

Algorithms for Graph VisualizationLayered Layout – Part II

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Torsten Ueckerdt

22.01.2020

Layered Layout

Given: directed graph D = (V, A)

Find: drawing of D that emphasizes the hierarchy by positioning nodes on horizontal layers

Layered Layout

Given: directed graph D = (V, A)

Find: drawing of D that emphasizes the hierarchy by positioning nodes on horizontal layers

Criteria:

- many edges pointing to the same direction
- few layers or limited number of nodes per layer
- preferably few edge crossings
- nodes distributed evenly
- edges preferably straight and short

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Step 3: Crossing Minimization

Problem Statement

Given: DAG D = (V, A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of crossing is minimized

Problem Statement

Given: DAG D = (V, A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of crossing is minimized

Properties

- Problem is NP-hard even for two layers
 (BIPARTITE CROSSING NUMBER [Garey, Johnson '83])
- No approach over several layers simultaneously
- Usually iterative optimization for two adjacent layers
- For that: insert dummy nodes at the intersection of edges with layers

Given: 2-layered graph $G = (L_1, L_2, E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2 , such that the number of crossings is minimized

Given: 2-layered graph $G = (L_1, L_2, E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2 , such that the number of crossings is minimized

Observation:

- The number of crossings in a 2-layered drawing of G
 depends only on the ordering of the nodes, not on the
 exact positions
- for $u,v \in L_2$ the number of crossings among their incident edges depends on whether $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$ and not on the ordering of other vertices

Given: 2-layered graph $G = (L_1, L_2, E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2 , such that the number of crossings is minimized

Observation:

- The number of crossings in a 2-layered drawing of G
 depends only on the ordering of the nodes, not on the
 exact positions
- for $u,v \in L_2$ the number of crossings among their incident edges depends on whether $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$ and not on the ordering of other vertices

Def:
$$c_{uv} := |\{(uw, vz) : w \in N(u), z \in N(v), x_1(z) < x_1(w)\}|$$

$$c_{uv} = 5$$

Given: 2-layered graph $G = (L_1, L_2, E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2 , such that the number of crossings is minimized

Observation:

- The number of crossings in a 2-layered drawing of G
 depends only on the ordering of the nodes, not on the
 exact positions
- for $u,v \in L_2$ the number of crossings among their incident edges depends on whether $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$ and not on the ordering of other vertices

Def: $c_{uv} := |\{(uw, vz) : w \in N(u), z \in N(v), x_1(z) < x_1(w)\}|$

$$c_{uv} = 5$$
$$c_{vu} = 7$$

Further Properties

Def: Number of crossings in G with orders x_1 and x_2 for L_1 and L_2 is denoted by $cr(G, x_1, x_2)$;

 \Rightarrow for fixed x_1 we have $\operatorname{opt}(G, x_1) = \min_{x_2} \operatorname{cr}(G, x_1, x_2)$

Lemma 1: Each of the following holds:

- $\operatorname{cr}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv}$
- $\operatorname{opt}(G, x_1) \ge \sum_{\{u,v\}} \min\{c_{uv}, c_{vu}\}$

Further Properties

Def: Number of crossings in G with orders x_1 and x_2 for L_1 and L_2 is denoted by $cr(G, x_1, x_2)$;

 \Rightarrow for fixed x_1 we have $\operatorname{opt}(G, x_1) = \min_{x_2} \operatorname{cr}(G, x_1, x_2)$

Lemma 1: Each of the following holds:

- $\operatorname{cr}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv}$
- $\operatorname{opt}(G, x_1) \ge \sum_{\{u,v\}} \min\{c_{uv}, c_{vu}\}$

Efficient computation of $cr(G, x_1, x_2)$ see Exercise.

Further Properties

Def: Number of crossings in G with orders x_1 and x_2 for L_1 and L_2 is denoted by $cr(G, x_1, x_2)$;

 \Rightarrow for fixed x_1 we have $\operatorname{opt}(G, x_1) = \min_{x_2} \operatorname{cr}(G, x_1, x_2)$

Lemma 1: Each of the following holds:

- $\bullet \operatorname{cr}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv}$
- $opt(G, x_1) \ge \sum_{\{u,v\}} min\{c_{uv}, c_{vu}\}$

Efficient computation of $cr(G, x_1, x_2)$ see Exercise.

Think for a minute and then share

Can you find an example where the second inequality is strict?

3 min

Iterative Crossing Minimization

Let G = (V, E) be a DAG with layers L_1, \ldots, L_h .

- (1) compute an ordering x_1 for layer L_1
- (2) for i = 1, ..., h-1 consider layers L_i and L_{i+1} and minimize $cr(G, x_i, x_{i+1})$ with fixed $x_i (\rightarrow \mathbf{OSCM})$
- (3) for i = h 1, ..., 1 consider layers L_{i+1} and L_i and minimize $cr(G, x_i, x_{i+1})$ with fixed x_{i+1} (\rightarrow **OSCM**)
- (4) repeat (2) and (3) until no further improvement happens
- (5) repeat steps (1)–(4) with another x_1
- (6) return the best found solution

Iterative Crossing Minimization

Let G = (V, E) be a DAG with layers L_1, \ldots, L_h .

- (1) compute an ordering x_1 for layer L_1
- (2) for i = 1, ..., h-1 consider layers L_i and L_{i+1} and minimize $cr(G, x_i, x_{i+1})$ with fixed $x_i (\rightarrow \mathbf{OSCM})$
- (3) for i = h 1, ..., 1 consider layers L_{i+1} and L_i and minimize $cr(G, x_i, x_{i+1})$ with fixed x_{i+1} (\rightarrow **OSCM**)
- (4) repeat (2) and (3) until no further improvement happens
- (5) repeat steps (1)–(4) with another x_1
- (6) return the best found solution

Theorem 1: The One-Sided Crossing Minimization (OSCM) problem is NP-hard (Eades, Wormald 1994).

Algorithms for OSCM

Heuristics:

- Barycenter
- Median

Exact:

• ILP Model

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: Position nodes close to their neighbours.

Set

$$x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

In case of ties, break arbitrarily.

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: Position nodes close to their neighbours.

Set

$$x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

In case of ties, break arbitrarily.

Properties:

- trivial implementation
- quick (exactly?)
- usually very good results
- finds optimum if $opt(G, x_1) = 0$ (see Exercises)
- ${}^{\bullet}$ there are graphs on which it performs $\Omega(\sqrt{n})$ times worse than optimal

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: Position nodes close to their neighbours.

Set

$$x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

In case of ties, break arbitrarily.

Properties:

- trivial implementation
- quick (exactly?)
- usually very good results
- finds optimum if $opt(G, x_1) = 0$ (see Exercises)
- there are graphs on which it performs $\Omega(\sqrt{n})$ times worse than optimal

Work with your neighbour and then share Construct an example where barycenter method 3 min produces very bad results.

Median Heuristic (Eades, Wormald 1994)

Idea: Use the median of the coordinates of the neighbours.

- For a node $v \in L_2$ with neighbours v_1, \ldots, v_k set $x_2(v) = \operatorname{med}(v) = x_1(v_{\lceil k/2 \rceil})$ and $x_2(v) = 0$ if $N(v) = \emptyset$.
- If $x_2(u) = x_2(v)$ and u, v have different parity, place the node with odd degree to the left.
- If $x_2(u) = x_2(v)$ and u, v have the same parity, break tie arbitrarily.
- Runs in time O(|E|).

Median Heuristic (Eades, Wormald 1994)

Idea: Use the median of the coordinates of the neighbours.

- For a node $v \in L_2$ with neighbours v_1, \ldots, v_k set $x_2(v) = \operatorname{med}(v) = x_1(v_{\lceil k/2 \rceil})$ and $x_2(v) = 0$ if $N(v) = \emptyset$.
- If $x_2(u) = x_2(v)$ and u, v have different parity, place the node with odd degree to the left.
- If $x_2(u) = x_2(v)$ and u, v have the same parity, break tie arbitrarily.
- Runs in time O(|E|).

Properties:

- trivial implementation
- fast
- mostly good performance
- finds optimum when $opt(G, x_1) = 0$
- Factor-3 Approximation

Approximation Factor

Theorem 2: Let $G = (L_1, L_2, E)$ be a 2-layered graph and x_1 an arbitrary ordering of L_1 . Then it holds that $\operatorname{med}(G, x_1) \leq 3 \operatorname{opt}(G, x_1)$.

Approximation Factor

Theorem 2: Let $G = (L_1, L_2, E)$ be a 2-layered graph and x_1 an arbitrary ordering of L_1 . Then it holds that $\operatorname{med}(G, x_1) \leq 3 \operatorname{opt}(G, x_1)$.

Approximation Factor

Theorem 2: Let $G = (L_1, L_2, E)$ be a 2-layered graph and x_1 an arbitrary ordering of L_1 . Then it holds that $\operatorname{med}(G, x_1) \leq 3 \operatorname{opt}(G, x_1)$.

Integer Linear Programming

Properties:

- branch-and-cut technique for DAGs of limited size
- useful for graphs of small to medium size
- finds optimal solution
- solution in polynomial time is not guaranteed

Integer Linear Programming

Properties:

- branch-and-cut technique for DAGs of limited size
- useful for graphs of small to medium size
- finds optimal solution
- solution in polynomial time is not guaranteed

Model: see blackboard

Experimental Evaluation (Jünger, Mutzel 1997)

Results for 100 instances on 20 + 20 nodes with increasing density

Time for 100 instances on 20 + 20 nodes with increasing density

Experimental Evaluation (Jünger, Mutzel 1997)

Results for 10 instances of sparse graphs with increasing size

Time for 10 instances of sparse graphs with increasing size

CrossingX

There was even an iPad game

CrossingX for the OSCM problem!

Winner of Graph Drawing Game Contest 2012

Step 4: Coordinate Computation

What could be our goals?

Steightening Edges

Goal: For the edges with dummy nodes, minimize deviation from a straight line.

Idea: Use quadratic program.

- Let $p_{uv} = (u, d_1, \dots, d_k, v)$ be u v-path with k dummy nodes.
- Consider the x-coordinate of d_i when (u, v) would be straight: $a_i = x(u) + \frac{i}{k+1}(x(v) x(u))$.
- Define the sum of deviations squared: $g(p_{uv}) = \sum_{i=1}^{k} (x(d_i) a_i)^2$.
- Minimize $\sum_{uv \in E} g(p_{uv})$.
- Subject to: $x(w) x(z) \ge \delta$ for consecutive nodes w, z on the same layer, w right from z for some distance parameter δ .

Steightening Edges

Goal: For the edges with dummy nodes, minimize deviation from a straight line.

Idea: Use quadratic program.

- Let $p_{uv} = (u, d_1, \dots, d_k, v)$ be u v-path with k dummy nodes.
- Consider the x-coordinate of d_i when (u, v) would be straight: $a_i = x(u) + \frac{i}{k+1}(x(v) x(u))$.
- Define the sum of deviations squared: $g(p_{uv}) = \sum_{i=1}^{k} (x(d_i) a_i)^2$.
- Minimize $\sum_{uv \in E} g(p_{uv})$.
- Subject to: $x(w) x(z) \ge \delta$ for consecutive nodes w, z on the same layer, w right from z for some distance parameter δ .

Properties:

- quadratic program is time-expensive
- width can be exponential
- optimization function can be adapted to optimize "verticality"

Step 5: Drawing edges

Possibility: Substitute polylines by Bézier curves

Summary

Summary

ent

- flexible framework to draw directed graphs
- sequential optimization of various criteria
- modelling gives NP-hard problems, which can still can be solved quite well

