SKIT

Karlsruhe Institute of Technology

Algorithms for Graph Visualization
Layered Layout — Part |l

INSTITUT FUR THEORETISCHE INFORMATIK - FAKULTAT FUR INFORMATIK

Torsten Ueckerdt
22.01.2020

Torsten Ueckerdt - Algorithmen zur Visualisierung von Graphen Layered Layouts Il



L ayered Layout AT
Given: directed graph D = (V, A)

Find: drawing of D that emphasizes the hierarchy by

positioning nodes on horizontal layers
2\
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L ayered Layout AT
Given: directed graph D = (V, A)

Find: drawing of D that emphasizes the hierarchy by
positioning nodes on horizontal layers

Criteria:
® many edges pointing to the same direction
® few layers or limited number of nodes per layer
® preferably few edge crossings
® nodes distributed evenly
® edges preferably straight and short
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Sugiyama Framework (sugyams, Tagawa, Tods 1081) AUT
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Sugiyama Framework (sugyams, Tagawa, Tods 1081) AUT
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Step 3: Crossing Minimization

Torsten Ueckerdt - Algorithmen zur Visualisierung von Graphen

AT

stitute of Technology

AL
v

Layered Layouts Il



Problem Statement QAT

tttttttttttttttttttttttttttttt

Given: DAG D = (V, A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of
crossing i1s minimized
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Problem Statement QAT

tttttttttttttttttttttttttttttt

Given: DAG D = (V, A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of
crossing i1s minimized

Properties
® Problem is NP-hard even for two layers
(BIPARTITE CROSSING NUMBER [Garey, Johnson '83])
® No approach over several layers simultaneously
® Usually iterative optimization for two adjacent layers
® For that: insert dummy nodes at the intersection of edges
with layers
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One-sided Crossing Minimization (OSCM) AT

Given: 2-layered graph G = (L1, Lo, ') and
ordering of the nodes x; of [

Find: Node ordering x5 of Lo, such that the number of
crossings is minimized
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One-sided Crossing Minimization (OSCM) AT

Given: 2-layered graph G = (L1, Lo, ') and
ordering of the nodes x; of [

Find: Node ordering x5 of Lo, such that the number of
crossings is minimized
Observation:
® The number of crossings in a 2-layered drawing of GG
depends only on the ordering of the nodes, not on the
exact positions
® for u,v € Ly the number of crossings among their incident
edges depends on whether x5(u) < x2(v) or x2(v) < zo(u)
and not on the ordering of other vertices
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One-sided Crossing Minimization (OSCM) AT

Given: 2-layered graph G = (L1, Lo, ') and
ordering of the nodes x; of [

Find: Node ordering x5 of Lo, such that the number of
crossings is minimized
Observation:
® The number of crossings in a 2-layered drawing of GG
depends only on the ordering of the nodes, not on the
exact positions
® for u,v € Ly the number of crossings among their incident
edges depends on whether x5(u) < x2(v) or x2(v) < zo(u)
and not on the ordering of other vertices

Def: ¢, := |[{(vw,vz) : w € N(u),z € N(v),z1(2) < x1(w)}

U (%

/m e
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One-sided Crossing Minimization (OSCM) AT

Given: 2-layered graph G = (L1, Lo, ') and
ordering of the nodes x; of [

Find: Node ordering x5 of Lo, such that the number of
crossings is minimized
Observation:
® The number of crossings in a 2-layered drawing of GG
depends only on the ordering of the nodes, not on the
exact positions
® for u,v € Ly the number of crossings among their incident
edges depends on whether x5(u) < x2(v) or x2(v) < zo(u)
and not on the ordering of other vertices

Def: ¢, := [{(uw,vz) : wEN()zEN() 1(2) < z1(w

/m m
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Further Properties AT

tttttttttttttttttttttttttttttt

Def: Number of crossings in G with orders x; and x5 for L,
and Ly is denoted by cr(G, x1,x2);
= for fixed x1 we have opt(G,x1) = min,, cr(G, x1, T2)

Lemma 1: Each of the following holds:

® cr(G,x1,29) = ng(u)<x2(v) Cuwv
® opt(G,x1) > Z{um} min{cyq, Coy
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Further Properties AT

tttttttttttttttttttttttttttttt

Def: Number of crossings in G with orders x; and x5 for L,
and Ly is denoted by cr(G, x1,x2);
= for fixed x1 we have opt(G,x1) = min,, cr(G, x1, T2)

Lemma 1: Each of the following holds:

® cr(G,x1,29) = ng(u)<x2(v) Cuwv
® opt(G,x1) > Z{u,v} min{cyq, Coy

Efficient computation of cr(G, x1, x2) see Exercise.
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Further Properties AT

tttttttttttttttttttttttttttttt

Def: Number of crossings in G with orders x; and x5 for L,
and Ly is denoted by cr(G, x1,x2);
= for fixed x1 we have opt(G,x1) = min,, cr(G, x1, T2)

Lemma 1: Each of the following holds:

® cr(G,x1,29) = ng(u)<x2(v) Cuwv
® opt(G,x1) > Z{u,v} min{cyq, Coy

Efficient computation of cr(G, x1, x2) see Exercise.

Q Think for a minute and then share

qi—lr—? .Can yOl.J fl!’ld ar-l example where the second 3 min
iInequality is strict?
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lterative Crossing Minimization QAT
Let G = (V, E) be a DAG with layers Lq,..., L.

(1) compute an ordering x1 for layer L4

(2) fori=1,...,h — 1 consider layers L; and L; 1 and
minimize cr(G, z;, x;11) with fixed z; (— OSCM)

(3) fori =h —1,...,1 consider layers L; .1 and L; and
minimize cr(G, z;, x;11) with fixed ;51 (— OSCM)

(4) repeat (2) and (3) until no further improvement happens

(5) repeat steps (1)—(4) with another x4

(6) return the best found solution
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lterative Crossing Minimization QAT
Let G = (V, E) be a DAG with layers Lq,..., L.

(1) compute an ordering x1 for layer L4

(2) fori=1,...,h — 1 consider layers L; and L; 1 and
minimize cr(G, z;, x;11) with fixed z; (— OSCM)

(3) fori =h —1,...,1 consider layers L; .1 and L; and
minimize cr(G, z;, x;11) with fixed ;51 (— OSCM)

(4) repeat (2) and (3) until no further improvement happens

(5) repeat steps (1)—(4) with another x4

(6) return the best found solution

tttttttttttttttttttttttttttttt

Theorem 1: The One-Sided Crossing Minimization (OSCM)
problem is NP-hard (Eades, Wormald 1994).
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Algorithms for OSCM

Heuristics: Exact:

® Barycenter ® |[LP Model
® Median
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Barycenter Heu ristic (Sugiyama, Tagawa, Toda 1981) A\‘(IT

stitute of Technology

Idea: Position nodes close to their neighbours.
® Set

® |In case of ties, break arbitrarily.
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Barycenter HeU r|St|C (Sugiyama, Tagawa, Toda 1981)

Idea: Position nodes close to their neighbours.

® Set

® |In case of ties, break arbitrarily.

Properties:

® trivial implementation

® quick (exactly?)

® usually very good results

® finds optimum if opt(G,x1) = 0 (see Exercises)

AT

tttttttttttttttttttttttttttttt

® there are graphs on which it performs 2(y/n) times worse than

optimal
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Barycenter Heu ristic (Sugiyama, Tagawa, Toda 1981) A\‘(IT

tttttttttttttttttttttttttttttt

Idea: Position nodes close to their neighbours.
® Set

® |In case of ties, break arbitrarily.

Properties:

® trivial implementation

® quick (exactly?)

® usually very good results

® finds optimum if opt(G,x1) = 0 (see Exercises)

® there are graphs on which it performs 2(y/n) times worse than
optimal

® Work with your neighbour and then share

o ‘e e  Construct an example where barycenter method 3 min

il produces very bad results.
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I\/Ied ia N Heu I’iStiC (Eades, Wormald 1994) A\‘(IT

tttttttttttttttttttttttttttttt

Idea: Use the median of the coordinates of the neighbours.
® For a node v € Ly with neighbours vy, ..., v; set
r2(v) = med(v) = 21 (Vg 27)
and zo(v) =0 if N(v) = 0.
® If z9(u) = x2(v) and u, v have different parity, place the
node with odd degree to the left.

® If z5(u) = x2(v) and u, v have the same parity, break tie
arbitrarily.

® Runs in time O(|E)).
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I\/Ied ia N Heu I’iStiC (Eades, Wormald 1994) A\‘(IT

tttttttttttttttttttttttttttttt

Idea: Use the median of the coordinates of the neighbours.
® For a node v € Ly with neighbours vy, ..., v; set
r2(v) = med(v) = 21 (Vg 27)
and zo(v) =0 if N(v) = 0.
® If z9(u) = x2(v) and u, v have different parity, place the
node with odd degree to the left.

® If z5(u) = x2(v) and u, v have the same parity, break tie
arbitrarily.
® Runs in time O(|E)).

Properties:
® trivial implementation
® fast

® mostly good performance
® finds optimum when opt(G,x1) =0
® Factor-3 Approximation
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Approximation Factor AT

tttttttttttttttttttttttttttttt

Theorem 2:Let G = (L4, Lo, E) be a 2-layered graph and z;
an arbitrary ordering of L. Then it holds that
med(G, x1) < 3opt(G,z1).

Torsten Ueckerdt - Algorithmen zur Visualisierung von Graphen Layered Layouts Il



Approximation Factor AT

tttttttttttttttttttttttttttttt

Theorem 2: Let G = (L4, Lo, F') be a 2-layered graph and x;
an arbitrary ordering of L;. Then it holds that
med (G, 1) < 3opt(G, z1).

U U

med (u) med(v)
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Approximation Factor AT

tttttttttttttttttttttttttttttt

Theorem 2: Let G = (L4, Lo, F') be a 2-layered graph and x;
an arbitrary ordering of L;. Then it holds that
med (G, 1) < 3opt(G, z1).

U U
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Integer Linear Programming AT

tttttttttttttttttttttttttttttt

Properties:

® branch-and-cut technique for DAGs of limited size
® useful for graphs of small to medium size

® finds optimal solution

® solution in polynomial time is not guaranteed
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Integer Linear Programming AT

tttttttttttttttttttttttttttttt

Properties:

® branch-and-cut technique for DAGs of limited size
® useful for graphs of small to medium size

® finds optimal solution

® solution in polynomial time is not guaranteed

Model: see blackboard
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Experimental Evaluation (ingr, muze 1007) AT
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Experimental Evaluation (ingr, muze 1007) AT

Karlsruhe Institute of Technology
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Example
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Example A\‘(".
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Example A\‘(".
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Example AT

tttttttttttttttttttttttttttttt

.................................................................................................................................................................................................
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Example A\‘(".
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Example

13
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CrossingX AT

tttttttttttttttttttttttttttttt

There was even an
IPad game
CrossingX for the
OSCM problem!

Winner of Graph Drawing Game Contest 2012

Layered Layouts Il



Step 4: Coordinate Computation AT

tttttttttttttttttttttttttttttt

I N
_____ VAN SN
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What could be our goals?
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Steightening Edges QAT

tttttttttttttttttttttttttttttt

Goal: For the edges with dummy nodes, minimize deviation
from a straight line.

Idea: Use quadratic program.
® Let pyuy = (u,dq,...,dg,v) be u — v-path with £ dummy nodes.
® Consider the x-coordinate of d; when (u,v) would be straight:
a; = z(u) + 7 (z(v) — z(u)).
® Define the sum of deviations squared: g(pys) = Zle(a:(di) —a;)?.

® Minimize ) . w 9(Duv)-
® Subject to: x(w) — x(z) > J for consecutive nodes w, z on the same

layer, w right from z for some distance parameter 9.
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Steightening Edges QAT

tttttttttttttttttttttttttttttt

Goal: For the edges with dummy nodes, minimize deviation
from a straight line.

Idea: Use quadratic program.

® Let pyuy = (u,dq,...,dg,v) be u — v-path with £ dummy nodes.
® Consider the x-coordinate of d; when (u,v) would be straight:
a; = z(u) + 7 (z(v) — z(u)).

® Define the sum of deviations squared: g(pys) = Zle(a:(di) —a;)?.

® Minimize ) . w 9(Duv)-
® Subject to: x(w) — x(z) > J for consecutive nodes w, z on the same

layer, w right from z for some distance parameter 0.

Properties:

® quadratic program is time-expensive
® width can be exponential
® optimization function can be adapted to optimize "verticality”
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Step 5: Drawing edges

................. 2
A
................. 6 [-=ccc-oc] Jo----
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Possibility: Substitute polylines by Bézier curves
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Summary A\‘(".
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® flexible framework to draw directed graphs o

® sequential optimization of various criteria Lnt

® modelling gives NP-hard problems, which can
still can be solved quite well

crossing minimization node positioning edge drawing
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