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General Layout Problem AT

Given: Graph G = (V, F)
Find: Clear and readable drawing of G
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Which aesthetic criteria would
you optimize?
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General Layout Problem AT

Given: Graph G = (V, F)
Find: Clear and readable drawing of G

Criteria:
® adjacent nodes are close
® non-adjacent far apart
® edges short, straight-line, similar length
® densly connected parts (clusters) form communities
® as few crossings as possible
® nodes distributed evenly

AOptimization criteria partially contradict each other
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Example: Fixed edge-length AT
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Given: Graph G = (V, F), required edge length /(¢e), Ve € E
Find: Drawing of GG which realizes all the edge lengths

NP-hard for
® edge lengths {1, 2} [Saxe, '80]
® planar drawing with unit edge length [Eades, Wormald, '90]
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Physical Model AT
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“To embed a graph we replace the vertices by steel rings and replace
each edge with a spring to form a mechanical system

... T'he vertices are
placed in some initial layout and let go so that the spring forces on the
rings move the system to a minimal energy state.” [Eades, '84]
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Physical Model AT
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So-called spring-embedder algorithms that work
“T{ according to this or similar principles are among the

ead most frequently used graph-drawing methods in are

plal practice. 3
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Notation

¢ =/{(e)
Pv = (xvayv)

‘ ‘pu — Pv ‘ ’
PuPv
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ideal spring length for edge ¢
position of node v
Euclidean distance between v and v

unit vector pointing from u to v



Spring-Embedder (aes, 192 AT

Model:
® repulsive force between two non-adjacent nodes v and v

Crep

Pv — puH
® attractive force between adjacent vertices u and v

frep(puppv) — H 5 " PuPu

Pu — P s
fspring(puapv) — Cspring - log H - / UH " PvPu

® resulting displacement vector for node v

Fv — Z frep(puap’v) + Z fspring(puapv)

w:{u,v}€E uw{u,v}el
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Diagram of Spring-Embedder Forces (eads, 1984
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frep(puapv) — ||pv(ie;u||2 " PuPo

Repulsive

fspring(puapv) — Cspring ° log
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Algorithm Spring-Embedder (e, 1060 AT
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Input: G = (V, E') connected undirected graph with

initial placement p = (py)vey, Nnumber of
interations K € N, threshold € > 0, constant
0o >0

Output: Layout p with "low internal stress”

t <+ 1

while t < K and max,cy || F, ()| > € do
foreach v € V do

Fy(t) <= 2 viquvrgr Jrep(Pus Pu) +
B Zu:{u,v}EE fspring (Pus Pv)
foreach v € V do

| Py Pyt 6 Fyt)
et
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Algorithm Spring-Embedder (e, 1060 AT

tttttttttttttttttttttttttttttt

Input: G = (V, E') connected undirected graph with

initial placement p = (py)vey, Nnumber of
Interations K € N, threshold € > 0, constant

o >0

Output: Layout p with "low

t <+ 1

while t < K and max,cy || H
foreach v € V do

17, (t) N Zu:{u,v}%E ]

_t%t+1
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5(t) 4

Cooling of the
scaling factor 9

foreach v € V do /

| Py Do+ 0(1)7 Fy(t)



Discussion T
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Advantages
® very simple algorithm
® good results for small and medium-sized graphs
® empirically good representation of symmetry and structure

Disadvantages

® system is not stable at the end

® converging to local minima
® timewise fopring in O(|E|) and frep in O(|V[?)

Influence
® original paper by Peter Eades got 1800 citations
® basis for many further ideas
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Variant: Fruchterman & Reingold (s AUT

Model:
® repulsive force between all node pairs u and v

€2
" PuPv
Pv — puH
® attractive force between two adjacent nodes u and v

frep(puapv) — H

2
Pu—P —
fattr(puap’u) — H - / UH * PvPu

® resulting force between adjacent nodes u and v

fspring(puapv) — frep(puapv) + fattr(puapv)
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Diagramm of Fruchtermann & Reingold Forces QT
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frep(puypv) — ||pv€—pu|| * PuPu
_ 2

fattr(puypfu) — [P ngH " PvPu

fspring(puapv) — frep(puypv) + fattr(puapv)



utte's Barycenter Method AT

tttttttttttttttttttttttttttttt

® historically the first method (1963)
® computes crossing-free drawings for 3-connected planar

graphs with convex faces
® actually a system of linear equations
® but can be considered a force-directed method

Advantages

® exact computation
® unique global minimum

Disadvantages

® poor vertex resolution
® may require exponential area
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