

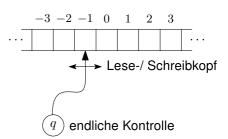
Theoretische Grundlagen der Informatik

Vorlesung am 11.11.2021

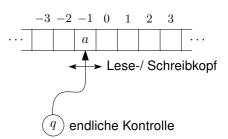
Torsten Ueckerdt | 11. November 2021

- Bestandteile:
 - Lese-/Schreibkopf liest/schreibt Zeichen auf Band
 - endliche Kontrolle stets in einem Zustand
 - unendliches Rechenband enthält Eingabe
- formal: $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma \supseteq (\Sigma \cup \{\sqcup\}), s \in Q, \delta, F \subseteq Q)$
- Übergangsfunktion: $\delta(q, a) = (q', a', X \in \{L, N, R\})$

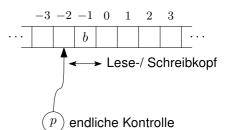
- Bestandteile:
 - Lese-/Schreibkopf liest/schreibt Zeichen auf Band
 - endliche Kontrolle stets in einem Zustand
 - unendliches Rechenband enthält Eingabe
- formal: $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma \supseteq (\Sigma \cup \{\sqcup\}), s \in Q, \delta, F \subseteq Q)$
- Übergangsfunktion: $\delta(q, a) = (q', a', X \in \{L, N, R\})$
- Der Übergang $\delta(q, a) = (p, b, L)$ wird graphisch dargestellt als



- Bestandteile:
 - Lese-/Schreibkopf liest/schreibt Zeichen auf Band
 - endliche Kontrolle stets in einem Zustand
 - unendliches Rechenband enthält Eingabe
- formal: $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma \supseteq (\Sigma \cup \{\sqcup\}), s \in Q, \delta, F \subseteq Q)$
- Übergangsfunktion: $\delta(q, a) = (q', a', X \in \{L, N, R\})$
- Der Übergang $\delta(q, a) = (p, b, L)$ wird graphisch dargestellt als



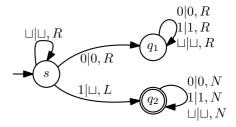
- Bestandteile:
 - Lese-/Schreibkopf liest/schreibt Zeichen auf Band
 - endliche Kontrolle stets in einem Zustand
 - unendliches Rechenband __ enthält Eingabe
- formal: $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma \supseteq (\Sigma \cup \{\sqcup\}), s \in Q, \delta, F \subseteq Q)$
- Übergangsfunktion: $\delta(q, a) = (q', a', X \in \{L, N, R\})$
- Der Übergang $\delta(q, a) = (p, b, L)$ wird graphisch dargestellt als



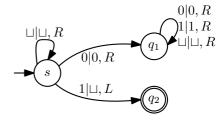
Konventionen bei der TM

- Die Turing-Maschine startet im Zustand s.
- Der Lese-/Schreibkopf startet an der linkesten Stelle des Bandes, in der ein Eingabesymbol steht.
- Die Turing-Maschine stoppt, wenn sie
 - zum ersten Mal in einen Endzustand kommt, oder
 - in einem Zustand q ein Symbol a liest und $\delta(q, a) = (q, a, N)$ ist.
- Das bedeutet, dass Übergänge, die aus Endzuständen herausführen, überflüssig sind.

- Die Turing-Maschine stoppt, wenn sie
 - zum ersten Mal in einen Endzustand kommt, oder
 - in einem Zustand q ein Symbol a liest und $\delta(q, a) = (q, a, N)$ ist.

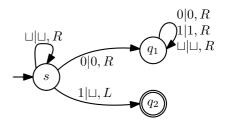


Frage: Was erkennt / berechnet diese TM?

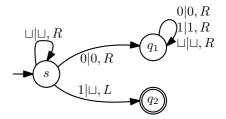


Frage: Was erkennt / berechnet diese TM?

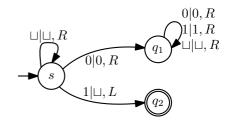
- Die TM erkennt alle Wörter aus {0, 1}*, die mit einer Eins beginnen.
- Die TM löscht die führende Eins, falls vorhanden.
- Alles andere auf dem Band bleibt unverändert.
- Der Lese-/Schreibkopf steht nach dem Stop links neben der Stelle an der die führende Eins gelesen wurde.



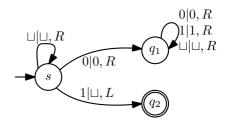
- Es gibt Eingaben, für die eine Turing-Maschine unter Umständen niemals stoppt.
- Welche Eingaben sind dies in diesem Beispiel?



- Es gibt Eingaben, für die eine Turing-Maschine unter Umständen niemals stoppt.
- Welche Eingaben sind dies in diesem Beispiel?
- Die TM stoppt nicht, falls die Eingabe nicht mit Eins beginnt.

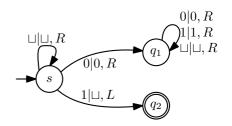


- Eine Turing-Maschine erkennt nicht nur eine Sprache,
- sondern sie verändert auch die Eingabe, und
- hat insofern auch eine Ausgabe
 (= Inhalt des Bandes nach der akzeptierender Bearbeitung).
- Die Turing-Maschine realisiert also eine partielle Funktion $f: \Sigma^* \to \Gamma^*$.



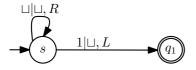
- Eine Turing-Maschine erkennt nicht nur eine Sprache,
- sondern sie verändert auch die Eingabe, und
- hat insofern auch eine Ausgabe (= Inhalt des Bandes nach der akzeptierender Bearbeitung).
- Die Turing-Maschine realisiert also eine partielle Funktion $f: \Sigma^* \to \Gamma^*$.
- Im Beispiel ist

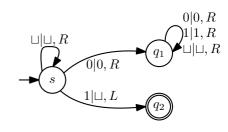
$$f(w) = \begin{cases} v & \text{falls } w = 1v \\ \text{undefiniert} & \text{sonst} \end{cases}$$



Bemerkungen zur TM

- Oft werden wir die Turing-Maschine beziehungsweise deren Übergangsfunktion nur unvollständig beschreiben.
- Beispiel:





- Eine Vervollständigung ist immer möglich.
- Wenn für eine bestimmte Kombination q, a kein Übergang $\delta(q,a)$ definiert ist, dann stoppt die Turing-Maschine im Zustand q.

(z.B. setze $\delta(q, a) := (q, a, N)$)

- Bestandteile:
 - Lese-/Schreibkopf liest/schreibt Zeichen auf Band
 - endliche Kontrolle stets in einem Zustand
 - unendliches Rechenband ____ enthält Eingabe
- formal: $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma \supseteq (\Sigma \cup \{\sqcup\}), s \in Q, \delta, F \subseteq Q)$
- Übergangsfunktion: $\delta(q, a) = (q', a', X \in \{L, N, R\})$

Turing-Maschine Übersicht

(deterministische) Turing-Maschine

- Bestandteile:
 - Lese-/Schreibkopf liest/schreibt Zeichen auf Band
 - endliche Kontrolle stets in einem Zustand
 - unendliches Rechenband ____ enthält Eingabe
- formal: $\mathcal{M} = (Q, \Sigma, \sqcup, \Gamma \supseteq (\Sigma \cup \{\sqcup\}), s \in Q, \delta, F \subseteq Q)$
- Übergangsfunktion: $\delta(q, a) = (q', a', X \in \{L, N, R\})$

Bei der Bearbeitung einer Eingabe w gibt es drei Möglichkeiten:

M "läuft" in einen Zustand in F.

 $\rightsquigarrow \mathcal{M}$ akzeptiert w

 \mathcal{M} "läuft" in einen Übergang $\delta(q, a) = (q, a, N).$

 $\rightsquigarrow \mathcal{M}$ lehnt w ab

M "läuft" unendlich lange.

 $\rightsquigarrow \mathcal{M}$ stoppt nicht

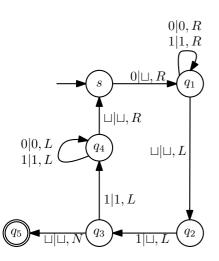
Definitionen zur TM

- Eine Turing-Maschine akzeptiert eine Eingabe $w \in \Sigma^*$, wenn sie nach Lesen von w in einem Zustand aus F stoppt.
- Sie akzeptiert eine Sprache L genau dann, wenn sie ausschließlich Wörter $w \in L$ als Eingabe akzeptiert.
- Eine Sprache $L \subseteq \Sigma^*$ heißt **rekursiv** oder **entscheidbar**, wenn es eine Turing-Maschine gibt, die auf allen Eingaben stoppt und eine Eingabe w genau dann akzeptiert, wenn $w \in L$ gilt.
- Eine Sprache $L \subseteq \Sigma^*$ heißt rekursiv-aufzählbar oder semi-entscheidbar, wenn es eine Turing-Maschine gibt, die genau die Eingaben w akzeptiert für die $w \in L$. Das Verhalten der Turing-Maschine für Eingaben $w \notin L$ ist damit nicht genau definiert. D.h., die Turing-Maschine stoppt entweder nicht in einem Endzustand oder aber stoppt gar nicht.

Notation: Konfiguration

- Situation in der sich eine TM $\mathcal{M} := (Q, \Sigma, \Gamma, \delta, s, F)$ befindet, wird durch die Angabe der Konfiguration kodiert.
- Eine Konfiguration hat die Form w(q)av, wobei
 - $w, v \in \Gamma^*$
 - a ∈ Γ
 - $a \in Q$
- Bedeutung:
 - M befindet sich gerade im Zustand q.
 - Der Lese-/Schreibkopf steht auf dem Zeichen a.
 - Links vom Lese-/Schreibkopf steht das Wort w auf dem Rechenband.
 - Rechts vom Lese-/Schreibkopf steht das Wort v auf dem Rechenband.

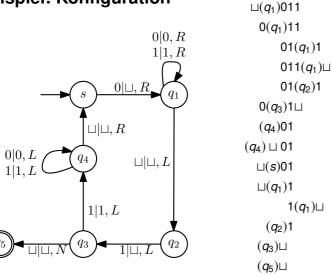
Beispiel: Konfiguration



TM akzeptiert $\{0^n1^n : n \ge 1\}$.

Beispiel: Eingabe w = 0011

Beispiel: Konfiguration



TM akzeptiert $\{0^n1^n : n \ge 1\}$.

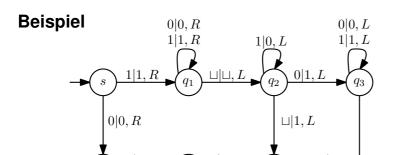
Beispiel: Eingabe w = 0011

9/28

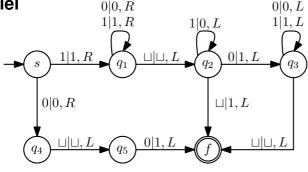
(s)0011

- Eine Funktion f: Σ* → Γ* heißt (Turing-)berechenbar oder totalrekursiv, wenn es eine Turing-Maschine gibt, die bei Eingabe von w ∈ Σ* genau dann akzeptiert wenn f(w) nicht undefiniert ist und in diesem Fall den Funktionswert f(w) ∈ Γ* ausgibt.
- Eine Turing-Maschine realisiert eine Funktion f: Σ* → Γ*, falls gilt:

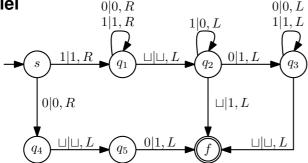
```
f(w) = \begin{cases} \text{Ausgabe der Turing-Maschine,} \\ \text{wenn sie bei Eingabe } w \text{ akzeptiert.} \\ \text{undefiniert,} \\ \text{sonst.} \end{cases}
```

- Fasse die Eingabe w als binäre Zahl auf.
- Es sollen nur Eingaben ohne führende Nullen und die Null selbst akzeptiert werden.
- Addiere zur Eingabe $w \in (0 \cup 1)^*$ eine Eins.

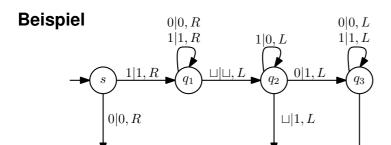


Es gilt:
$$f(w) = \begin{cases} w+1 & \text{falls } w \in 0 \cup 1(0 \cup 1)^*, \\ & w \text{ interpretient als Binärzahl} \\ \text{undefinient} & \text{sonst} \end{cases}$$



Dabei sind die Zustände jeweils für die folgenden Aufgaben verantwortlich:

- q₁ Bewegung des Lese-/Schreibkopfes nach rechts bis zum Eingabeende,
- q₂ Bildung des Übertrages, der durch die Addition von Eins zu einer bereits vorhandenen Eins entsteht,



Dabei sind die Zustände jeweils für die folgenden Aufgaben verantwortlich:

- q_3 Bewegung des Lese-/Schreibkopfes nach links, nachdem die Aufsummierung abgeschlossen ist (kein Übertrag mehr),
- q₄, q₅ Sonderbehandlung für den Fall der Eingabe 0, und
- f Endzustand.

Entscheidbarkeit und Berechenbarkeit

Entscheidbarkeit von Sprachen und Berechenbarkeit von Funktionen sind verwandt:

- Eine Turing-Maschine akzeptiert eine Sprache L, wenn sie genau auf den Eingaben $w \in L$ in einem ausgezeichneten Endzustand stoppt.
- L ist entscheidbar, wenn es eine Turing-Maschine gibt, die auf allen Eingaben stoppt und L akzeptiert.
- Die Funktion f heißt berechenbar, wenn eine Turing-Maschine existiert, die f realisiert.

Entscheidbarkeit und Berechenbarkeit

Entscheidbarkeit von Sprachen und Berechenbarkeit von Funktionen sind verwandt:

- Man kann eine Turing-Maschine \mathcal{M} , die auf allen Eingaben stoppt, so modifizieren, dass es zwei ausgezeichnete Zustände q_J und q_N gibt und dass die modifizierte Turing-Maschine $\tilde{\mathcal{M}}$ stets in einem der Zustände q_J oder q_N hält und akzeptiert.
- Dabei stoppt $\tilde{\mathcal{M}}$ bei der Eingabe w genau dann in q_J , wenn \mathcal{M} das Wort w akzeptiert, ansonsten stoppt $\tilde{\mathcal{M}}$ in q_N .
- Damit ist die Sprache L genau dann entscheidbar, wenn es eine Turing-Maschine gibt, die immer in einem der Zustände $\{q_J, q_N\}$ stoppt, wobei sie gerade für $w \in L$ in q_J hält.

Entscheidbarkeit und Berechenbarkeit

Entscheidbarkeit von Sprachen und Berechenbarkeit von Funktionen sind verwandt:

- Man kann eine Turing-Maschine \mathcal{M} , die auf allen Eingaben stoppt, so modifizieren, dass es zwei ausgezeichnete Zustände q_J und q_N gibt und dass die modifizierte Turing-Maschine $\tilde{\mathcal{M}}$ stets in einem der Zustände q_J oder q_N hält und akzeptiert.
- Dabei stoppt $\tilde{\mathcal{M}}$ bei der Eingabe w genau dann in q_J , wenn \mathcal{M} das Wort w akzeptiert, ansonsten stoppt $\tilde{\mathcal{M}}$ in q_N .
 - **Testen Sie sich:** Finden Sie diese Modifikation $\tilde{\mathcal{M}}$ von \mathcal{M} ?
- Damit ist die Sprache L genau dann entscheidbar, wenn es eine Turing-Maschine gibt, die immer in einem der Zustände $\{q_J, q_N\}$ stoppt, wobei sie gerade für $w \in L$ in q_J hält.

Korollar

■ Eine Sprache $L \subseteq \Sigma^*$ ist **entscheidbar** genau dann, wenn ihre **charakteristische Funktion** χ_L berechenbar ist, wobei gilt:

$$\chi_L \colon \Sigma^* \to \{0, 1\} \quad \text{mit} \qquad \chi_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ 0 & \text{sonst} \end{cases}$$

■ Eine Sprache L ist **semi-entscheidbar** genau dann, wenn die partielle Funktion χ_l^* berechenbar ist, wobei gilt:

$$\chi_L^*(w) = \begin{cases} 1 & \text{falls } w \in L \\ \text{undefiniert} & \text{sonst} \end{cases}$$

Church'sche These.

Die Menge der (Turing-)berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne überhaupt berechenbaren Funktionen.

Die Church'sche These

Church'sche These.

Die Menge der (Turing-)berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne überhaupt berechenbaren Funktionen.

Interpretation

- Turing-Maschinen sind formale Modelle für Algorithmen.
- Kein Berechnungsverfahren kann algorithmisch genannt werden, wenn es nicht von einer Turing-Maschine ausführbar ist.

Bemerkung

- Die Church'sche These ist ohne eine präzise Definition von intuitiv berechenbar nicht beweisbar.
- Sie ist aber in der Informatik allgemein akzeptiert.

Die Church'sche These

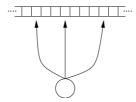
Church'sche These.

Die Menge der (Turing-)berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne überhaupt berechenbaren Funktionen.

Begründung

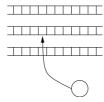
- Es existieren keine Beispiele von Funktionen, die als intuitiv berechenbar angesehen werden, aber nicht Turing-berechenbar sind.
- Alle Versuche, realistische Modelle aufzustellen, die m\u00e4chtiger sind als Turing-Maschinen, schlugen fehl.
- Eine Reihe von völlig andersartigen Ansätzen, den Begriff der Berechenbarkeit formal zu fassen, wie zum Beispiel die Registermaschine, haben sich als äquivalent erwiesen.

Mehrere Lese-/Schreibköpfe



- Mehrere Lese-/Schreibköpfe $(n \in \mathbb{N})$ greifen auf das eine Eingabeband zu und werden von der endlichen Kontrolle gesteuert.
- Die Übergangsfunktion ist dann vom Typ $\delta: Q \times \Gamma^n \to Q \times \Gamma^n \times \{L, N, R\}^n$.
- Die Zustände $q \in Q$ kann man als n-Tupel auffassen.
- Es ist nötig eine Prioritätenregel für die einzelnen Köpfe anzugeben, falls mehrere auf einem Feld des Eingabebandes stehen.

Mehrere Bänder



- Ein Lese-/Schreibkopf kann auf mehrere Eingabebänder ($n \in \mathbb{N}$) zugreifen.
- Die Übergangsfunktion ist dann vom Typ

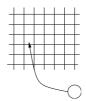
$$\delta \colon Q \times \Gamma \times \{1, \ldots, n\} \to Q \times \Gamma \times \{L, N, R\} \times \{1, \ldots, n\}.$$

Mehrere Lese-/Schreibköpfe für mehrere Bänder

- Wir haben jetzt *m* Bänder und *n* Lese-/Schreibköpfe.
- Die Übergangsfunktion ist dann vom Typ

$$\delta \colon Q \times \Gamma^n \times \{1, \ldots, m\}^n \to Q \times \Gamma^n \times \{L, N, R\}^n \times \{1, \ldots, m\}^n.$$

Mehrdimensionale Bänder



- Das Eingabeband ist nun mehrdimensional und hat hier im Beispiel die Dimension zwei.
- Wir sprechen dann von einem Arbeitsfeld.
- Dabei ist

$$\delta \colon Q \times \Gamma \to Q \times \Gamma \times \{L(eft), U(p), R(ight), D(own), N(othing)\}$$

Bemerkungen

- Fragestellungen der Art:
 - Wann stoppt eine Mehrkopf-Maschine?
 - Welcher Kopf ,gewinnt', wenn mehrere Köpfe (verschiedene) Symbole an dieselbe Stelle schreiben wollen?

müssen bei solchen Modifikationen noch geklärt werden.

- Es hat sich allerdings gezeigt, dass keine dieser Erweiterungen mehr leistet, als eine normale Turing-Maschine.
- Alle angegebenen Modifikationen k\u00f6nnen durch eine normale 1-Band Turing-Maschine simuliert werden.

Die universelle Turing-Maschine

Ziel

- Bisher: Nur Turing-Maschinen, die eine bestimmte Aufgabe erfüllen.
- Jetzt: Konstruktion einer Turing-Maschine, die als Eingabe
 - ein Programm und
 - eine spezielle Eingabe

erhält.

 Die Aufgabe besteht darin, das gegebene Programm auf der gegebenen speziellen Eingabe auszuführen.

Wir betrachten dazu eine normierte Turing-Maschine, d.h.

- $Q := \{q_1, \ldots, q_n\}$
- $\Sigma := \{a_1, \ldots, a_k\}$
- $\Gamma := \{ \sqcup, a_1, \ldots, a_k, a_{k+1}, \ldots, a_l \}$
- $s := q_1$
- $F := \{q_2\}$
- Dies bedeutet keine Einschränkung in der Mächtigkeit der Turing-Maschinen:
 - Jede beliebige Turing-Maschine kann durch eine derart normierte Turing-Maschine der obigen Form simuliert werden.
 - Jede normierte Turing-Maschine \mathcal{M} lässt sich eindeutig als Wort aus $(0 \cup 1)^*$ kodieren.

Sei $\mathcal{M} := (Q, \Sigma, \sqcup, \Gamma, \delta, s, F)$ eine Turing-Maschine.

Die **Gödelnummer** von \mathcal{M} , bezeichnet als $\langle \mathcal{M} \rangle$, ist definiert durch folgende Kodierungsvorschrift:

Kodiere Übergang

$$\delta(q_i,a_j)=(q_r,a_s,d_t) \text{ durch } 0^i \ 1 \ 0^j \ 1 \ 0^r \ 1 \ 0^s \ 1 \ 0^t,$$
 wobei $d_t \in \{d_1,d_2,d_3\}$ und

- *d*₁ für *L*,
- d₂ für R und
- d₃ für N steht.
- Die Turing-Maschine wird dann kodiert durch:

$$111 \text{code}_1 11 \text{code}_2 11 \dots 11 \text{code}_z 111,$$

wobei code_i für i = 1, ..., z alle Funktionswerte von δ in beliebiger Reihenfolge beschreibt.

- Die eigentlichen Werte der Turing-Maschine werden also (unär) durch Nullen beschrieben und die Einsen dienen als Begrenzung der Eingabewerte.
- Jede Turing-Maschine kann also durch ein Wort aus (0 ∪ 1)* kodiert werden.
- Umgekehrt beschreibt jedes Wort aus (0 ∪ 1)* (höchstens) eine Turing-Maschine.
- Wir vereinbaren, dass ein Wort, das keine Turing-Maschine in diesem Sinne beschreibt, (zum Beispiel ε , 0, 000) eine Turing-Maschine kodiert, die \emptyset akzeptiert.
- Eine universelle Turing-Maschine erhält als Eingabe ein Paar $(\langle \mathcal{M} \rangle, w)$, wobei $w \in \{0, 1\}^*$ ist, und sie simuliert \mathcal{M} auf w.
- Wir verwenden ein Trennzeichen # ∉ {0,1}. Die Eingabe für die universelle Turing-Maschine hat die Form ⟨M⟩ #w.

Sei
$$\mathcal{M}=(Q=\{q_1,q_2,q_3\},\Sigma=\{0,1\},\sqcup,\Gamma=\{0,1,\sqcup\},\delta,q_1,\{q_2\}),$$
 mit
$$\delta(q_1,1)=(q_3,0,R)$$

$$\delta(q_3,0)=(q_1,1,R)$$

$$\delta(q_3,1)=(q_2,0,R)$$

$$\delta(q_3,\sqcup)=(q_3,1,L)$$

 \mathcal{M} zusammen mit der Eingabe 1011 ist dann:

Sei
$$\mathcal{M}=(Q=\{q_1,q_2,q_3\},\Sigma=\{0,1\},\sqcup,\Gamma=\{0,1,\sqcup\},\delta,q_1,\{q_2\}),$$
 mit
$$\delta(q_1,1)=(q_3,0,R)$$

$$\delta(q_3,0)=(q_1,1,R)$$

$$\delta(q_3,1)=(q_2,0,R)$$

$$\delta(q_3,\sqcup)=(q_3,1,L)$$

M zusammen mit der Eingabe 1011 ist dann:

11101001000101001100010101010100100110001001001001100010001000100100111#1011

Definition

Zu $w \in \{0, 1\}^*$ sei T_w

- die Turing-Maschine mit der Gödelnummer w, bzw.
- die Turing-Maschine, die Ø akzeptiert.

Es sei $L(T_w)$ die Sprache, die von T_w akzeptiert wird.

Wir konstruieren die sogenannte **Diagonalsprache** L_d , wie folgt:

- Betrachte die Wörter aus {0,1}* in kanonischer Reihenfolge, d.h. w_i steht vor w_i (i < j), falls</p>
 - $|w_i| < |w_j|$, oder
 - $|w_i| = |w_i|$ und w_i lexikographisch vor w_i steht.
- \mathcal{M}_i sei die TM, die durch die Gödelnummer w_i kodiert ist.
- Wir konstruieren eine unendliche Tabelle.
 - an deren Position (i, j) für $1 \le i, j < \infty$ eine Null oder eine Eins steht, und
 - welche beinhaltet, ob w_i in $L(\mathcal{M}_i)$ ist.
- Damit gilt für die Einträge

$$(i,j) = \begin{cases} 1 & \text{falls } \mathcal{M}_j \text{ } w_i \text{ akzeptiert} \\ 0 & \text{sonst} \end{cases}$$

Die Diagonalsprache

Damit gilt f
ür die Eintr
äge

$$(i,j) = \begin{cases} 1 & \text{falls } \mathcal{M}_j \ w_i \text{ akzeptiert} \\ 0 & \text{sonst} \end{cases}$$

Definiere dazu

$$L_d := \{ w_i : \mathcal{M}_i \text{ akzeptiert } w_i \text{ nicht} \}.$$

- L_d enthält also alle w_i , für die auf der Diagonalen an der Stelle (i, i) eine Null steht.
- Dies führt später zu einem Diagonalbeweis (Cantor).

Die Diagonalsprache - Veranschaulichung

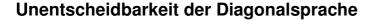
- (i,j) = 1 falls \mathcal{M}_i w_i akzeptiert, 0 sonst
- $L_d := \{ w_i : \mathcal{M}_i \text{ akzeptiert } w_i \text{ nicht} \}$
- L_d enthält also alle w_i , für die auf der Diagonalen an der Stelle (i, i) eine Null steht.

$w \in \{0,1\}^*$	Gödelnummer								
		<i>W</i> ₁₂₃	<i>W</i> ₁₂₄	W 125					
:	:								
<i>W</i> ₁₂₃	1	0	1	0	1	0	0	$w_{123} \in L_d$	$w_{123} = 1111011 \in L_d$
<i>W</i> ₁₂₄	0	0	1	0	0	1	1	$w_{124} \notin L_d$	$w_{124} = 1111100 \notin L_d$
<i>W</i> ₁₂₅	1	0	0	1	1	0	1	$w_{125} \notin L_d$	$w_{125} = 1111101 \notin L_d$
:	:								

Unentscheidbarkeit der Diagonalsprache

Satz.

Die Sprache L_d ist nicht entscheidbar.



Satz.

Die Sprache L_d ist nicht entscheidbar.

Beweis:

Wäre L_d entscheidbar, so existierte eine Turing-Maschine \mathcal{M} , die

- (1) bei jeder Eingabe hält,
- (2) genau die $w \in L_d$ akzeptiert.

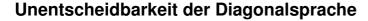
Dann ist $\mathcal{M} = \mathcal{M}_i$ für (mindestens) ein i.

Wende nun \mathcal{M}_i auf w_i an:

- Falls $w_i \in L_d$, dann akzeptiert \mathcal{M} das Wort w_i wegen (2).
- Falls $w_i \in L_d$, dann akzeptiert \mathcal{M}_i das Wort w_i nicht,

Zusammen ist dies ein Widerspruch zu $\mathcal{M} = \mathcal{M}_i$.

(laut der Definition von L_d)



Satz.

Die Sprache L_d ist nicht entscheidbar.

Beweis:

Wäre L_d entscheidbar, so existierte eine Turing-Maschine \mathcal{M} , die

- (1) bei jeder Eingabe hält,
- (2) genau die $w \in L_d$ akzeptiert.

Dann ist $\mathcal{M} = \mathcal{M}_i$ für (mindestens) ein i.

Wende nun \mathcal{M}_i auf w_i an:

- Falls $w_i \notin L_d$, dann akzeptiert \mathcal{M} das Wort w_i nicht wegen (2).
- Falls $w_i \notin L_d$, dann akzeptiert \mathcal{M}_i das Wort w_i ,

Zusammen ist dies ein Widerspruch zu $\mathcal{M} = \mathcal{M}_i$.

(laut der Definition von L_d)

Korollar

Korollar

Die Sprache $L_d^c := \{0, 1\}^* \setminus L_d$ ist nicht entscheidbar.

Korollar

Korollar

Die Sprache $L_d^c := \{0, 1\}^* \setminus L_d$ ist nicht entscheidbar.

Beweis:

- Wäre L_d^c entscheidbar, so existierte eine Turing-Maschine, die L_d^c entscheidet.
- Diese könnte aber leicht zu einer Turing-Maschine modifiziert werden, die L_d entscheidet.
- Dies ist ein Widerspruch zur Unentscheidbarkeit der Diagonalsprache.

Paradoxien und Selbstbezüglichkeit

Der Barbier von Hintertupfingen rasiert genau die Männer im Dorf, die sich nicht selbst rasieren.

Wer rasiert den Barbier?

Paradoxien und Selbstbezüglichkeit

Der Barbier von Hintertupfingen rasiert genau die Männer im Dorf, die sich nicht selbst rasieren.

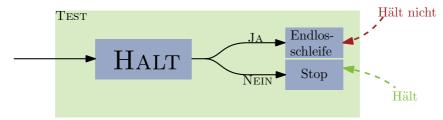
Wer rasiert den Barbier?

Daniel Düsentrieb behauptet, eine allwissende Maschine erfunden zu haben. Man stellt eine Ja/Nein-Frage und die Antwort leuchtet auf. Dagobert Duck kauft die Maschine. Will aber nur bei korrekter Antwort zahlen. Er stellt der Maschine die Frage: Wirst du mit **Nein** antworten?

Was passiert?

Programm HALT:

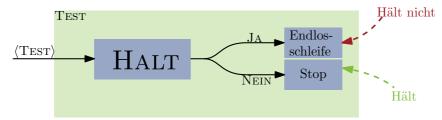
Programm TEST:



Halteproblem

Programm HALT:

Programm TEST:



Wie verhält sich TEST bei der Eingabe (TEST)?

Das Halteproblem

Definition.

Das Halteproblem ist definiert als folgende Sprache

$$\mathcal{H} := \{ w \# v \colon T_w \text{ hält auf der Eingabe } v \}.$$

Satz.

 ${\cal H}$ ist nicht entscheidbar.

Interpretation:

Das Problem, ob eine Turing-Maschine auf einer Eingabe w stoppt, ist nicht entscheidbar.