
Torsten Ueckerdt1

Torsten Ueckerdt

Algorithms for Graph Visualization
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General Layout Problem

Given: Graph G = (V,E)

Find: Clear and readable drawing of G

Which aesthetic criteria would
you optimize??
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General Layout Problem

Given: Graph G = (V,E)

Find: Clear and readable drawing of G

Criteria:
• adjacent nodes are close
• non-adjacent far apart
• edges short, straight-line, similar length
• densly connected parts (clusters) form communities
• as few crossings as possible
• nodes distributed evenly

! Optimization criteria partially contradict each other
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Example: Fixed edge-length

Given: Graph G = (V,E), required edge length `(e), ∀e ∈ E
Find: Drawing of G which realizes all the edge lengths

NP-hard for
• edge lengths {1, 2} [Saxe, ’80]
• planar drawing with unit edge length [Eades, Wormald, ’90]
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Physical Model

“To embed a graph we replace the vertices by steel rings and replace
each edge with a spring to form a mechanical system . . . The vertices are
placed in some initial layout and let go so that the spring forces on the
rings move the system to a minimal energy state.” [Eades, ’84]
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Physical Model

“To embed a graph we replace the vertices by steel rings and replace
each edge with a spring to form a mechanical system . . . The vertices are
placed in some initial layout and let go so that the spring forces on the
rings move the system to a minimal energy state.” [Eades, ’84]

So-called spring-embedder algorithms that work
according to this or similar principles are among the
most frequently used graph-drawing methods in
practice.
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Notation

` = `(e) ideal spring length for edge e

pv = (xv, yv) position of node v

||pu − pv|| Euclidean distance between u and v
−−→pupv unit vector pointing from u to v
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Spring-Embedder (Eades, 1984)

Model:
• repulsive force between two non-adjacent nodes u and v

frep(pu, pv) =
crep

||pv − pu||2
· −−→pupv

• attractive force between adjacent vertices u and v

fspring(pu, pv) = cspring · log
||pu − pv||

`
· −−→pvpu

• resulting displacement vector for node v

Fv =
∑

u:{u,v}6∈E

frep(pu, pv) +
∑

u:{u,v}∈E

fspring(pu, pv)
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Diagram of Spring-Embedder Forces (Eades, 1984)

Distance
frep

fspring

l

Force

frep(pu, pv) =
crep

||pv−pu||2 ·
−−→pupv
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Algorithm Spring-Embedder (Eades, 1984)

Input: G = (V,E) connected undirected graph with
initial placement p = (pv)v∈V , number of
interations K ∈ N, threshold ε > 0, constant
δ > 0

Output: Layout p with ”low internal stress“

t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach v ∈ V do
Fv(t)←

∑
u:{u,v}6∈E frep(pu, pv) +

Fv(t)←
∑

u:{u,v}∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ · Fv(t)

t← t+ 1
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Algorithm Spring-Embedder (Eades, 1984)

Input: G = (V,E) connected undirected graph with
initial placement p = (pv)v∈V , number of
interations K ∈ N, threshold ε > 0, constant
δ > 0

Output: Layout p with ”low internal stress“

t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach v ∈ V do
Fv(t)←

∑
u:{u,v}6∈E frep(pu, pv) +

Fv(t)←
∑

u:{u,v}∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t+ 1

δ(t)

t

Cooling of the
scaling factor δ
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Discussion

Advantages
• very simple algorithm
• good results for small and medium-sized graphs
• empirically good representation of symmetry and structure

Disadvantages
• system is not stable at the end
• converging to local minima
• timewise fspring in O(|E|) and frep in O(|V |2)

Influence
• original paper by Peter Eades got 1800 citations
• basis for many further ideas
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Variant: Fruchterman & Reingold (1991)

Model:
• repulsive force between all node pairs u and v

frep(pu, pv) =
`2

||pv − pu||
· −−→pupv

• attractive force between two adjacent nodes u and v

fattr(pu, pv) =
||pu − pv||2

`
· −−→pvpu

• resulting force between adjacent nodes u and v

fspring(pu, pv) = frep(pu, pv) + fattr(pu, pv)
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Diagramm of Fruchtermann & Reingold Forces
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Tutte’s Barycenter Method

• historically the first method (1963)
• computes crossing-free drawings for 3-connected planar

graphs with convex faces
• actually a system of linear equations
• but can be considered a force-directed method

• poor vertex resolution
• may require exponential area

Advantages

Disadvantages

• exact computation
• unique global minimum


	General Layout Problem

	Example: Fixed edge-length
	Physical Model
	Notation
	Spring-Embedder {\tiny (Eades, 1984)}
	Diagram of Spring-Embedder Forces {\tiny (Eades, 1984)}
	Algorithm Spring-Embedder {\tiny (Eades, 1984)}
	Discussion
	Variant: Fruchterman \& Reingold {\tiny (1991)}
	Diagramm of Fruchtermann \& Reingold Forces
	Tutte's Barycenter Method

