_2\}$ ist Ja-Instanz von SAT.

Wahrheitsbelegung $t(u_1) = t(u_2) = \text{wahr erfüllt alle Klauseln in } C$.

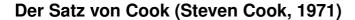


Satz von Cook.

SAT ist \mathcal{NP} -vollständig.

Problem SAT ist \mathcal{NP} -vollständig wenn

- SAT $\in \mathcal{NP}$ und
- für alle $\Pi \in \mathcal{NP}$ gilt $\Pi \propto \mathsf{SAT}$.



Satz von Cook.

SAT ist \mathcal{NP} -vollständig.

Problem SAT ist \mathcal{NP} -vollständig wenn

- SAT $\in \mathcal{NP}$ und
- für alle $\Pi \in \mathcal{NP}$ gilt $\Pi \propto \mathsf{SAT}$.

Beweis:

- SAT $\in \mathcal{NP}$ ist erfüllt: Für eine Instanz I von SAT (mit n Klauseln und m Variablen) und einer Wahrheitsbelegung t kann in $O(m \cdot n)$ überprüft werden, ob t alle Klauseln erfüllt, d.h. ob I eine Ja-Instanz ist.
- Wir müssen zeigen, dass für jede Sprache $L \in \mathcal{NP}$ gilt: $L \propto L_{SAT}$, wobei $L_{SAT} = L[SAT, s]$ für ein geeignetes Kodierungsschema s ist.

Wir müssen zeigen, dass für jede Sprache $L \in \mathcal{NP}$ gilt: $L \propto L_{SAT}$, wobei $L_{SAT} = L[SAT, s]$ für ein geeignetes Kodierungsschema s ist.

Dazu muss für jede Sprache $L \in \mathcal{NP}$ eine polynomiale Transformation f_l angegeben werden, für die gilt, dass für alle $x \in \Sigma^*$ (Σ Alphabet zu L) gilt

$$x \in L \iff f_L(x) \in L_{SAT}.$$

Beweis: das Setup

Wir müssen zeigen, dass für jede Sprache $L \in \mathcal{NP}$ gilt: $L \propto L_{SAT}$, wobei $L_{SAT} = L[SAT, s]$ für ein geeignetes Kodierungsschema s ist.

Dazu muss für jede Sprache $L \in \mathcal{NP}$ eine polynomiale Transformation f_l angegeben werden, für die gilt, dass für alle $x \in \Sigma^*$ (Σ Alphabet zu L) gilt

$$x \in L \iff f_L(x) \in L_{SAT}$$
.

- Wir benutzen, dass es eine NTM \mathcal{M} zu L gibt, die L in polynomialer Laufzeit entscheidet.
- \mathcal{M} sei gegeben durch $(Q, \Sigma, \sqcup, \Gamma, q_0, \delta, q_J, q_N)$ und akzeptiere die Sprache $L = L_{\mathcal{M}}$ in der Laufzeit $T_{\mathcal{M}}(n) \leq p(n)$, wobei p ein Polynom ist mit (O.B.d.A.) $p(n) \geq n$.

Ziel

Gegeben: $x \in \Sigma^*$

Konstruiere SAT-Instanz, die genau dann erfüllbar ist, wenn \mathcal{M} die Eingabe x akzeptiert

Beweis: das Setup

Ziel

Gegeben: $x \in \Sigma^*$

Konstruiere SAT-Instanz, die genau dann erfüllbar ist, wenn \mathcal{M} die Eingabe x akzeptiert

- Sei $x \in \Sigma^*$ eine Eingabe mit n := |x|.
- Bei akzeptierender Berechnung von \mathcal{M} für x ist die Anzahl der Berechnungsschritte $\leq p(n)$
- Dann sind höchstens die Zellen -p(n) bis p(n) + 1 des Bandes beteiligt

Beweis: das Setup

Ziel

Gegeben: $x \in \Sigma^*$

Konstruiere SAT-Instanz, die genau dann erfüllbar ist, wenn \mathcal{M} die Eingabe x akzeptiert

- Sei $x \in \Sigma^*$ eine Eingabe mit n := |x|.
- Bei akzeptierender Berechnung von \mathcal{M} für x ist die Anzahl der Berechnungsschritte $\leq p(n)$
- Dann sind höchstens die Zellen -p(n) bis p(n) + 1 des Bandes beteiligt

Die Berechnung der deterministischen Stufe ist zu jedem Zeitpunkt eindeutig festgelegt durch:

- den jeweiligen Bandinhalt dieser -p(n) bis p(n) + 1 Plätze,
- den Zustand der endlichen Kontrolle
- und der Position des Lese-/Schreibkopfs.

Im Folgenden beschreiben wir Bandinhalt, Zustand der endlichen Kontrolle und Position des Lese-/Schreibkopfs vollständig durch Variablen einer Instanz von SAT.

- Bezeichne die Zustände aus Q durch $q_0, q_1 = q_J, q_2 = q_N, q_3, \dots, q_r$
- Bezeichne die Symbole aus Γ durch $s_0 = \sqcup, s_1, \ldots, s_\ell$ mit $|\Gamma| = \ell + 1$.

Es gibt drei Typen von Variablen in der zugehörigen SAT-Instanz.

Variable	Gültigkeitsbereich	Bedeutung
Q[i,k]	$0 \le i \le p(n)$ $0 \le k \le r$	zum Zeitpunkt i der Überprüfungsphase ist ${\mathcal M}$ in Zustand q_k
H[i,j]	$0 \le i \le p(n)$ -p(n) \le j \le p(n) + 1	zum Zeitpunkt <i>i</i> der Überprüfungsphase ist der Lese-/Schreibkopf an Position <i>j</i> des Bandes
S[i,j,k]	$0 \le i \le p(n)$ $-p(n) \le j \le p(n) + 1$ $0 \le k \le \ell$	zum Zeitpunkt i der Überprüfungsphase ist der Bandinhalt an Position j das Symbol s_k

- Jede Berechnung von \mathcal{M} induziert eine Wahrheitsbelegung dieser Variablen.
- Konvention: Falls \mathcal{M} vor dem Zeitpunkt p(n) stoppt, bleibt \mathcal{M} in allen folgenden Zuständen in demselben Zustand und der Bandinhalt unverändert.

Variable	Gültigkeitsbereich	Bedeutung
Q[i,k]	$0 \le i \le p(n)$ $0 \le k \le r$	zum Zeitpunkt i der Überprüfungsphase ist ${\mathcal M}$ in Zustand q_k
H[i,j]	$0 \le i \le p(n)$ -p(n) \le j \le p(n) + 1	zum Zeitpunkt <i>i</i> der Überprüfungsphase ist der Lese-/Schreibkopf an Position <i>j</i> des Bandes
S[i,j,k]	$0 \le i \le p(n)$ $-p(n) \le j \le p(n) + 1$ $0 \le k \le \ell$	zum Zeitpunkt i der Überprüfungsphase ist der Bandinhalt an Position j das Symbol s_k

Beweis: Konstruktion der Variablen

Der Bandinhalt zum Zeitpunkt 0 der Überprüfungsphase sei (bis auf blanks):

- Eingabe x auf Platz 1 bis n
- Orakelwort w auf Platz -1 bis -|w|

Variable	Gültigkeitsbereich	Bedeutung
Q[i,k]	$0 \le i \le p(n)$ $0 \le k \le r$	zum Zeitpunkt i der Überprüfungsphase ist ${\mathcal M}$ in Zustand q_k
H[i,j]	$0 \le i \le p(n)$ -p(n) \le j \le p(n) + 1	zum Zeitpunkt <i>i</i> der Überprüfungsphase ist der Lese-/Schreibkopf an Position <i>j</i> des Bandes
S[i,j,k]	$0 \le i \le p(n)$ $-p(n) \le j \le p(n) + 1$ $0 \le k \le \ell$	zum Zeitpunkt i der Überprüfungsphase ist der Bandinhalt an Position j das Symbol s_k

Beweis: Zielsetzung

Eine beliebige Wahrheitsbelegung muss nicht notwendigerweise eine Berechnung induzieren (zum Beispiel $Q[i, k] = Q[i, \ell]$ für $k \neq \ell$).

Also konstruiere Transformation f_L , die Klauseln einführt, sodass äquivalent ist:

- Für Eingabe x gibt es eine akzeptierende Berechnung, deren Überprüfungsphase höchstens p(n) Zeit benötigt, und deren Orakel höchstens Länge p(n) hat.
- **E**s gibt eine erfüllende Belegung für die SAT-Instanz $f_L(x)$.

Beweis: Zielsetzung

Eine beliebige Wahrheitsbelegung muss nicht notwendigerweise eine Berechnung induzieren (zum Beispiel $Q[i, k] = Q[i, \ell]$ für $k \neq \ell$).

Also konstruiere Transformation f_L , die Klauseln einführt, sodass äquivalent ist:

- Für Eingabe x gibt es eine akzeptierende Berechnung, deren Überprüfungsphase höchstens p(n) Zeit benötigt, und deren Orakel höchstens Länge p(n) hat.
- **E**s gibt eine erfüllende Belegung für die SAT-Instanz $f_I(x)$.

Damit können wir dann schließen:

 $x \in L \Leftrightarrow$ es existiert akzeptierende Berechnung von \mathcal{M} bei Eingabe x

- \Leftrightarrow es existiert akzeptierende Berechnung von \mathcal{M} bei Eingabe x mit höchstens p(n) Schritten in der Überprüfungsphase und einem Orakel w der Länge $|w| \le p(n)$
- \Leftrightarrow es existiert erfüllende Wahrheitsbelegung für Klauselmenge $f_{I}(x)$

Beweis: Konstruktion der Klauseln — Übersicht

Klauselgruppe	Einschränkung / Bedeutung
G_1	Zum Zeitpunkt i ist ${\mathcal M}$ in genau einem Zustand.
G_2	Zum Zeitpunkt i hat der Lese-/Schreibkopf genau eine Position.
G_3	Zum Zeitpunkt i enthält jede Bandstelle genau ein Symbol aus Γ .
G_4	Festlegung der Anfangskonfiguration zum Zeitpunkt 0: \mathcal{M} ist im Zustand q_0 , der Lese-/Schreibkopf steht an Position 1 des Bandes, in den Zellen 1 bis n steht das Wort $x = s_{k_1} \cdots s_{k_n}$
G_5	Zum Zeitpunkt $p(n)$ hat ${\mathcal M}$ den Zustand q_J erreicht.
G_6	Zu jedem Zeitpunkt i folgt die Konfiguration von $\mathcal M$ zum Zeitpunkt $i+1$ aus einer einzigen Anwendung von δ aus der Konfiguration von $\mathcal M$ zum Zeitpunkt i .

Zum Zeitpunkt i ist \mathcal{M} in genau einem Zustand.

Erinnerung:

Variablen Q[i, k] bedeuten: zum Zeitpunkt i ist M in Zustand q_k

Konstruktion:

lacktriangle Zu jedem Zeitpunkt i ist \mathcal{M} in mindestens einem Zustand

$$Q[i, 0] \lor ... \lor Q[i, r]$$
 für $0 \le i \le p(n)$

Zu jedem Zeitpunkt i ist M in nicht mehr als einem Zustand

$$\overline{Q[i,j]} \vee \overline{Q[i,j']}$$
 für $0 \le i \le p(n), \ 0 \le j < j' \le r$

Zum Zeitpunkt i hat der Lese-/Schreibkopf genau eine Position

Erinnerung:

Variablen H[i, j] bedeuten: zum Zeitpunkt i ist der Kopf an Position j des Bandes

Konstruktion:

Zu jedem Zeitpunkt i hat der Lese-/Schreibkopf mindestens eine Position

$$H[i, -p(n)] \lor ... \lor H[i, p(n) + 1]$$
 für $0 \le i \le p(n)$

Zu jedem Zeitpunkt i hat der Lese-/Schreibkopf höchstens eine Position

$$\overline{H[i,j]} \vee \overline{H[i,j']}$$
 für $0 \le i \le p(n), -p(n) \le j < j' \le p(n) + 1$

Zum Zeitpunkt i enthält jede Bandstelle genau ein Symbol

Erinnerung:

Variablen S[i, j, k] bedeuten: zum Zeitpunkt i steht an Position j des Bandes das Symbol s_k

Konstruktion:

Zu jedem Zeitpunkt i enthält Bandstelle j mindestens ein Symbol

$$S[i, j, 0] \vee S[i, j, 1] \vee ... \vee S[i, j, \ell]$$
 für $0 \le i \le p(n), -p(n) \le j \le p(n) + 1$

Zu jedem Zeitpunkt i enthält Bandstelle j höchstens ein Symbol

$$\overline{S[i,j,k]} \vee \overline{S[i,j,k']} \quad \text{für } 0 \le i \le p(n), \ -p(n) \le j \le p(n) + 1, \ 0 \le k < k' \le \ell$$

Festlegung der Anfangskonfiguration zum Zeitpunkt 0

Konstruktion:

• \mathcal{M} ist im Zustand q_0

der Lese-/Schreibkopf steht an Position 1 des Bandes

• in den Zellen 1 bis *n* steht das Wort $x = s_{k_1} \dots s_{k_n}$

$$\begin{cases} S[0, 0, 0], S[0, 1, k_1], \dots, S[0, n, k_n] & \text{für Eingabe } x = s_{k_1} \dots s_{k_n} \\ S[0, n+1, 0], \dots, S[0, p(n)+1, 0] & \text{für rechts der Eingabe} \end{cases}$$

Klauselgruppe 5:

Zum Zeitpunkt p(n) hat \mathcal{M} den Zustand q_J erreicht.

Konstruktion:

Q[p(n), 1]

Zu jedem Zeitpunkt i folgt die Konfiguration von \mathcal{M} zum Zeitpunkt i+1 aus einer einzigen Anwendung von δ aus der Konfiguration von \mathcal{M} zum Zeitpunkt i.

Wir unterteilen Klauselgruppe G_6 in zwei Teilgruppen $G_{6,1}$, $G_{6,2}$.

- G_{6,1}: Falls M zum Zeitpunkt i an der Position j das Symbol s_k hat und der Lese-/Schreibkopf nicht an der Position j steht, dann hat M auch zum Zeitpunkt i + 1 an Position j das Symbol s_k.
- $G_{6,2}$:

 Der Wechsel von einer Konfiguration zur nächsten entspricht tatsächlich δ .

Falls $\mathcal M$ zum Zeitpunkt i an der Position j das Symbol s_k hat und der Lese-/Schreibkopf nicht an der Position j steht, dann hat $\mathcal M$ auch zum Zeitpunkt i+1 an Position j das Symbol s_k .

Konstruktion:

$$\left(S[i,j,k] \wedge \overline{H[i,j]}\right) \Longrightarrow S[i+1,j,k] \qquad \text{für } \begin{cases} 0 \le i < p(n) \\ -p(n) \le j \le p(n) + 1 \\ 0 \le k \le \ell \end{cases}$$

Dies ergibt die Klausel

$$\overline{S[i,j,k]} \vee H[i,j] \vee S[i+1,j,k] \qquad \text{für} \begin{cases} 0 \le i < p(n) \\ -p(n) \le j \le p(n) + 1 \\ 0 \le k \le \ell \end{cases}$$

Der Wechsel von einer Konfiguration zur nächsten entspricht tatsächlich δ .

• Sei
$$\delta(q_a, s_u) = (q_b, s_v, d), d \in \{-1, 0, 1\}$$

(steht für L,N,R)

Konstruktion:

$$(H[i,j] \land Q[i,a] \land S[i,j,u]) \Rightarrow H[i+1,j+d]$$

und
$$(H[i,j] \land Q[i,a] \land S[i,j,u]) \Rightarrow Q[i+1,b]$$

und
$$(H[i,j] \land Q[i,a] \land S[i,j,u]) \Rightarrow S[i+1,j,v]$$

Dies ergibt folgende Klauseln

$$\overline{H[i,j]} \vee \overline{Q[i,a]} \vee \overline{S[i,j,u]} \vee H[i+1,j+d]$$

$$\overline{H[i,j]} \vee \overline{Q[i,a]} \vee \overline{S[i,j,u]} \vee Q[i+1,b]$$

$$\overline{H[i,j]} \vee \overline{Q[i,a]} \vee \overline{S[i,j,u]} \vee S[i+1,j,v]$$

$$für $0 \le i < p(n), -p(n) \le j \le p(n)+1, 0 \le a,b \le r, 0 \le u,v \le \ell$$$

- Wir beweisen, dass SAT NP-vollständig ist.
- Für jede beliebige aber feste Sprache L ∈ NP konstruieren wir eine polynomiale Reduktion L ∝ L_{SAT}, d.h.
 - wir konstruieren eine Abbildung $f_L: \Sigma^* \to D_{SAT}$
 - so dass für alle $x \in \Sigma^*$ gilt: $x \in L \Leftrightarrow f_L(x) \in J_{SAT}$
 - und f_L polynomial berechenbar ist.

- Wir beweisen, dass SAT NP-vollständig ist.
- Für jede beliebige aber feste Sprache L ∈ NP konstruieren wir eine polynomiale Reduktion L ∝ L_{SAT}, d.h.
 - wir konstruieren eine Abbildung $f_L: \Sigma^* \to D_{SAT}$
 - so dass für alle $x \in \Sigma^*$ gilt: $x \in L \Leftrightarrow f_L(x) \in J_{SAT}$
 - und f_L polynomial berechenbar ist.
- Wir betrachten eine NTM \mathcal{M} die L entscheidet.
- Wir betrachten Polynom p(n) das die Laufzeit von \mathcal{M} beschränkt.
- Für beliebiges $x \in \Sigma^*$ konstruieren wir $f_L(x)$ mit Variablen Q[i,j], H[i,j], S[i,j,k] und Klauselmenge $C := G_1 \cup G_2 \cup \cdots \cup G_6$.

- Wir beweisen, dass SAT \mathcal{NP} -vollständig ist.
- Für jede beliebige aber feste Sprache $L \in \mathcal{NP}$ konstruieren wir eine polynomiale Reduktion $L \propto L_{SAT}$, d.h.
 - wir konstruieren eine Abbildung $f_L: \Sigma^* \to D_{SAT}$
 - so dass für alle $x \in \Sigma^*$ gilt: $x \in L \Leftrightarrow f_L(x) \in J_{SAT}$
 - und f_L polynomial berechenbar ist.
- Wir betrachten eine NTM \mathcal{M} die L entscheidet.
- Wir betrachten Polynom p(n) das die Laufzeit von \mathcal{M} beschränkt.
- Für beliebiges $x \in \Sigma^*$ konstruieren wir $f_L(x)$ mit Variablen Q[i,j], H[i,j], S[i,j,k] und Klauselmenge $C := G_1 \cup G_2 \cup \cdots \cup G_6$.

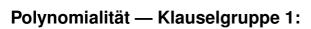
$$x \in L \implies egin{array}{ll} \exists & \text{akzeptierende} \\ & \text{Berechnung von } \mathcal{M} & \text{für} \\ & \text{Eingabe } x \\ & \exists & \text{Wahrheitsbelegung die} \\ & \text{alle Klauseln in } \mathcal{C} & \text{erfüllt.} \\ \end{array}$$

- Wir beweisen, dass SAT \mathcal{NP} -vollständig ist.
- Für jede beliebige aber feste Sprache L ∈ NP konstruieren wir eine polynomiale Reduktion L ∝ L_{SAT}, d.h.
 - wir konstruieren eine Abbildung $f_L: \Sigma^* \to D_{SAT}$
 - so dass für alle $x \in \Sigma^*$ gilt: $x \in L \Leftrightarrow f_L(x) \in J_{SAT}$
 - und f_L polynomial berechenbar ist.
- Wir betrachten eine NTM \mathcal{M} die L entscheidet.
- Wir betrachten Polynom p(n) das die Laufzeit von \mathcal{M} beschränkt.
- Für beliebiges $x \in \Sigma^*$ konstruieren wir $f_L(x)$ mit Variablen Q[i,j], H[i,j], S[i,j,k] und Klauselmenge $C := G_1 \cup G_2 \cup \cdots \cup G_6$.

$$x \in L \iff$$
 Berechnung von \mathcal{M} für \iff \exists Wahrheitsbelegung die alle Klauseln in C erfüllt.

Polynomialität der Transformation

Wir schätzen die Anzahl der Literale in den Klauselgruppen ab.



Zum Zeitpunkt i ist \mathcal{M} in genau einem Zustand.

Konstruktion:

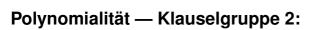
lacktriangle Zu jedem Zeitpunkt *i* ist \mathcal{M} in mindestens einem Zustand

$$Q[i, 0] \lor ... \lor Q[i, r]$$
 für $0 \le i \le p(n)$

lacktriangle Zu jedem Zeitpunkt *i* ist \mathcal{M} in nicht mehr als einem Zustand

$$\overline{Q[i,j]} \vee \overline{Q[i,j']}$$
 für $0 \le i \le p(n), \ 0 \le j < j' \le r$

$$(r+1)\cdot(p(n)+1)+2\cdot(p(n)+1)\frac{1}{2}r(r+1)$$



Zum Zeitpunkt i hat der Lese-/Schreibkopf genau eine Position

Konstruktion:

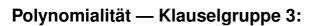
Zum Zeitpunkt i hat der Lese-/Schreibkopf mindestens eine Position

$$H[i, -p(n)] \lor ... \lor H[i, p(n) + 1]$$
 für $0 \le i \le p(n)$

Zum Zeitpunkt i hat der Lese-/Schreibkopf höchstens eine Position

$$\overline{H[i,j]} \vee \overline{H[i,j']}$$
 für $0 \le i \le p(n), -p(n) \le j < j' \le p(n) + 1$

$$(2p(n)+2)\cdot(p(n)+1)+2\cdot(p(n)+1)\frac{1}{2}(2p(n)+1)(2p(n)+2)$$



Zum Zeitpunkt i enthält jede Bandstelle genau ein Symbol

Konstruktion:

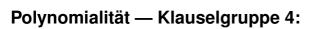
Zum Zeitpunkt i enthält jede Bandstelle mindestens ein Symbol

$$S[i, j, 0] \vee S[i, j, 1] \vee ... \vee S[i, j, \ell]$$
 für $0 \le i \le p(n), -p(n) \le j \le p(n) + 1$

Zum Zeitpunkt i enthält jede Bandstelle höchstens ein Symbol

$$\overline{S[i,j,k]} \vee \overline{S[i,j,k']} \quad \text{für } 0 \le i \le p(n), \ -p(n) \le j \le p(n) + 1, \ 0 \le k < k' \le \ell$$

$$(\ell+1)\cdot(p(n)+1)(2p(n)+2)+2\cdot(p(n)+1)(2p(n)+2)\frac{1}{2}\ell(\ell+1)$$



Festlegung der Anfangskonfiguration zum Zeitpunkt 0

• \mathcal{M} ist im Zustand q_0

der Lese-/Schreibkopf steht an Position 1 des Bandes

• in den Zellen 1 bis *n* steht das Wort $x = s_{k_1} \dots s_{k_n}$

$$\begin{cases} S[0,0,0], S[0,1,k_1], \dots, S[0,n,k_n] & \text{für Eingabe } x = s_{k_1} \dots s_{k_n} \\ S[0,n+1,0], \dots, S[0,p(n)+1,0] & \text{für rechts der Eingabe} \end{cases}$$

$$2 + (n+1) + (p(n) + 1 - n)$$

Polynomialität — Klauselgruppe 5:

Bis zum Zeitpunkt p(n) hat M den Zustand q_J erreicht.

Konstruktion:

Q[p(n), 1]

Abschätzung:

1

Polynomialität — Klauselgruppe 6,1:

Falls \mathcal{M} zum Zeitpunkt i an der Position j das Symbol s_k hat und der Lese-/Schreibkopf nicht an der Position j steht, dann hat \mathcal{M} auch zum Zeitpunkt i+1 an Position j das Symbol s_k . Konstruktion:

$$\left(S[i,j,k] \wedge \overline{H[i,j]}\right) \Longrightarrow S[i+1,j,k] \qquad \text{für } \begin{cases} 0 \le i < p(n) \\ -p(n) \le j \le p(n) + 1 \\ 0 \le k \le \ell \end{cases}$$

Dies ergibt die Klausel

$$\overline{S[i,j,k]} \vee H[i,j] \vee S[i+1,j,k] \qquad \text{für } \begin{cases} 0 \le i < p(n) \\ -p(n) \le j \le p(n) + 1 \\ 0 \le k \le \ell \end{cases}$$

$$3 \cdot p(n)(2p(n) + 2)(\ell + 1)$$

Der Wechsel von einer Konfiguration zur nächsten entspricht tatsächlich δ .

• Sei $\delta(q_a, s_u) = (q_b, s_v, d), d \in \{-1, 0, 1\}$

(steht für L,N,R)

$$\overline{H[i,j]} \vee \overline{Q[i,a]} \vee \overline{S[i,j,u]} \vee H[i+1,j+d]$$

$$\overline{H[i,j]} \vee \overline{Q[i,a]} \vee \overline{S[i,j,u]} \vee Q[i+1,b]$$

$$\overline{H[i,j]} \vee \overline{Q[i,a]} \vee \overline{S[i,j,u]} \vee S[i+1,j,v]$$

$$für $0 \le i < p(n), -p(n) \le j \le p(n)+1, 0 \le a,b \le r, 0 \le u,v \le \ell$$$

Abschätzung:

$$4 \cdot 3 \cdot p(n)(2p(n) + 2)(r + 1)(\ell + 1)$$

Wir schätzen die Anzahl der Literale in den Klauselgruppen ab.

- $G_1: (p(n)+1)(r+1)^2$
- $G_2: 4(p(n)+1)^3$
- G_3 : $2(p(n)+1)^2(\ell+1)^2$
- $G_4: p(n) + 4$
- G₅: 1
- $G_6: \underbrace{p(n)(\ell+1)(2p(n)+2)\cdot 3}_{G_{6,1}} + \underbrace{p(n)(p(n)+2)(r+1)(\ell+1)\cdot 3\cdot 4}_{G_{6,2}}$

Wir schätzen die Anzahl der Literale in den Klauselgruppen ab.

- $G_1: (p(n)+1)(r+1)^2$
- G_2 : $4(p(n)+1)^3$
- G_3 : $2(p(n)+1)^2(\ell+1)^2$
- $G_4: p(n) + 4$
- G₅: 1

•
$$G_6$$
: $\underbrace{p(n)(\ell+1)(2p(n)+2)\cdot 3}_{G_{6,1}} + \underbrace{p(n)(p(n)+2)(r+1)(\ell+1)\cdot 3\cdot 4}_{G_{6,2}}$

- r und ℓ sind Konstanten, die durch \mathcal{M} (und damit durch L) induziert werden
- p(n) ist ein Polynom in n

Wir schätzen die Anzahl der Literale in den Klauselgruppen ab.

- $G_1: (p(n)+1)(r+1)^2$
- $G_2: 4(p(n)+1)^3$
- G_3 : $2(p(n)+1)^2(\ell+1)^2$
- $G_4: p(n) + 4$
- G₅: 1

•
$$G_6$$
: $\underbrace{p(n)(\ell+1)(2p(n)+2)\cdot 3}_{G_{6,1}} + \underbrace{p(n)(p(n)+2)(r+1)(\ell+1)\cdot 3\cdot 4}_{G_{6,2}}$

- Also sind alle Größen polynomial in *n*.
- Die angegebene Funktion f_L ist damit eine polynomiale Transformation von L nach L_{SAT} .

Der Satz von Cook im Rückblick:

Satz von Cook.

SAT ist \mathcal{NP} -vollständig.

Beweisidee:

- Zu gegebener Sprache $L \in \mathcal{NP}$ und Eingabe $x \in \Sigma^*$ konstruiere eine SAT-Instanz $f_L(x) \in D_{SAT}$.
- Variablen der SAT-Instanz kodieren mögliche Zustände der NTM zu verschiedenen Zeitpunkten.
- Klauseln der SAT-Instanz garantieren
 - sinnvolle Zustandsübergänge, so wie von der NTM definiert
 - Erfüllbarkeit genau dann, wenn die NTM akzeptiert
- Dazu brauchen wir nur polynomial viele Variablen und Klauseln.

Satz von Cook.

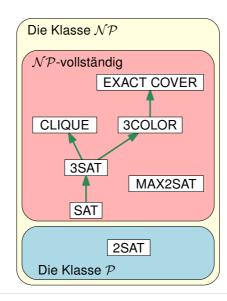
SAT ist \mathcal{NP} -vollständig.

Damit haben wir gezeigt:

- SAT gehört zu den schwersten Problemen in \mathcal{NP} .
- Nönnte man SAT in polynomialer Zeit lösen, so könnte man alle Probleme in \mathcal{NP} in polynomialer Zeit lösen.
- Lässt sich SAT in polynomialer Zeit auf ein Problem Π transformieren, so muss Π \mathcal{NP} -vollständig sein.

Der Plan

- 3SAT ist \mathcal{NP} -vollständig
 - \rightsquigarrow 3SAT $\in \mathcal{NP}$
- \blacksquare 2SAT ist in \mathcal{P}
- MAX2SAT istNP-vollständig→ Übung
- CLIQUE ist
 NP-vollständig
 ⇔ CLIQUE ∈ NP
 ⇒ 3SAT ∝ CLIQUE



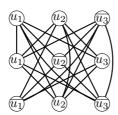
- 3COLOR ist NP-vollständig
 → 3COLOR ∈ NP
 - \rightsquigarrow 3SAT \propto 3COLOR
- EXACT COVER ist
 NP-vollständig
 - \leadsto EXACT COVER $\in \mathcal{NP}$
 - **→ 3COLOR** ∝ EXACT COVER

Eine **Clique** in einem Graphen G = (V, E) ist eine Menge $V' \subseteq V$ so dass für alle $i, j \in V', i \neq j$, gilt: $\{i, j\} \in E$.

Problem CLIQUE

Gegeben: Graph G = (V, E) und ein Parameter $K \le |V|$

Frage: Gibt es in *G* eine Clique der Größe mindestens *K*?



Satz.

Das Problem CLIQUE ist \mathcal{NP} -vollständig.

CLIQUE $\in \mathcal{NP}$:

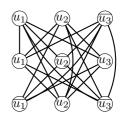
- Für eine gegebene Menge $V' \subseteq V$ kann in polynomieller Zeit überprüft werden, ob
 - für alle $i, j \in V'$, $i \neq j$ gilt: $\{i, j\} \in E$
 - $|V'| \ge K$

3SAT ∝ CLIQUE

Sei $C = \{c_1, \ldots, c_n\}$ eine 3SAT-Instanz mit $c_i = x_{i1} \lor x_{i2} \lor x_{i3}$ und $x_{ij} \in \{u_1, \ldots, u_m, \overline{u_1}, \ldots, \overline{u_m}\}.$

Wir transformieren C in eine CLIQUE-Instanz (G = (V, E), K).

- V enthält 3n Knoten v_{ii} für $1 \le i \le n$, $1 \le j \le 3$.
- v_{ij} und $v_{k\ell}$ sind durch Kanten aus E verbunden genau dann, wenn:
 - $i \neq k$ (Literale sind in verschiedenen Klauseln) und
 - $x_{ij} \neq \overline{x_{k\ell}}$ (Literale sind gleichzeitig erfüllbar)
- Wir setzen K := n

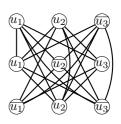


Beweis: \mathcal{NP} -Vollständigkeit von CLIQUE

- *V* enthält 3*n* Knoten v_{ij} für $1 \le i \le n$, $1 \le j \le 3$.
- v_{ij} und $v_{k\ell}$ sind durch Kanten aus E verbunden genau dann, wenn:
 - $i \neq k$ (Literale sind in verschiedenen Klauseln) und
 - $x_{ij} \neq \overline{x_{k\ell}}$ (Literale sind gleichzeitig erfüllbar)



Knotennummer	<i>V</i> ₁₁	<i>V</i> ₁₂	<i>V</i> ₁₃	<i>V</i> ₂₁	<i>V</i> ₂₂	<i>V</i> ₂₃	<i>V</i> 31	<i>V</i> 32	<i>V</i> 33
Literal	<i>U</i> ₁	U ₂	U 3	<i>u</i> ₁	U 2	Из	$\overline{u_1}$	U ₂	$\overline{u_3}$.



Beweis: \mathcal{NP} -Vollständigkeit von CLIQUE

Die Transformation kann in polynomieller Zeit berechnet werden.

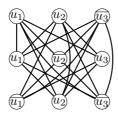
Noch zu zeigen:

- 3SAT-Instanz C ist Ja-Instanz \Leftrightarrow CLIQUE-Instanz (G, K) ist Ja-Instanz
 - C ist Ja-Instanz: Es existiert Wahrheitsbelegung t: U → {wahr, falsch}, so dass alle Klauseln in C unter t erfüllt sind.
 - (G, K) ist Ja-Instanz:
 Es existiert Knotenmenge V' ⊆ V, so dass |V'| ≥ K und alle Knoten in V' paarweise durch Kanten in G verbunden sind.

Beweis: \mathcal{NP} -Vollständigkeit von CLIQUE

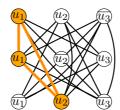
3SAT-Instanz C ist Ja-Instanz \Rightarrow CLIQUE-Instanz (G, K) ist Ja-Instanz:

- Wähle eine beliebige erfüllende Wahrheitsbelegung *t* von *C*.
- Wähle in jeder Klausel ein wahres Literal.
- Diese Knoten in *G* bilden eine Clique V' der Größe K = n.



3SAT-Instanz C ist Ja-Instanz \Rightarrow CLIQUE-Instanz (G, K) ist Ja-Instanz:

- Wähle eine beliebige erfüllende Wahrheitsbelegung *t* von *C*.
- Wähle in jeder Klausel ein wahres Literal.
- Diese Knoten in G bilden eine Clique V' der Größe K = n.



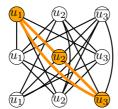
$$t(u_1) = \mathtt{wahr}$$

$$t(u_2) = \mathtt{wahr}$$

$$t(u_3) = \mathtt{falsch}$$

3SAT-Instanz C ist Ja-Instanz \Rightarrow CLIQUE-Instanz (G, K) ist Ja-Instanz:

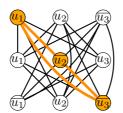
- Wähle eine beliebige erfüllende Wahrheitsbelegung *t* von *C*.
- Wähle in jeder Klausel ein wahres Literal.
- Diese Knoten in G bilden eine Clique V' der Größe K = n.



$$t(u_1) = exttt{wahr}$$
 $t(u_2) = exttt{falsch}$ $t(u_3) = exttt{falsch}$

3SAT-Instanz C ist Ja-Instanz \leftarrow CLIQUE-Instanz (G, K) ist Ja-Instanz:

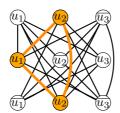
- Wähle eine Clique V' der Größe K = n in G.
- Dies ist ein Knoten pro Klausel. Wir setzen dieses Literal in *t* auf wahr.
- Dann ist $t(u) \neq t(\overline{u})$ und alle Klauseln in *C* sind erfüllt.



$$t(u_1) = \mathtt{wahr}$$
 $t(u_2) = \mathtt{falsch}$ $t(u_3) = \mathtt{falsch}$

3SAT-Instanz C ist Ja-Instanz \leftarrow CLIQUE-Instanz (G, K) ist Ja-Instanz:

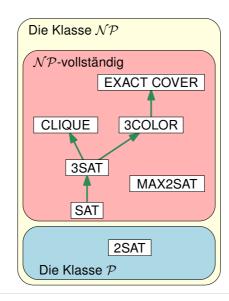
- Wähle eine Clique V' der Größe K = n in G.
- Dies ist ein Knoten pro Klausel. Wir setzen dieses Literal in *t* auf wahr.
- Dann ist $t(u) \neq t(\overline{u})$ und alle Klauseln in C sind erfüllt.



$$t(u_1) = exttt{wahr}$$
 $t(u_2) = exttt{wahr}$ $t(u_3) = exttt{beliebig}$

Der Plan

- 3SAT ist *NP*-vollständig
 - \rightsquigarrow 3SAT $\in \mathcal{NP}$
- \blacksquare 2SAT ist in \mathcal{P}
- MAX2SAT ist NP-vollständig → Übung
- CLIQUE ist
 NP-vollständig
 ⇔ CLIQUE ∈ NP
 ⇒ 3SAT ∝ CLIQUE



- 3COLOR ist NP-vollständig
 → 3COLOR ∈ NP
- EXACT COVER ist
 NP-vollständig
 - $\rightsquigarrow \mathsf{EXACT}\ \mathsf{COVER} \in \mathcal{NP}$

Das Problem COLOR

Problem COLOR

Gegeben: Graph G = (V, E) und ein Parameter $K \in \mathbb{N}$.

Frage: Gibt es eine Knotenfärbung von *G* mit höchstens

K Farben, so dass je zwei adjazente Knoten

verschiedene Farben besitzen?

3COLOR bezeichnet das Problem COLOR mit festem Parameter K = 3.

Satz.

Das Problem 3COLOR ist \mathcal{NP} -vollständig.

Beweis: \mathcal{NP} -Vollständigkeit von 3COLOR

$3COLOR \in \mathcal{NP}$

Es kann in Zeit O(|E|) überprüft werden, ob eine Färbung von Graph G = (V, E) mit drei Farben zulässig ist.

Beweis: \mathcal{NP} -Vollständigkeit von 3COLOR

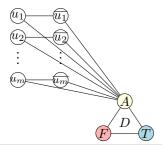
3SAT ∝ 3COLOR

- Sei *I* eine 3SAT-Instanz mit Variablen $U = \{u_1, \ldots, u_m\}$ und Klauseln $\{c_1, \ldots, c_n\}$.
- Wir konstruieren in Polynomialzeit eine 3COLOR-Instanz G = f(I).
- Es soll gelten: *I* ist erfüllbar \Leftrightarrow G = f(I) ist 3-färbbar.

- Ein Hauptdreieck *D* aus Knoten {*T*, *F*, *A*} und Kanten {{*T*, *F*}, {*F*, *A*}, {*T*, *A*}}
- Interpretation: *T*, *F*, *A* sind die drei Farben mit denen *G* gefärbt wird.
- Interpretation: $T \longleftrightarrow wahr, F \longleftrightarrow falsch$

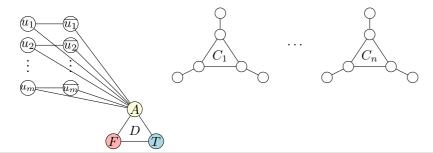
Konstruktion von 3COLOR-Instanz G = f(I)

- Ein Hauptdreieck *D* aus Knoten {*T*, *F*, *A*} und Kanten {{*T*, *F*}, {*F*, *A*}, {*T*, *A*}}
- Interpretation: *T*, *F*, *A* sind die drei Farben mit denen *G* gefärbt wird.
- Interpretation: $T \longleftrightarrow wahr, F \longleftrightarrow falsch$
- Für jede Variable $u_i \in U$ zwei Knoten $u_i, \overline{u_i}$ und ein Dreieck $\{u_i, \overline{u_i}, A\}$.
- Interpretation: Falls u_i in Farbe T, muss $\overline{u_i}$ in Farbe F.

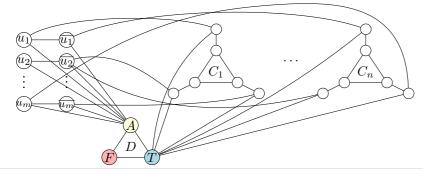


Konstruktion von 3COLOR-Instanz G = f(I)

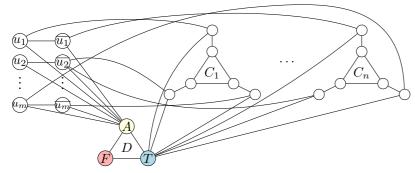
- Für jede Klausel $c_j = x \lor y \lor z$ eine Komponente C_j wie folgt:
 - *C_i* besteht aus sechs Knoten, einem "inneren Dreieck" und drei "Satelliten".



- Für jede Klausel $c_i = x \lor y \lor z$ eine Komponente C_i wie folgt:
 - *C_i* besteht aus sechs Knoten, einem "inneren Dreieck" und drei "Satelliten".
- Jeder der drei Satelliten wird mit einem der Literale x, y, z verbunden.
- Alle drei Satelliten werden mit dem Knoten T in D verbunden.



- Die Knotenanzahl von G = f(I) liegt in O(n + m).
- Deswegen ist die Transformation polynomial.



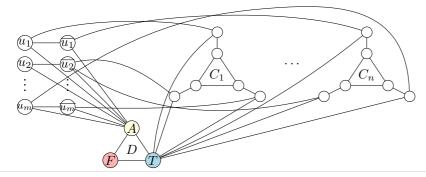
Zu zeigen:

3SAT-Instanz I ist Ja-Instanz \Leftrightarrow 3COLOR-Instanz G = f(I) ist Ja-Instanz.

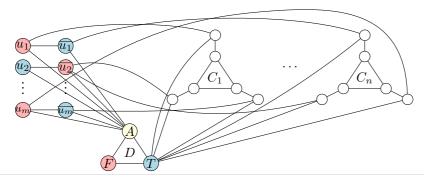
Karlsruher Institut für Technolog

Instanz / erfüllbar \Rightarrow Instanz G = f(I) 3-färbbar

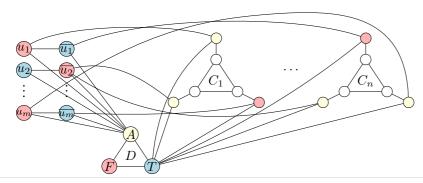
- Betrachte zulässige Wahrheitsbelegung *t* für *l*.
- Färbe wahre Literale wie Knoten T, falsche Literale wie Knoten F.



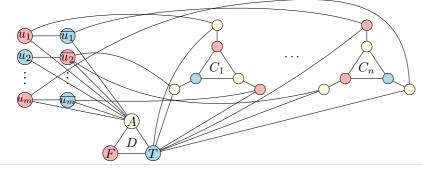
- Betrachte zulässige Wahrheitsbelegung t für 1.
- \blacksquare Färbe wahre Literale wie Knoten T, falsche Literale wie Knoten F.
- Färbe Satelliten zu genau einem wahren Literal mit F,



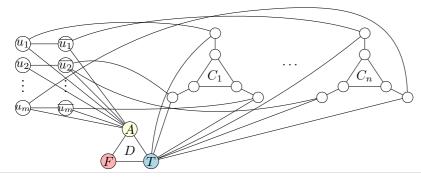
- Betrachte zulässige Wahrheitsbelegung *t* für *l*.
- Färbe wahre Literale wie Knoten T, falsche Literale wie Knoten F.
- Färbe Satelliten zu genau einem wahren Literal mit F, die beiden anderen Satelliten mit A.



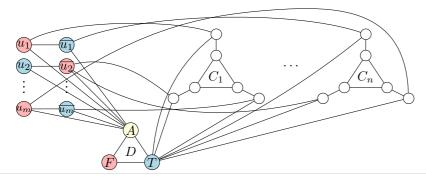
- Betrachte zulässige Wahrheitsbelegung t für I.
- Färbe wahre Literale wie Knoten *T*, falsche Literale wie Knoten *F*.
- Färbe Satelliten zu genau einem wahren Literal mit F, die beiden anderen Satelliten mit A.
- Inneres Dreieck kann dann zulässig gefärbt werden.



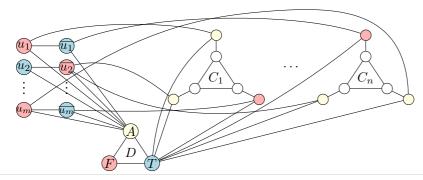
■ Betrachte 3-Färbung von G = f(I). Interpretiere $T \longleftrightarrow wahr$, $F \longleftrightarrow falsch$.



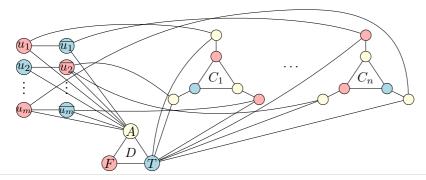
- Betrachte 3-Färbung von G = f(I). Interpretiere $T \longleftrightarrow wahr, F \longleftrightarrow falsch$.
- Färbung von Literal-Knoten induziert Wahrheitsbelegung *t* von *l*.



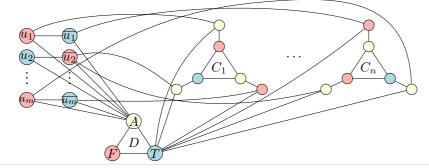
- Betrachte 3-Färbung von G = f(I). Interpretiere $T \longleftrightarrow wahr, F \longleftrightarrow falsch.$
- Färbung von Literal-Knoten induziert Wahrheitsbelegung *t* von *I*. Kein Satellit hat Farbe von *T*.



- Betrachte 3-Färbung von G = f(I). Interpretiere $T \longleftrightarrow wahr$, $F \longleftrightarrow falsch$.
- Färbung von Literal-Knoten induziert Wahrheitsbelegung t von I. Kein Satellit hat Farbe von T.
- Nicht alle Satelliten sind in Farbe von A wegen des inneren Dreiecks.



- Betrachte 3-Färbung von G = f(I). Interpretiere $T \longleftrightarrow wahr$, $F \longleftrightarrow falsch$.
- Färbung von Literal-Knoten induziert Wahrheitsbelegung t von I. Kein Satellit hat Farbe von T.
- Nicht alle Satelliten sind in Farbe von A wegen des inneren Dreiecks.
 - \Rightarrow Mindestens ein Literal pro Klausel in Farbe T, also I erfüllbar.



Testen Sie sich: Können Sie zeigen, dass folgende Probleme \mathcal{NP} -vollständig sind?

Geq.: Graph G, Zahl K

Frage: $\exists V' \subseteq V, |V'| = k$,

keine zwei Knoten

in V' verbunden?

Geg.: Graph G = (V, E)

Frage: \exists 4-Färbung von V,

keine zwei Knoten

gleichfarbig verbunden?

 Π' ∞

bekannt \mathcal{NP} -vollständig (wähle ähnlich zu Π)

 \mathcal{NP} -vollständig zu zeigen

П

beliebige Instanzen

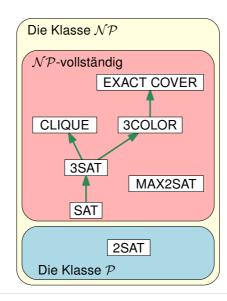
spezielle Instanzen (größer, aber noch polynomial)

Ja-Instanzen

Ja-Instanzen

Der Plan

- 3SAT ist \mathcal{NP} -vollständig
 - \rightsquigarrow 3SAT $\in \mathcal{NP}$
- \blacksquare 2SAT ist in \mathcal{P}
- MAX2SAT istNP-vollständig→ Übung
- CLIQUE ist
 NP-vollständig
 CLIQUE ∈ NP
 3SAT ∝ CLIQUE



- 3COLOR ist NP-vollständig
 → 3COLOR ∈ NP
 - \rightsquigarrow 3SAT \propto 3COLOR
- EXACT COVER ist
 NP-vollständig
 - \leadsto EXACT COVER $\in \mathcal{NP}$
 - **→ 3COLOR** ∝ EXACT COVER