

Theoretische Grundlagen der Informatik

Vorlesung am 18.11.2021

Torsten Ueckerdt | 18. November 2021

- Probleme
 - Optimierungsprobleme, Optimalwertprobleme, Entscheidungsprobleme
 - Problem Π ist Klasse D_{Π} von Instanzen I.

Eingabegrößen

- Kodierungsschema $s: D_{\Pi} \to \Sigma^*$ über Alphabet Σ^* .
- Kodierung s(I) einer Instanz I ist ein Wort aus Σ^* .
- Inputlänge |s(I)| ist Länge des Wortes.

Entscheidungsprobleme

- Ja–Instanzen J_{Π} und Nein–Instanzen N_{Π}
- Sprache $L[\Pi, s]$ der Kodierungen aller Ja–Instanzen
- TM M löst Π wenn M Sprache L[Π, s] entscheidet.

Laufzeiten

- **Teitkomplexitätsfunktion** $T_{\mathcal{M}}(n)$ von \mathcal{M} bei Eingaben der Länge n
- Die Klasse \mathcal{P} : Sprachen von \mathcal{M} mit $T_{\mathcal{M}}(n)$ polynomiell in n.
- Am Beispiel TSP: Entscheidung → Optimalwert → Optimierung

Die Nichtdeterministische Turing-Maschine (NTM)

Die deterministische TM ist von der Form $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma, s, \delta, F)$

- wobei $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$
- z.B. $\delta(q_1, a) = (q_2, b, L)$

Die nichtdeterministische TM ist von der Form $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma, s, \delta, F)$

- wobei $\delta: Q \times (\Gamma \cup \{\varepsilon\}) \to 2^{Q \times \Gamma \times \{L, N, R\}}$
- z.B. $\delta(q_1, a) = \{(q_2, b, L), (q_3, b, R), (q_1, a, N)\}$ $\delta(q_2, a) = \emptyset$ oder $\delta(q_2, \varepsilon) = \{(q_2, a, L), (q_1, \sqcup, N)\}$
- **E**s gibt also ε -Übergänge und Wahlmöglichkeiten

Die Nichtdeterministische Turing-Maschine (NTM)

Die deterministische TM ist von der Form $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma, s, \delta, F)$

- wobei $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$
- z.B. $\delta(q_1, a) = (q_2, b, L)$

Die nichtdeterministische TM ist von der Form $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma, s, \delta, F)$

- wobei $\delta: Q \times (\Gamma \cup \{\varepsilon\}) \to 2^{Q \times \Gamma \times \{L, N, R\}}$
- z.B. $\delta(q_1, a) = \{(q_2, b, L), (q_3, b, R), (q_1, a, N)\}$ $\delta(q_2, a) = \emptyset \text{ oder } \delta(q_2, \varepsilon) = \{(q_2, a, L), (q_1, \sqcup, N)\}$
- **E**s gibt also ε -Übergänge und Wahlmöglichkeiten

Eine NTM \mathcal{M} akzeptiert eine Eingabe w, wenn es mindestens eine akzeptierende Abarbeitung von w gibt.

- $L_M = \{ w \in \Sigma^* : M \text{ akzeptiert } w \}$
- → analog zu Nichtdeterminismus bei endlichen Automaten

Den Nichtdeterminismus "auslagern"

Sei \mathcal{M} eine NTM und w eine Eingabe.

- Während der Abarbeitung von w gibt es zu jedem Zeitpunkt höchstens X < ∞ mögliche Übergänge.
- Jeder mögliche (endliche) Berechnungsweg (= Abarbeitung) ist eindeutig beschrieben durch eine (endliche) Folge von Zahlen aus 1,..., X.
- Ist diese Folge schon vorher nichtdeterministisch gegeben, so k\u00f6nnte die Turing-Maschine danach deterministisch arbeiten.

Den Nichtdeterminismus "auslagern"

Sei \mathcal{M} eine NTM und w eine Eingabe.

- Während der Abarbeitung von w gibt es zu jedem Zeitpunkt höchstens X < ∞ mögliche Übergänge.
- Jeder mögliche (endliche) Berechnungsweg (= Abarbeitung) ist eindeutig beschrieben durch eine (endliche) Folge von Zahlen aus 1,..., X.
- Ist diese Folge schon vorher nichtdeterministisch gegeben, so könnte die Turing-Maschine danach deterministisch arbeiten.

Dies ist die Idee hinter der Orakel-Turing-Maschine:

- 1. Stufe: Es wird nichtdeterministisch vor die Eingabe auf das Band geschrieben.
- **2. Stufe:** Es wird deterministisch das gesamte Band bearbeitet.

Orakel-Turing-Maschine als NTM

- 1. Stufe: Es wird nichtdeterministisch vor die Eingabe auf das Band geschrieben.
 - Alphabet $\Sigma = \{0, 1\}$, Startzustand $s \in Q$, Orakelzustand $q^* \in Q$, Trennzeichen $\# \in \Gamma$
 - definiere Übergange

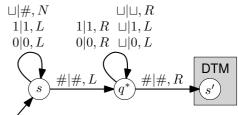
$$\delta(s,0) = \{(s,0,L)\} \text{ und } \delta(s,1) = \{(s,1,L)\}$$

$$\delta(s,\sqcup) = \{(q^*,\#,L)\}$$

$$\delta(q^*,\sqcup) = \{(q^*,1,L), (q^*,0,L), (q^*,\sqcup,R)\}$$

$$\delta(q^*,\#) = \{(s',\#,R)\}$$

- $\delta(q^*, \sqcup) = \{(q^*, 1, L), (q^*, 0, L), (q^*, \sqcup, R)\}$ $\delta(q^*, \#) = \{(s', \#, R)\}$
- s' Startzustand für 2. Stufe
- 2. Stufe: Es wird deterministisch das gesamte Band bearbeitet.
 - $|\delta(q, a)| = 1$ für alle $q \in Q \{s, q^*\}, a \in \Gamma$
 - keine Übergänge zu s oder q^*
 - kein Entfernen oder Schreiben von #



NTM und Orakel-TM

Die "klassische" nichtdeterministische Turing-Maschine:

- Übergangsfunktion δ zu Übergangsrelation erweitert
- ermöglicht Wahlmöglichkeiten und ε -Übergänge → vergleiche endliche Automaten

Die Orakel-Turing-Maschine:

- äquivalentes Modell einer nichtdeterministischen Turing-Maschine
- basiert auf nichtdeterministischem Orakel und deterministischer endlichen Kontrolle
- Dies kommt der Intuition näher und wird von uns (fast ausschliesslich) verwendet werden.

NTM und Orakel-TM

Die "klassische" nichtdeterministische Turing-Maschine:

- Übergangsfunktion δ zu Übergangsrelation erweitert
- ermöglicht Wahlmöglichkeiten und ε -Übergänge → vergleiche endliche Automaten

Die Orakel-Turing-Maschine:

- äquivalentes Modell einer nichtdeterministischen Turing-Maschine
- basiert auf nichtdeterministischem Orakel und deterministischer endlichen Kontrolle
- Dies kommt der Intuition näher und wird von uns (fast ausschliesslich) verwendet werden.

NTM und Orakel-TM akzeptieren ein Wort $x \in \Sigma^*$ genau dann, wenn es mindestens eine akzeptierende Berechnung gibt.

Die Eingabe ist ein Wort aus Σ^* , zum Beispiel eine Kodierung einer Instanz $I \in D_{\Pi}$ des Entscheidungsproblems Π .

- **1. Stufe:** Es wird ein Orakel aus Γ^* berechnet, zum Beispiel ein Lösungsbeispiel für I, also ein Indikator, warum $I \in J_{\Pi}$ gelten sollte.
- **2. Stufe:** Hier wird nun dieser Lösungsvorschlag überprüft, d.h. es wird geprüft ob $I \in J_{\Pi}$.

Beispiel TSP

- **1. Stufe:** Es wird zum Beispiel eine zykl. Permutation $x_1 x_2 \cdots x_n$ der Knotenmenge *V* vorgeschlagen.
 - D.h. $|(x_1, x_2, ..., x_n) \# G = (V, E), c, k|$ ist die Eingabe für 2. Stufe.
- **2. Stufe:** Es wird nun überprüft, ob $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_n$ eine Tour in G = (V, E) darstellt, deren Länge bezüglich c nicht größer als k ist.

Bemerkungen zur Orakel-TM

- Das Orakel kann ein beliebiges Wort aus Γ^* sein.
- Darum muss in der Überprüfungsphase (2.Stufe) geprüft werden, ob das Orakel ein zulässiges Lösungsbeispiel für die gegebene Eingabe ist.
- Ist dies der Fall, so kann die Berechnung zu diesem Zeitpunkt mit der Antwort "Ja" beendet werden.
- Ist dies nicht der Fall, so kann die Berechnung zu diesem Zeitpunkt mit der Antwort "Nein" beendet werden.
 - \rightsquigarrow gehe in Zustand q_N
- Jede Orakel-TM \mathcal{M} hat zu einer gegebenen Eingabe x eine unendliche Anzahl möglicher Berechnungen, eine zu jedem Orakel aus Γ^* .
- Endet mindestens eine in q_J , so wird x akzeptiert.

Zeitkomplexität für NTM

- Die **Zeit**, die eine nichtdeterministische Turing-Maschine \mathcal{M} benötigt, um ein Wort $x \in L_{\mathcal{M}}$ zu akzeptieren, ist definiert als die minimale Anzahl von Schritten, die \mathcal{M} in den Zustand q_{ij} überführt.
- Die **Zeitkomplexitätsfunktion** $T_M : \mathbb{Z}^+ \to \mathbb{Z}^+$ einer NTM M ist definiert durch

```
T_{\mathcal{M}}(n) := \max \left( \{1\} \cup \left\{ m : \begin{array}{l} \text{es gibt ein } x \in L_{\mathcal{M}} \text{ mit } |x| = n, \text{ so dass die Zeit,} \\ \text{die } \mathcal{M} \text{ benötigt, um } x \text{ zu akzeptieren, } m \text{ ist} \end{array} \right) \right)
```

9/28

Zeitkomplexität für NTM

- Die **Zeit**, die eine nichtdeterministische Turing-Maschine \mathcal{M} benötigt, um ein Wort $x \in L_{\mathcal{M}}$ zu akzeptieren, ist definiert als die minimale Anzahl von Schritten, die \mathcal{M} in den Zustand q_{ij} überführt.
- Die **Zeitkomplexitätsfunktion** $T_M : \mathbb{Z}^+ \to \mathbb{Z}^+$ einer NTM M ist definiert durch

$$T_{\mathcal{M}}(n) := \max \left(\{1\} \cup \left\{ m \colon \text{ es gibt ein } x \in L_{\mathcal{M}} \text{ mit } |x| = n, \text{ so dass die Zeit, } \atop \text{die } \mathcal{M} \text{ benötigt, um } x \text{ zu akzeptieren, } m \text{ ist} \right\} \right)$$

Bemerkung 1

- Zur Berechnung von $T_M(n)$ wird für jedes $x \in L_M$ mit |x| = n eine kürzeste akzeptierende Berechnung betrachtet.
- Anschließend wird von diesen kürzesten die längste bestimmt.
- Somit ergibt sich eine *worst-case* Abschätzung.

Zeitkomplexität für NTM

- Die **Zeit**, die eine nichtdeterministische Turing-Maschine \mathcal{M} benötigt, um ein Wort $x \in L_{\mathcal{M}}$ zu akzeptieren, ist definiert als die minimale Anzahl von Schritten, die \mathcal{M} in den Zustand q_{ij} überführt.
- Die **Zeitkomplexitätsfunktion** $T_M : \mathbb{Z}^+ \to \mathbb{Z}^+$ einer NTM M ist definiert durch

$$T_{\mathcal{M}}(n) := \max \left(\{1\} \cup \left\{ m \colon \text{ es gibt ein } x \in L_{\mathcal{M}} \text{ mit } |x| = n, \text{ so dass die Zeit, } \atop \text{die } \mathcal{M} \text{ benötigt, um } x \text{ zu akzeptieren, } m \text{ ist} \right\} \right)$$

Bemerkung 2

- Die Zeitkomplexität hängt nur von der Anzahl der Schritte ab, die bei einer akzeptierenden Berechnung auftreten.
- Hierbei umfasst die Anzahl der Schritte auch die Schritte der Orakelphase.
- Per Konvention ist $T_M(n) = 1$, falls es keine Eingabe x der Länge n gibt, die von \mathcal{M} akzeptiert wird.

Die Klasse \mathcal{NP}

Die Klasse \mathcal{NP} ist die Menge aller Sprachen L (Entscheidungsprobleme), für die eine nichtdeterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial beschränkt ist, d.h. es existiert ein Polynom p mit

$$T_{\mathcal{M}}(n) \leq p(n).$$

 $(\mathcal{NP}$ steht für **nichtdeterministisch polynomial**.)

Die Klasse \mathcal{NP} ist die Menge aller Sprachen L (Entscheidungsprobleme), für die eine nichtdeterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial beschränkt ist, d.h. es existiert ein Polynom p mit

$$T_{\mathcal{M}}(n) \leq p(n).$$

 $(\mathcal{NP}$ steht für **nichtdeterministisch polynomial**.)

Bemerkung

 Informell ausgedrückt gehört Π zu NP, falls Π folgende Eigenschaft hat:
 Ist die Antwort bei Eingabe eines Beispiels / von Π Ja, dann kann die Korrektheit der Antwort in polynomialer Zeit überprüft werden.

Die Klasse \mathcal{NP}

Die Klasse \mathcal{NP} ist die Menge aller Sprachen L (Entscheidungsprobleme), für die eine nichtdeterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial beschränkt ist, d.h. es existiert ein Polynom p mit

$$T_{\mathcal{M}}(n) \leq p(n)$$
.

 $(\mathcal{NP}$ steht für **nichtdeterministisch polynomial**.)

Beispiel: TSP $\in \mathcal{NP}$:

Denn zu gegebenem G = (V, E), c, k und einer festen zykl. Permutation $x_1x_2 \cdots x_n$ von V kann in $O(|V| \cdot \log C)$ (wobei C die größte vorkommende Zahl ist) Schritten überprüft werden, ob

$$\{x_i, x_{i+1}\} \in E \text{ für } i = 1, \dots, n-1 \quad \text{und} \quad \sum_{i=1}^{n-1} c(\{x_i, x_i + 1\}) \le k$$

gilt.

\mathcal{P} vs. $\mathcal{N}\mathcal{P}$

Die Klasse \mathcal{P} ist die Menge aller Sprachen L (Entscheidungsprobleme), für die eine deterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial beschränkt ist.

 \leadsto Bei Eingabe einer Instanz / von Π kann die Existenz einer Lösung in polynomialer Zeit überprüft werden.

Die Klasse \mathcal{NP} ist die Menge aller Sprachen L (Entscheidungsprobleme), für die eine nichtdeterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial beschränkt ist.

Existiert für die Eingabe einer Instanz I von Π eine Lösung, dann kann die Korrektheit einer Lösung in polynomialer Zeit überprüft werden. Große Frage:

 $Ist \mathcal{P} = \mathcal{NP}?$

Große Frage der Theoretischen Informatik

- Trivialerweise gilt: $\mathcal{P} \subseteq \mathcal{NP}$ (Da jede DTM auch eine NTM ist.)
- Frage: Gilt $\mathcal{P} \subset \mathcal{NP}$ oder $\mathcal{P} = \mathcal{NP}$?
- Die Vermutung ist, dass $\mathcal{P} \neq \mathcal{N}\mathcal{P}$ gilt.

Satz.

Alle Sprachen in \mathcal{NP} sind entscheidbar.

Beweis.

- Sei L eine Sprache in \mathcal{NP} und \mathcal{M} eine zugehörige Orakel-TM.
- Für jedes Polynom *p* betrachte die folgende DTM:
 - Berechne Länge n der Eingabe.
 - Schreibe nacheinander jedes mögliche Orakelwörter der Länge höchstens p(n) vor die Eingabe.
 - lacktriangle Überprüfe mit endlicher Kontrolle von ${\mathcal M}$ jedes Orakelwort.
 - Aber: Stoppe endliche Kontrolle nach p(n) Schritten.
 - Lehne Eingabe ab, wenn alle Orakelwörter nicht akzeptiert werden.
- Mindestens eine solche DTM entscheidet L.

Große Frage der Theoretischen Informatik

- Trivialerweise gilt: $\mathcal{P} \subseteq \mathcal{NP}$ (Da jede DTM auch eine NTM ist.)
- Frage: Gilt $\mathcal{P} \subset \mathcal{NP}$ oder $\mathcal{P} = \mathcal{NP}$?
- Die Vermutung ist, dass $\mathcal{P} \neq \mathcal{NP}$ gilt.
- lacktriangle Dazu betrachten wir Probleme, die zu den schwersten Problemen in \mathcal{NP} gehören.
- Dabei ist am schwersten im folgenden Sinne gemeint:
- Wenn ein schwerstes \mathcal{NP} -Problem trotzdem in \mathcal{P} liegt, so kann man folgern, dass alle \mathcal{NP} -Probleme in \mathcal{P} liegen, d.h. $\mathcal{P} = \mathcal{NP}$.
- Diese schwersten \mathcal{NP} -Probleme sind also Kandidaten, um \mathcal{P} und \mathcal{NP} zu trennen.
- Es wird sich zeigen, dass alle diese schwersten \mathcal{NP} -Probleme im Wesentlichen gleich schwer sind.

Definition.

Eine polynomiale Transformation einer Sprache $L_1 \subseteq \Sigma_1^*$ in eine Sprache $L_2 \subseteq \Sigma_2^*$ ist eine Funktion $f \colon \Sigma_1^* \to \Sigma_2^*$ mit den Eigenschaften:

- es existiert eine polynomiale deterministische Turing-Maschine, die f berechnet;
- für alle $x \in \Sigma_1^*$ gilt: $x \in L_1 \Leftrightarrow f(x) \in L_2$.

Wir schreiben dann $L_1 \propto L_2$ (L_1 ist polynomial transformierbar in L_2).

Eine Sprache L heißt \mathcal{NP} -vollständig, falls gilt:

- $L \in \mathcal{NP}$ und
- für alle $L' \in \mathcal{NP}$ gilt $L' \propto L$.

Definition.

Ein Entscheidungsproblem Π_1 ist polynomial transformierbar in das Entscheidungsproblem Π_2 , wenn eine Funktion $f: D_{\Pi_1} \to D_{\Pi_2}$ existiert mit folgenden Eigenschaften:

- f ist durch einen polynomialen Algorithmus berechenbar;
- $\forall I \in D_{\Pi_1}: I \in J_{\Pi_1} \Longleftrightarrow f(I) \in J_{\Pi_2}.$

Wir schreiben dann $\Pi_1 \propto \Pi_2$.

Ein Entscheidungsproblem Π heißt \mathcal{NP} -vollständig, falls gilt:

- $\Pi \in \mathcal{NP}$ und
- für alle $\Pi' \in \mathcal{NP}$ gilt $\Pi' \propto \Pi$.

Eine polynomiale Transformation einer Sprache $L_1 \subseteq \Sigma_1^*$ in eine Sprache $L_2 \subseteq \Sigma_2^*$ ist eine Funktion $f \colon \Sigma_1^* \to \Sigma_2^*$ mit den Eigenschaften:

- es existiert eine polynomiale deterministische Turing-Maschine, die f berechnet;
- für alle $x \in \Sigma_1^*$ gilt: $x \in L_1 \Leftrightarrow f(x) \in L_2$.

Wir schreiben dann $L_1 \propto L_2$ (L_1 ist polynomial transformierbar in L_2).

Lemma.

Die Relation ∞ ist transitiv, d.h. aus $L_1 \propto L_2$ und $L_2 \propto L_3$ folgt $L_1 \propto L_3$.

Beweis. Die Hintereinanderausführung zweier polynomialer Transformationen ist wieder eine polynomiale Transformation.

Beobachtung

Korollar.

Falls $L_1, L_2 \in \mathcal{NP}, L_1 \propto L_2$ und $L_1 \mathcal{NP}$ -vollständig, dann ist auch $L_2 \mathcal{NP}$ -vollständig.

Bedeutung.

Um also zu zeigen, dass ein Entscheidungsproblem Π \mathcal{NP} -vollständig ist, gehen wir folgendermaßen vor. Wir beweisen:

- \blacksquare $\Pi \in \mathcal{NP}$ und
- $\Pi' \propto \Pi$ für ein bekanntes \mathcal{NP} -vollständiges Problem Π' .

Problem.

- Wir haben noch kein "bekanntes NP-vollständiges Problem".
- Das erste \mathcal{NP} -vollständige Problem ist das Erfüllbarkeitsproblem SAT (satisfiability).

Sei $U = \{u_1, \dots, u_m\}$ eine Menge von booleschen Variablen.

Es heißen $u_i, \overline{u_i}$ Literale.

Eine Wahrheitsbelegung für U ist eine Funktion $t: U \to \{wahr, falsch\}$.

Eine Klausel ist ein Boolescher Ausdruck der Form

$$y_1 \vee \ldots \vee y_s$$
 mit $y_i \in \{u_1, \ldots, u_m\} \cup \{\overline{u_1}, \ldots, \overline{u_m}\}$ Literale

Problem SAT

Gegeben: Menge U von Variablen, Menge C von Klauseln über U.

Frage: Existiert eine Wahrheitsbelegung von *U*, so dass

jede Klausel in C erfüllt wird?

Beispiel:

 $U = \{u_1, u_2\}$ mit $C = \{u_1 \vee \overline{u_2}, \overline{u_1} \vee u_2\}$ ist Ja-Instanz von SAT.

Wahrheitsbelegung $t(u_1) = t(u_2) = \text{wahr erfüllt alle Klauseln in } C$.

Weitere Beispiele für SAT-Instanzen

Erfüllbar (Ja-Instanz):

$$U = \{a, b, c, d, e\}, C = \{c \lor \overline{d}, \overline{a} \lor b \lor \overline{c} \lor d \lor e, \overline{c} \lor d\}$$

eine Lösung:
$$t(a) = \text{falsch}, t(b) = t(c) = t(d) = t(e) = \text{wahr}$$

Nicht erfüllbar (Nein-Instanz):

$$U = \{a, b, c\}, C = \{a \lor b, \overline{a}, \overline{b} \lor c, \overline{c}\}$$

а	b	С	a∨b	ā	$\overline{b} \lor c$	\overline{c}
wahr	wahr	wahr	wahr	falsch	wahr	falsch
:	:	:	:	:	÷	:
falsch	falsch	falsch	falsch	wahr	wahr	wahr

Der Satz von Cook (Steven Cook, 1971)

- Problem Π ist \mathcal{NP} -vollständig wenn
 - $\Pi \in \mathcal{NP}$ und
 - $\Pi' \propto \Pi$ für alle $\Pi' \in \mathcal{NP}$

Satz von Cook.

SAT ist \mathcal{NP} -vollständig.

Der Satz von Cook (Steven Cook, 1971)

- Problem Π ist \mathcal{NP} -vollständig wenn
 - $\Pi \in \mathcal{NP}$ und
 - $\Pi' \propto \Pi$ für alle $\Pi' \in \mathcal{NP}$

Satz von Cook.

SAT ist \mathcal{NP} -vollständig.

Beweis: Nächste Vorlesung!

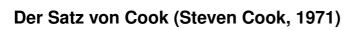
Der Satz von Cook (Steven Cook, 1971)

- Problem Π ist NP-vollständig wenn
 - $\Pi \in \mathcal{NP}$ und
 - $\Pi' \propto \Pi$ für alle $\Pi' \in \mathcal{NP}$
 - $\Pi' \propto \Pi$ für ein \mathcal{NP} -vollständiges Π'

Satz von Cook.

SAT ist \mathcal{NP} -vollständig.

Beweis: Nächste Vorlesung!



- Problem Π ist \mathcal{NP} -vollständig wenn
 - $\Pi \in \mathcal{NP}$ und
 - $\Pi' \propto \Pi$ für alle $\Pi' \in \mathcal{NP}$
 - $\Pi' \propto \Pi$ für ein \mathcal{NP} -vollständiges Π'

Satz von Cook.

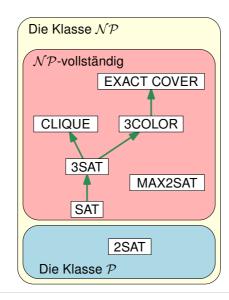
SAT ist \mathcal{NP} -vollständig.

Beweis: Nächste Vorlesung!

- Polynomiale Transformation $\Pi' \propto \Pi$
 - Instanzen von $\Pi' \longrightarrow$ Instanzen von Π
 - in polynomialer Zeit berechenbar
 - Ja-Instanz von Π' → Ja-Instanz von Π
 Nein-Instanz von Π' → Nein-Instanz von Π

Der Plan

- 3SAT ist \mathcal{NP} -vollständig
 - \rightsquigarrow 3SAT $\in \mathcal{NP}$
- 2SAT ist in \mathcal{P}
- MAX2SAT ist NP-vollständig → Übung
- CLIQUE ist
 NP-vollständig
 CLIQUE ∈ NP
 3SAT ∝ CLIQUE



- 3COLOR ist NP-vollständig
 → 3COLOR ∈ NP
- EXACT COVER ist
 NP-vollständig
 - \leadsto EXACT COVER $\in \mathcal{NP}$

Das Problem 3SAT

Problem 3SAT

Gegeben: Menge *U* von Variablen

Menge C von Klauseln über U

wobei jede Klausel genau drei Literale enthält

Frage: Existiert eine erfüllende Wahrheitsbelegung für *C*?

Das Problem 3SAT

Problem 3SAT

Gegeben: Menge *U* von Variablen

Menge C von Klauseln über U

wobei jede Klausel genau drei Literale enthält

Frage: Existiert eine erfüllende Wahrheitsbelegung für *C*?

Satz.

Das Problem 3SAT ist \mathcal{NP} -vollständig.

$3SAT \in \mathcal{NP}$:

Es existiert eine nichtdeterministische Turing-Maschine mit polynomialer Zeitkomplexitätsfunktion die in q_J hält bei Ja-Instanzen.

$3SAT \in \mathcal{NP}$:

- Es existiert eine nichtdeterministische Turing-Maschine mit polynomialer Zeitkomplexitätsfunktion die in q_J hält bei Ja-Instanzen.
- Wir konstruieren eine Orakel-Turing-Maschine:
 - Das Orakel ist eine Wahrheitsbelegung $t: U \rightarrow \{wahr, falsch\}$.
 - Die endliche Kontrolle überprüft, ob jede Klausel in *C* durch *t* erfüllt ist.
 - Wenn alle Klauseln erfüllt, gehe in q_J.
 - Wenn (mindestens) eine Klausel nicht erfüllt, gehe in q_N.
 - Laufzeit ist linear in der Größe der eingegebenen Klauselmenge C.

$3SAT \in \mathcal{NP}$:

- Es existiert eine nichtdeterministische Turing-Maschine mit polynomialer Zeitkomplexitätsfunktion die in q_J hält bei Ja-Instanzen.
- Wir konstruieren eine Orakel-Turing-Maschine:
 - Das Orakel ist eine Wahrheitsbelegung $t: U \rightarrow \{wahr, falsch\}$.
 - Die endliche Kontrolle überprüft, ob jede Klausel in C durch t erfüllt ist.
 - Wenn alle Klauseln erfüllt, gehe in q_J.
 - Wenn (mindestens) eine Klausel nicht erfüllt, gehe in q_N.
 - Laufzeit ist linear in der Größe der eingegebenen Klauselmenge C.
- Für eine feste Wahrheitsbelegung t kann in polynomialer Zeit O(|C|) überprüft werden, ob t alle Klauseln aus C erfüllt.

SAT ∝ 3SAT:

- Wir geben eine polynomiale Transformation f von SAT zu 3SAT an.
- Gegeben sei eine SAT-Instanz I

Wir konstruieren eine 3SAT-Instanz f(I) indem wir jede Klausel c in I einzeln auf Klausel(n) f(c) in f(I) abbilden:

- Besteht die Klausel $c = x_1$ aus **einem** Literal, so wird c auf $x_1 \lor x_1 \lor x_1$ abgebildet.
- Besteht die Klausel $c = x_1 \lor x_2$ aus **zwei** Literalen, so wird c auf $x_1 \lor x_2 \lor x_1$ abgebildet.
- Besteht die Klausel c aus drei Literalen, so wird c auf sich selbst abgebildet.

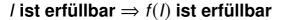
Wir konstruieren eine 3SAT-Instanz f(I) indem wir jede Klausel c in I einzeln auf Klausel(n) f(c) in f(I) abbilden:

- Besteht die Klausel $c = x_1 \lor \cdots \lor x_k$ aus k > 3 Literalen, bilde c wie folgt ab:
- Führe k-3 neue Variablen $y_{c,3}, \ldots, y_{c,k-1}$ ein.
- Bilde c auf die folgenden k 2 Klauseln ab:

• Diese Klauseln lassen sich in Zeit $O(|C| \cdot |U|)$ konstruieren.

Noch zu zeigen:

• I ist erfüllbar $\Leftrightarrow f(I)$ ist erfüllbar



- Sei die SAT-Instanz / erfüllbar.
- Wir setzen eine erfüllende Wahrheitsbelegung *t* von *l* auf *f*(*l*) fort.
 - Also wenn es Literal x in I und f(I) gibt, lasse t(x) wie gehabt.
- Wir untersuchen jede Klausel $c = x_1 \lor \cdots \lor x_k$ in I einzeln.
- Da *c* von *t* erfüllt ist, gilt für mindestens ein *i*, dass $t(x_i)$ = wahr.
- Fall $k \le 3$: Damit ist auch Klausel c in f(I) erfüllt.
- Fall k > 3: Setze für j = 3, ..., k 1

$$t(\mathbf{y}_{c,j}) = \begin{cases} \text{wahr} & \text{falls } t(\mathbf{x}_i) = \text{wahr für (mind.) ein } i \ge j \\ \text{falsch} & \text{falls } t(\mathbf{x}_i) = \text{falsch für alle } i \ge j \end{cases}$$

Diese Erweiterung erfüllt alle Klauseln in f(I), die zu c gehören.

I ist erfüllbar $\Leftarrow f(I)$ ist erfüllbar

- Sei t eine erfüllende Wahrheitsbelegung von f(I).
 - Nehme für jedes Literal x in I die Belegung t(x) wie in f(I).
- Wir untersuchen jede Klausel $c = x_1 \lor \cdots \lor x_k$ in I einzeln.
- Fall $k \le 3$: Dann ist Klausel c auch in f(I), also durch t erfüllt.
- Fall k > 3: Alle Klauseln in f(I) zu Klausel c in I sind erfüllt:

```
x_1 \lor x_2 \lor y_{c,3}

Falls t(x_1), t(x_2) = \text{falsch}, \text{dann } t(y_{c,3}) = \text{wahr}.

\overline{y_{c,j}} \lor x_j \lor y_{c,j+1}

Falls t(y_{c,j}) = \text{wahr}, t(x_j) = \text{falsch}, \text{dann } t(y_{c,j+1}) = \text{wahr}.

\overline{y_{c,k-1}} \lor x_{k-1} \lor x_k

Falls t(y_{c,k-1}) = \text{wahr}, \text{dann } t(x_{k-1}) \text{ oder } t(x_k) = \text{wahr}.
```

• Also ist $t(x_i) = \text{wahr für (mind.)}$ ein i, und demnach c erfüllt durch t.

Das Problem 2SAT

Problem 2SAT

Gegeben: Menge *U* von Variablen

Menge C von Klauseln über U

wobei jede Klausel genau zwei Literale enthält

Frage: Existiert eine erfüllende Wahrheitsbelegung für *C*?

Satz.

Das Problem 2SAT liegt in \mathcal{P} .

Beweis: Übung