

Theoretische Grundlagen der Informatik

Vorlesung am 17.11.2021

Torsten Ueckerdt | 17. November 2021

Bearbeitet eine TM \mathcal{M} eine Eingabe w, so gibt es drei Möglichkeiten:

1.
$$\mathcal M$$
 "läuft" in einen Zustand in F .

 $\rightsquigarrow \mathcal{M}$ akzeptiert w

2.
$$\mathcal{M}$$
 "läuft" in einen Übergang $\delta(q, a) = (q, a, N)$.

 $\rightsquigarrow M$ lehnt w ab

$$3. \mathcal{M}$$
 "läuft" unendlich lange.

 $\rightsquigarrow \mathcal{M}$ stoppt nicht

Für eine Turing-Maschine \mathcal{M} und Sprache L definieren wir:

${\cal M}$ hält	1. oder 2.	
\mathcal{M} akzeptiert L , (L semi-entscheidbar)	∀ <i>w</i> ∈ <i>L</i> : 1.	$\forall w \notin L$: 2. oder 3.
M entscheidet L, (L entscheidbar)	∀ <i>w</i> ∈ <i>L</i> : 1.	∀ <i>w</i> ∉ <i>L</i> : 2 .

Das Halteproblem

Definition.

Das Halteproblem ist definiert als folgende Sprache

$$\mathcal{H} := \{ w \# v : T_w \text{ hält auf der Eingabe } v \}.$$

Beachte: Wir benutzen ein Trennzeichen $\# \notin \Sigma$.

Satz.

 \mathcal{H} ist nicht entscheidbar.

Interpretation:

Das Problem, ob eine Turing-Maschine auf einer Eingabe w stoppt, ist nicht entscheidbar.

Das Halteproblem

Satz.

 $\mathcal{H} = \{w \# v : T_w \text{ hält auf der Eingabe } v\}$ ist nicht entscheidbar.

Beweis:

- Angenommen es existiert eine stets haltende Turing-Maschine, die \mathcal{H} entscheidet
- Wir konstruieren daraus eine stets haltende Turing-Maschine, die L_d^c entscheidet, mit Widerspruch zum Korollar letzte Vorlesung.

Sei w eine Eingabe, für die wir entscheiden wollen, ob $w \in L_a^c$ Wir können wie folgt vorgehen:

- Berechne das i, so dass $w = w_i$ ist.
- Betrachte die durch w_i kodierte Turing-Maschine \mathcal{M}_i .
- Wende die Turing-Maschine für \mathcal{H} auf $\langle \mathcal{M}_i \rangle \# w_i$ an.

Erinnerung:

$$w = w_i \in L_d^c$$

 $\Leftrightarrow \mathcal{M}_i$ akzeptiert w_i
mit $w_i = \langle \mathcal{M}_i \rangle$

Das Halteproblem

Satz.

 $\mathcal{H} = \{w \# v : T_w \text{ hält auf der Eingabe } v\}$ ist nicht entscheidbar.

Sei w eine Eingabe, für die wir entscheiden wollen, ob $w \in L_d^c$ Wir können wie folgt vorgehen:

- Berechne das i, so dass $w = w_i$ ist.
- Betrachte die durch w_i kodierte Turing-Maschine \mathcal{M}_i .
- Wende die Turing-Maschine für \mathcal{H} auf $\langle \mathcal{M}_i \rangle \# w_i$ an.

Wir machen folgende Fallunterscheidung:

- Falls $\langle \mathcal{M}_i \rangle \# w_i$ nicht akzeptiert wird, dann hält \mathcal{M}_i nicht auf w_i .
- Also ist $w_i \in L_d$ und damit $w_i \notin L_d^c$.
- Falls $\langle \mathcal{M}_i \rangle \# w_i$ akzeptiert wird, dann hält \mathcal{M}_i auf w_i .
- Dann können wir auf der universellen Turing-Maschine die Berechnung von \mathcal{M}_i auf w_i simulieren und so entscheiden, ob \mathcal{M}_i die Eingabe w_i akzeptiert, also ob $w_i \in L^c_d$.

Erinnerung:

$$w = w_i \in L_d^c$$

 $\Leftrightarrow \mathcal{M}_i$ akzeptiert w_i
mit $w_i = \langle \mathcal{M}_i \rangle$

- Die universelle Sprache L_u über $\{0,1\}$ ist definiert durch $L_u := \{w \# v : v \in L(T_w)\}$.
- L_u ist also die Menge aller Wörter w # v für die T_w bei der Eingabe v hält und v akzeptiert.

Satz.

Die universelle Sprache L_u ist nicht entscheidbar.

- Die universelle Sprache L_u über $\{0,1\}$ ist definiert durch $L_u := \{w \# v : v \in L(T_w)\}$.
- L_u ist also die Menge aller Wörter w # v für die T_w bei der Eingabe v hält und v akzeptiert.

Satz.

Die universelle Sprache L_u ist nicht entscheidbar.

Beweis:

- Wir zeigen, dass L_u eine Verallgemeinerung von L^c_d ist.
- Wir nehmen an, dass es eine TM gibt, die L_u entscheidet.
- Dann zeigen wir, dass wir damit auch L^c_d entscheiden können:
 - Berechne das i, für das $w = w_i$.
 - **Betrachte die durch** w_i kodierte Turing-Maschine \mathcal{M}_i .
 - Wende die Turing-Maschine für L_{ii} auf $\langle \mathcal{M}_i \rangle \# w_i$ an.

Wäre L_u entscheidbar, so auch L_d^c im Widerspruch zum Korollar letzte Vorlesung.

Satz.

Die universelle Sprache $L_u := \{w \# v \colon v \in L(T_w)\}$ ist semi-entscheidbar.

Satz.

Die universelle Sprache $L_u := \{w \# v : v \in L(T_w)\}$ ist semi-entscheidbar.

Beweis:

Wir benutzen die universelle Turing-Maschine, mit der Eingabe w # v:

- Falls T_w die Eingabe ν akzeptiert, geschieht dies nach endlich vielen Schritten und die universelle Turing-Maschine akzeptiert W#V.
- Falls T_w die Eingabe ν nicht akzeptiert, wird $w \# \nu$ von der universellen Turing-Maschine ebenfalls nicht akzeptiert. Dies ist unabhängig davon, ob die Simulation stoppt oder nicht.

Satz.

Die universelle Sprache $L_u := \{w \# v : v \in L(T_w)\}$ ist semi-entscheidbar.

Beweis:

Wir benutzen die universelle Turing-Maschine, mit der Eingabe w # v:

- Falls T_w die Eingabe ν akzeptiert, geschieht dies nach endlich vielen Schritten und die universelle Turing-Maschine akzeptiert W#V.
- Falls T_w die Eingabe ν nicht akzeptiert, wird $w \# \nu$ von der universellen Turing-Maschine ebenfalls nicht akzeptiert. Dies ist unabhängig davon, ob die Simulation stoppt oder nicht.

Bemerkung: Die Begriffe entscheidbar und semi-entscheidbar unterscheiden sich tatsächlich.

- Wir haben bisher gezeigt, dass wir kein Programm schreiben können, das für ein Turing-Maschinen-Programm \(\mathcal{M} \) und eine Eingabe w entscheidet, ob \(\mathcal{M} \) auf der Eingabe w hält.
- Wir werden im Folgenden sehen, dass wir aus einem Programm im Allgemeinen keine nicht-trivialen Eigenschaften der von dem Programm realisierten Funktion ableiten können.

Satz von Rice

Satz von Rice.

Sei R die Menge der von Turing-Maschinen berechenbaren Funktionen und S eine nicht-triviale Teilmenge von R ($\emptyset \neq S \neq R$). Dann ist die Sprache

 $L(S) := \{ \langle \mathcal{M} \rangle : \mathcal{M} \text{ berechnet eine Funktion aus } S \}$

nicht entscheidbar.

Satz von Rice

Satz von Rice.

Sei R die Menge der von Turing-Maschinen berechenbaren Funktionen und S eine nicht-triviale Teilmenge von R ($\emptyset \neq S \neq R$). Dann ist die Sprache

$$L(S) := \{\langle \mathcal{M} \rangle : \mathcal{M} \text{ berechnet eine Funktion aus } S\}$$

nicht entscheidbar.

Beweisskizze:

- **2** Zeige: $\mathcal{H}_{\varepsilon} := \{\langle \mathcal{M} \rangle : \mathcal{M} \text{ hält auf der Eingabe } \varepsilon\}$ ist unentscheidbar
- **Zeige:** \mathcal{H}_{c}^{c} ist unentscheidbar
- Führe den Widerspruchsbeweis für die Unentscheidbarkeit von *L*(*S*):
- Konstruiere TM für \mathcal{H}_c^c unter Benutzung von TM \mathcal{M}' für L(S)

Der Satz von Rice hat weitreichende Konsequenzen:

Es ist für Programme nicht entscheidbar, ob die durch sie definierte Sprache endlich, leer, unendlich oder ganz Σ^* ist.

Wir haben hier nur die Unentscheidbarkeit von L_d direkt bewiesen.

Die anderen Beweise folgten dem folgenden Schema:

Um zu zeigen, dass ein Problem A unentscheidbar ist, zeigen wir, wie man mit einem Entscheidungsverfahren für A ein bekanntermaßen unentscheidbares Problem B entscheiden kann. Dies liefert den gewünschten Widerspruch.

Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \ldots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

• $K = \{(1, 111), (10111, 10), (10, 0)\}$ hat die Lösung (2, 1, 1, 3), denn: $x_2 x_1 x_1 x_3 = 1011111110 = y_2 y_1 y_1 y_3$

$$K = \begin{array}{c} 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ \hline \end{array} \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ \hline \\ 0 \\ \hline \end{array}$$

$$(x_1, y_1) \quad (x_2, y_2) \quad (x_3, y_3)$$

Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

• $K = \{(1, 111), (10111, 10), (10, 0)\}$ hat die Lösung (2, 1, 1, 3), denn: $x_2 x_1 x_1 x_3 = 1011111110 = y_2 y_1 y_1 y_3$

Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_i, \ldots, x_{i_k} = y_i, \ldots, y_{i_k}$ gilt.

Beispiele

• $K = \{(1, 111), (10111, 10), (10, 0)\}$ hat die Lösung (2, 1, 1, 3), denn: $x_2x_1x_1x_3 = 1011111110 = y_2y_1y_1y_3$

$$K = \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{array} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$$

$$(x_1, y_1) \quad (x_2, y_2) \quad (x_3, y_3)$$

Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

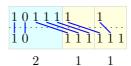
über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1}, \ldots, x_{i_k} = y_{i_1}, \ldots, y_{i_k}$ gilt.

Beispiele

• $K = \{(1, 111), (10111, 10), (10, 0)\}$ hat die Lösung (2, 1, 1, 3), denn: $x_2x_1x_1x_3 = 1011111110 = y_2y_1y_1y_3$

$$K = \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{array} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$$

$$(x_1, y_1) \quad (x_2, y_2) \quad (x_3, y_3)$$



Gegeben ist eine endliche Menge von Wortpaaren

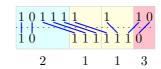
$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

• $K = \{(1, 111), (10111, 10), (10, 0)\}$ hat die Lösung (2, 1, 1, 3), denn: $x_2 x_1 x_1 x_3 = 1011111110 = y_2 y_1 y_1 y_3$

$$K = \begin{array}{c} 1 \\ \hline 1 & 1 \\ \hline 1 & 1 \\ \end{array} \begin{array}{c} 1 & 0 & 1 & 1 & 1 \\ \hline 1 & 0 \\ \hline \\ (x_1, y_1) & (x_2, y_2) & (x_3, y_3) \end{array}$$



Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

 $K = \{(10, 101), (011, 11), (101, 011)\}$ hat keine Lösung.

$$K = \begin{array}{c} 1 & 0 \\ \hline 1 & 0 & 1 \\ \hline 1 & 0 & 1 \\ \hline (x_1, y_1) & (x_2, y_2) & (x_3, y_3) \\ \end{array}$$

Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

 $K = \{(10, 101), (011, 11), (101, 011)\}$ hat keine Lösung.

$$K = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ (x_1, y_1) & (x_2, y_2) & (x_3, y_3) & & & 1 \end{bmatrix}$$

Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1}, \ldots, x_{i_k} = y_{i_1}, \ldots, y_{i_k}$ gilt.

Beispiele

• $K = \{(10, 101), (011, 11), (101, 011)\}$ hat keine Lösung.

$$K = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
$$(x_1, y_1) (x_2, y_2) (x_3, y_3)$$

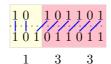
Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

 $K = \{(10, 101), (011, 11), (101, 011)\}$ hat keine Lösung.



Gegeben ist eine endliche Menge von Wortpaaren

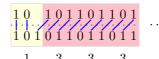
$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

 $K = \{(10, 101), (011, 11), (101, 011)\}$ hat keine Lösung.

$$K = \begin{array}{c} 1 & 0 \\ 1 & 0 & 1 \\ \hline 1 & 0 & 1 \\ \hline \end{array} \begin{array}{c} 0 & 1 & 1 \\ 1 & 1 \\ \hline \end{array} \begin{array}{c} 1 & 0 & 1 \\ 0 & 1 & 1 \\ \hline \end{array} \begin{array}{c} X \\ X_1, Y_2, Y_2, Y_3, Y_3 \\ \hline \end{array}$$



Post'sches Korrespondenzproblem

Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

 $K = \{(10, 101), (011, 11), (101, 011)\}$ hat keine Lösung.

Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \ldots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

$$K = \begin{array}{c|c} 0 & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline \end{array} \begin{array}{c|c} 0 & 1 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 \\ \hline \end{array} \begin{array}{c} 1 & 0 \\ \hline 0 & 0 & 1 \\ \hline \end{array}$$
$$(x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4)$$

Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

$$K = \begin{array}{c|c} 0 & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline \end{array} \begin{array}{c|c} 0 & 1 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 \\ \hline \end{array}$$
$$(x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4)$$

Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

$$K = \begin{array}{c|c} 0 & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline \end{array} \begin{array}{c|c} 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 \\ \hline \end{array} \begin{array}{c} 1 & 0 \\ \hline 0 & 0 & 1 \\ \hline \end{array}$$
$$(x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4)$$

Gegeben ist eine endliche Menge von Wortpaaren

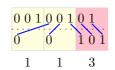
$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1}, \ldots, x_{i_k} = y_{i_1}, \ldots, y_{i_k}$ gilt.

Beispiele

• $K = \{(001, 0), (01, 011), (01, 101), (10, 001)\}$

$$K = \begin{array}{c|c} 0 & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline \end{array} \begin{array}{c|c} 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 \\ \hline \end{array} \begin{array}{c} 1 & 0 \\ \hline 0 & 0 & 1 \\ \hline \end{array}$$
$$(x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4)$$



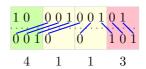
Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

$$K = \begin{array}{c|c} 0 & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline \end{array} \begin{array}{c|c} 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 \\ \hline \end{array} \begin{array}{c} 1 & 0 \\ \hline 0 & 0 & 1 \\ \hline \end{array}$$
$$(x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4)$$



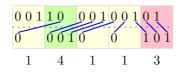
Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

$$K = \begin{array}{c|c} 0 & 0 & 1 \\ \hline 0 & & 0 & 1 \\ \hline 0 & & 0 & 1 & 1 & 0 \\ \hline (x_1, y_1) & (x_2, y_2) & (x_3, y_3) & (x_4, y_4) \end{array}$$



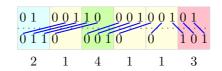
Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

$$K = \begin{array}{c} \begin{array}{c} 0 & 0 & 1 \\ 0 & \end{array} \begin{array}{c} 0 & 1 \\ 0 & 1 & \end{array} \begin{array}{c} 0 & 1 \\ 1 & 0 & 1 \end{array} \begin{array}{c} 1 & 0 \\ 0 & 0 & 1 \end{array}$$
$$(x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4)$$



Gegeben ist eine endliche Menge von Wortpaaren

$$K = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt, so dass $x_{i_1} \ldots x_{i_k} = y_{i_1} \ldots y_{i_k}$ gilt.

Beispiele

 $K = \{(001, 0), (01, 011), (01, 101), (10, 001)\}$ → Die kürzeste Lösung hat Länge 66.

Unentscheidbarkeit des PKP

Satz.

Das Post'sche Korrespondezproblem ist nicht entscheidbar.

Beweisidee:

Dies kann über die Nicht-Entscheidbarkeit des Halteproblems bewiesen werden.

Eigenschaften von (semi-)entscheidbaren Sprachen

- Die entscheidbaren Sprachen sind abgeschlossen unter Komplementbildung, Schnitt und Vereinigung.
- Die semi-entscheidbaren Sprachen sind abgeschlossen unter Schnitt und Vereinigung, aber nicht unter Komplementbildung.

Satz.

Sei $L \subseteq \Sigma^*$ und $L^c = \Sigma^* \setminus L$. Dann gilt

- L entscheidbar \iff L^c entscheidbar.
- L entscheidbar \iff L und L^c semi-entscheidbar.

Beweis: Übung und Tutorien.

Kapitel

Komplexitätstheorie

Fragestellung bisher:

- Ist eine Sprache L entscheidbar oder nicht?
- Ist eine Funktion berechenbar oder nicht?
- Benutzung von deterministischen Turing-Maschinen.

In diesem Kapitel:

- Wie effizient kann ein Problem gelöst werden?
- Betrachtung von nichtdeterministischen Turing-Maschinen.

Frage (P vs. NP):

Gibt es einen wesentlichen Effizienzgewinn beim Übergang von der deterministischen Turing-Maschine zur nichtdeterministischen Turing-Maschine?

Beispiel: Traveling Salesman Problem (TSP)

Gegeben sei ein vollständiger Graph G = (V, E) mit ganzzahligen Kantengewichten c, d.h.

- $V := \{1, ..., n\}$ $E := \{\{u, v\} : u, v \in V, u \neq v\}$ $c : E \to \mathbb{Z}^+$

Optimierungsproblem:

Gesucht ist eine Tour (Rundreise), die alle Elemente aus V enthält und minimale Gesamtlänge unter allen solchen Touren hat.

Optimalwertproblem:

Gesucht ist die Länge einer minimalen Tour.

- Entscheidungsproblem:
 - Gegeben sei zusätzlich auch ein Parameter $k \in \mathbb{Z}^+$. Die Frage ist nun: Gibt es eine Tour, deren Länge höchstens k ist?

Optimierungsproblem:

Gesucht ist eine Tour (Rundreise), die alle Elemente aus V enthält und minimale Gesamtlänge unter allen solchen Touren hat.

Optimalwertproblem:

Gesucht ist die Länge einer minimalen Tour.

Entscheidungsproblem:

Gegeben sei zusätzlich auch ein Parameter $k \in \mathbb{Z}^+$. Die Frage ist nun: Gibt es eine Tour, deren Länge höchstens k ist?

Bemerkung:

- Mit einer Lösung des Optimierungsproblems kann man leicht auch das Optimalwertproblem und das Entscheidungsproblem lösen.
- Mit einer Lösung des Optimalwertproblems kann man leicht auch das Entscheidungsproblem lösen.

Ein Problem Π ist gegeben durch:

- eine allgemeine Beschreibung aller vorkommenden Parameter;
- eine genaue Beschreibung der Eigenschaften, die die Lösung haben soll.

Eingabe: Graph
$$G = (V, E)$$
, Kantengewichtung $c : E \to \mathbb{Z}^+$, Zahl k
Lösung: zykl. Permutation $x_1 x_2 \cdots x_n$ von V mit $\{x_i, x_{i+1}\} \in E$ für $i = 1, \ldots, n-1$ und $\sum_{i=1}^{n-1} c(\{x_i, x_{i+1}\}) \le k$

Eine Instanz I von Π erhalten wir, indem wir die Parameter von Π festlegen. (Problembeispiel)

```
V = \{a, b, c, d\}
E = \{\{a, b\}, \{a, c\}, \{c, d\}, \{b, d\}, \{b, c\}\}\}
c(\{a, b\}) = c(\{b, d\}) = c(\{b, c\}) = 1, c(\{a, c\}) = 2, c(\{c, d\}) = 4
```


- Wir interessieren uns für die Laufzeit von Algorithmen.
- Diese wird in der Größe des Problems gemessen.

Die Größe eines Problems ist abhängig von der Beschreibung oder Kodierung der Instanzen.

Ein Kodierungsschema s ordnet jeder Instanz I eines Problems ein Wort oder Kodierung s(I) über einem Alphabet Σ zu.

```
V = \{a, b, c, d\}
E = \{\{a, b\}, \{a, c\}, \{c, d\}, \{b, d\}, \{b, c\}\}\}
c(\{a, b\}) = c(\{b, d\}) = c(\{b, c\}) = 1, c(\{a, c\}) = 2, c(\{c, d\}) = 4
s(I) = 00|01|10|11 \sqcup 00 * 01|00 * 10|10 * 11|01 * 11|01 * 10 \sqcup 1|2|4|1|1
\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |, \sqcup, *\}
```


- Wir interessieren uns für die Laufzeit von Algorithmen.
- Diese wird in der Größe des Problems gemessen.

Die Größe eines Problems ist abhängig von der Beschreibung oder Kodierung der Instanzen.

■ Ein Kodierungsschema s ordnet jeder Instanz I eines Problems ein Wort oder Kodierung s(I) über einem Alphabet Σ zu.

$$s(I) = 00|01|10|11 \sqcup 00 * 01|00 * 10|10 * 11|01 * 11|01 * 10 \sqcup 1|2|4|1|1$$

$$\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |, \sqcup, *\}$$

 Die Inputlänge einer Instanz ist die Anzahl der Symbole ihrer Kodierung.

hier: |s(I)| = 51

Kodierungsschema

Es gibt verschiedene Kodierungsschemata für ein bestimmtes Problem.

Beispiel:

- Zahlen können dezimal, binär, unär, usw. kodiert werden.
- Die Inputlänge von 5127 beträgt dann 4 für dezimal, 13 für binär und 5127 für unär.

Wir werden uns auf vernünftige Schemata festlegen:

- Die Kodierung einer Instanz soll keine überflüssigen Informationen enthalten.
- **Zahlen sollen binär (oder** k-är für $k \neq 1$) kodiert sein.

Dies bedeutet, die Kodierungslänge

- einer ganzen Zahl n ist $\lfloor \log_k |n| + 1 \rfloor + 1 =: \langle n \rangle$ (eine 1 benötigt man für das Vorzeichen);
- einer rationalen Zahl $r = \frac{p}{q}$ ist $\langle r \rangle = \langle p \rangle + \langle q \rangle$;
- eines Vektors $X = (x_1, \dots, x_n)$ ist $\langle X \rangle := \sum_{i=1}^n \langle x_i \rangle$;
- einer Matrix $A \in \mathbb{Q}^{m \times n}$ ist $\langle A \rangle := \sum_{i=1}^{m} \sum_{j=1}^{n} \langle a_{ij} \rangle$.
- eines Graphen G = (V, E) kann zum Beispiel durch die Kodierung seiner *Adjazenzmatrix*, die eines gewichteten Graphen durch die Kodierung der *Gewichtsmatrix* beschrieben werden.

Zwei Kodierungsschemata s_1 , s_2 heißen äquivalent bezüglich eines Problems Π , falls es Polynome p_1 , p_2 gibt, so dass gilt:

$$|s_1(I)| = n \implies |s_2(I)| \le p_2(n)$$

und
 $|s_2(I)| = m \implies |s_1(I)| \le p_1(m)$

für alle Instanzen I von Π .

Entscheidungsprobleme

- Ein Entscheidungsproblem Π können wir als Familie / Klasse D_{Π} von Instanzen auffassen.
 - $\blacksquare \ \, \text{Mit festem Kodierungsschema } s \text{ ist das eine Menge von W\"{o}rtern \"{u}ber} \, \Sigma \qquad \leadsto \text{unsere Eingaben}$
- Eine Teilmenge dieser Klasse ist $J_{\Pi} \subseteq D_{\Pi}$, die Klasse der **Ja–Instanzen**, d.h. die Instanzen deren Antwort Ja ist.
- Der Rest der Klasse $N_{\Pi} \subseteq D_{\Pi}$ ist die Klasse der **Nein–Instanzen**.

Ein Problem II und ein Kodierungsschema $s: D_{\Pi} \to \Sigma^*$ zerlegen Σ^* in drei Klassen:

- Wörter aus Σ^* , die *nicht* Kodierung eines Beispiels aus D_{Π} sind,
- Wörter aus Σ^* , die Kodierung einer Instanz $I \in N_{\Pi}$ sind,
- Wörter aus Σ^* , die Kodierung einer Instanz $I \in J_{\Pi}$ sind.

Die dritte Klasse ist die Sprache, die zu Π im Kodierungsschema s korrespondiert.

Die zu einem Problem Π und einem Kodierungsschema s zugehörige Sprache ist

$$L[\Pi, s] := \begin{cases} x \in \Sigma^* : & \Sigma \text{ ist das Alphabet zu } s \text{ und } x \text{ ist Kodierung} \\ & \text{einer Ja-Instanz } I \text{ von } \Pi \text{ unter } s, \text{ d.h. } I \in J_{\Pi} \end{cases}$$

- Wir betrachten im folgenden deterministische Turing-Maschinen mit zwei Endzuständen q_J , q_N , wobei q_J akzeptierender Endzustand ist.
- **Dann wird die Sprache** $L_{\mathcal{M}}$ akzeptiert von der Turing-Maschine \mathcal{M} , falls

$$L_{\mathcal{M}} = \{x \in \Sigma^* : \mathcal{M} \text{ akzeptiert } x\}$$
.

- Eine deterministische Turing-Maschine \mathcal{M} löst ein Entscheidungsproblem Π unter einem Kodierungsschema s, falls \mathcal{M} bei jeder Eingabe über dem Eingabe-Alphabet in einem Endzustand endet und $L_{\mathcal{M}} = L[\Pi, s]$ ist.
 - **D.h.** die Turing-Maschine \mathcal{M} entscheidet $L[\Pi, s]$.

Für eine deterministische Turing-Maschine \mathcal{M} , die für alle Eingaben über dem Eingabe-Alphabet Σ hält, ist die **Zeitkomplexitätsfunktion** $T_{\mathcal{M}} \colon \mathbb{Z}^+ \to \mathbb{Z}^+$ definiert durch

$$T_{\mathcal{M}}(n) = \max \left\{ egin{align*}{ll} & ext{es gibt eine Eingabe } x \in \Sigma^* \ ext{mit } |x| = n, \ ext{so dass die Berechnung} \\ m: & ext{von } \mathcal{M} \ ext{bei Eingabe } x \ m \ ext{Berechnungsschritte} \ (\ddot{ ext{Ubergänge}}) \ ext{benötigt}, \\ & ext{bis ein Endzustand erreicht wird} \end{array}
ight\}$$

Für eine deterministische Turing-Maschine \mathcal{M} , die für alle Eingaben über dem Eingabe-Alphabet Σ hält, ist die **Zeitkomplexitätsfunktion** $T_{\mathcal{M}} \colon \mathbb{Z}^+ \to \mathbb{Z}^+$ definiert durch

$$T_{\mathcal{M}}(n) = \max \left\{ egin{align*} & ext{es gibt eine Eingabe } x \in \Sigma^* \ ext{mit } |x| = n, \ ext{so dass die Berechnung} \\ m: & ext{von } \mathcal{M} \ ext{bei Eingabe } x \ m \ ext{Berechnungsschritte} \ (\ddot{ ext{Ubergänge}}) \ ext{benötigt}, \\ & ext{bis ein Endzustand erreicht wird} \end{array}
ight.$$

Bemerkungen

- Wenn Eingabe x Länge n hat, so braucht \mathcal{M} höchstens $T_{\mathcal{M}}(n)$ Berechnungsschritte.
- Für ein Entscheidungsproblem Π mit Kodierungsschema s:

```
Instanz I \in D_{\Pi} von \Pi \iff Kodierung s(I) \in \Sigma^*
```

Kodierungslänge
$$|s(I)| \iff \text{Länge des Wortes}$$

Zeit zum Lösen von $I \iff$ Anzahl Berechnungsschritte von \mathcal{M}

Die Klasse \mathcal{P}

Die Klasse \mathcal{P} ist die Menge aller Sprachen L (Entscheidungsprobleme), für die eine deterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial beschränkt ist, d.h. es existiert ein Polynom p mit

$$T_{\mathcal{M}}(n) \leq p(n).$$

- Zum Beispiel $T_M(n) \le 4n^2 + 42$.
- Sprachen / Entscheidungsprobleme in $\mathcal P$ sind "effizient lösbar".



Satz.

Falls es einen Algorithmus \mathcal{A} gibt, der das Entscheidungsproblem des TSP in polynomialer Zeit löst, so gibt es auch einen Algorithmus, der das Optimierungsproblem in polynomialer Zeit löst.

Satz.

Falls es einen Algorithmus \mathcal{A} gibt, der das Entscheidungsproblem des TSP in polynomialer Zeit löst, so gibt es auch einen Algorithmus, der das Optimierungsproblem in polynomialer Zeit löst.

Beweis: Algorithmus, der das Optimierungsproblem löst.

Input:
$$G = (V, E), c_{ij} = c(\{i, j\}) \text{ für } i, j \in V := \{1, ..., n\},$$

Algorithmus \mathcal{A}

Output: d_{ij} (1 $\leq i, j \leq n$), so dass alle bis auf n der d_{ij} -Werte den

Wert $1 + \max\{c_{ii} \mid 1 \le i, j \le n\}$ haben. Die restlichen n

 d_{ij} -Werte haben den Wert c_{ij} und geben genau die

Kanten einer optimalen Tour an.

- berechne $m := \max\{c_{ij} \mid 1 \le i, j \le n\}$;
- setze L(ow) := 0 und H(igh) := $n \cdot m$; $(L \le OPT \le H)$
- **Solange** H L > 1 gilt, führe aus: (binäre Suche nach OPT)
- Falls $\mathcal{A}(G, c, \lceil \frac{1}{2}(H+L) \rceil) = \text{"nein"}, \qquad (OPT > \lceil \frac{1}{2}(H+L) \rceil)$
- setze $L := \left[\frac{1}{2} (H + L) \right] + 1;$
- Sonst $(OPT \le \lceil \frac{1}{2}(H+L) \rceil)$
- setze $H := \left\lceil \frac{1}{2}(H+L) \right\rceil$;
- **§ Falls** $\mathcal{A}(G, c, L) = \text{"nein"}$ (hier gilt $H L \le 1$)
- setze OPT := H;
- Sonst
- \bigcirc setze OPT := L;

Wir kennen den Optimalwert OPT und finden jetzt eine optimale Tour.

- **Pir** $i = 1 \dots n$ führe aus
- **Für** $j = 1 \dots n$ führe aus
- setze $R := c_{ii}$;
- setze $c_{ii} := m + 1$;
- **Falls** $\mathcal{A}(G, c, OPT) =$ "nein",
- setze $c_{ii} := R$;
- setze $d_{ij} := c_{ij}$;

(merke Länge der Kante ij)

(mache Kante ij zu lang)

(Kante ij in opt. Tour)

(Kante *ij* wie vorher)

Die Schleife der binären Suche bricht ab, und danach ist die Differenz H - L gleich 1 oder 0, denn:

- Solange H L > 1, ändert sich bei jedem Schleifendurchlauf einer der Werte H, L:
 - Für H L > 1 gilt, dass $L \neq \left\lceil \frac{1}{2}(H + L) \right\rceil + 1$ und $H \neq \left\lceil \frac{1}{2}(H + L) \right\rceil$ ist.
- Die Differenz H L verkleinert sich mit jedem Durchlauf
- Da H und L ganzzahlig sind, tritt der Fall $H L \le 1$ ein.
- Zu jedem Zeitpunkt gilt $H L \ge 0$:
 - H L = 0 ist möglich, wenn zum Beispiel L auf $\lceil \frac{1}{2}(H + L) \rceil + 1$ erhöht wird und vorher H L = 2 oder H L = 3 war.

- $\mathcal{A}(G, c, k)$ wird (für verschiedene k) etwa $\log(n \cdot m)$ -mal aufgerufen.
- $\mathcal{A}(G, c, OPT)$ wird etwa n^2 -mal aufgerufen.
- **Es finden also** $O(n^2 + \log(nm))$ Aufrufe von \mathcal{A} statt.
- Die Inputlänge ist $O(n^2 \cdot \max \langle c_{ij} \rangle) = O(n^2 \cdot \max \log c_{ij})$.
- Da A polynomiell ist, ist dies also auch OPT-TOUR.

- Probleme
 - Optimierungsprobleme, Optimalwertprobleme, Entscheidungsprobleme
 - Problem Π ist Klasse D_{Π} von Instanzen I.

Eingabegrößen

- Kodierungsschema $s: D_{\Pi} \to \Sigma^*$ über Alphabet Σ^* .
- Kodierung s(I) einer Instanz I ist ein Wort aus Σ^* .
- Inputlänge |s(I)| ist Länge des Wortes.

Entscheidungsprobleme

- Ja–Instanzen J_{Π} und Nein–Instanzen N_{Π}
- Sprache $L[\Pi, s]$ der Kodierungen aller Ja–Instanzen
- TM M löst Π wenn M Sprache L[Π, s] entscheidet.

Laufzeiten

- **Teitkomplexitätsfunktion** $T_{\mathcal{M}}(n)$ von \mathcal{M} bei Eingaben der Länge n
- Die Klasse \mathcal{P} : Sprachen von \mathcal{M} mit $T_{\mathcal{M}}(n)$ polynomiell in n.
- Am Beispiel TSP: Entscheidung → Optimalwert → Optimierung

- Probleme
 - Optimierungsprobleme, Optimalwertprobleme, Entscheidungsprobleme
 - Problem Π ist Klasse D_{Π} von Instanzen I.

Eingabegrößen

- Kodierungsschema $s: D_{\Pi} \to \Sigma^*$ über Alphabet Σ^* .
- Kodierung s(I) einer Instanz I ist ein Wort aus Σ^* .
- Inputlänge |s(I)| ist Länge des Wortes.

Entscheidungsprobleme

- Ja–Instanzen J_{Π} und Nein–Instanzen N_{Π}
- Sprache $L[\Pi, s]$ der Kodierungen aller Ja–Instanzen
- TM M löst Π wenn M Sprache L[Π, s] entscheidet.

Laufzeiten

- **Teitkomplexitätsfunktion** $T_{\mathcal{M}}(n)$ von \mathcal{M} bei Eingaben der Länge n
- Die Klasse \mathcal{P} : Sprachen von \mathcal{M} mit $T_{\mathcal{M}}(n)$ polynomiell in n.
- Am Beispiel TSP: Entscheidung → Optimalwert → Optimierung

Testen Sie sich!