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Def: A directed acyclic graph D = (V, A) is called upward
planar, when D admits a drawing (vertices points, edges
simple curves), which is planar and each edge is a
monotone curve Increasing in y-direction.
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Def: A directed acyclic graph D = (V, A) is called upward
planar, when D admits a drawing (vertices points, edges
simple curves), which is planar and each edge is a
monotone curve Increasing in y-direction.

Example:

planar!

upward planar? — NO!
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Thm 1:For a directed acyclic graph it is NP-hard to decide

whether it is upward planar.
[Garg, Tamassia GD 1995]
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Thm 1:For a directed acyclic graph it is NP-hard to decide

whether it is upward planar.
[Garg, Tamassia GD 1995]

NEXT

Thm 2: For a combinatorially embedded planar directed
graph it can be tested in O(n?) time whether it is
upward planar. [Bertolazzi et al.Algorithmica, 1994]

-5

Corol: For a triconnected planar directed graph it can be

tested in O(n?) time whether it is upward planar.
[Bertolazzi et al.Algorithmica, 1994]
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Thm 4: For a directed graph D = (V, A) the following
statements are equivalent:
(1) D is upward planar
(2) D admits an upward planar straight-line drawing
(3) D is the spanning subgraph of a planar st-digraph

[Di Battista, Tamassia TCS 1988]
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Thm 4: For a directed graph D = (V, A) the following
statements are equivalent:
(1) D is upward planar
(2) D admits an upward planar straight-line drawing
(3) D is the spanning subgraph of a planar st-digraph

\ [Di Battista, Tamassia TCS 1988]

st-digraph: (i) single source s and sink ¢, (ii) edge (s,t) € E
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statements are equivalent:
(1) D is upward planar
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(3) D is the spanning subgraph of a planar st-digraph

\ [Di Battista, Tamassia TCS 1988]
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Thm 4: For a directed graph D = (V, A) the following
statements are equivalent:
(1) D is upward planar
(2) D admits an upward planar straight-line drawing
(3) D is the spanning subgraph of a planar st-digraph

\ [Di Battista, Tamassia TCS 1988]

st-digraph: (i) single source s and sink ¢, (ii) edge (s,t) € E

Proof: ® (2) = (1) obvious
® (1) & (3) simple augmentation of a layout (blackboard)

(> Pair, think and share:

.q_;'hp. How to do the augmentation in case of a 3 min
disconnected graph?
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Thm 4: For a directed graph D = (V, A) the following
statements are equivalent:
(1) D is upward planar
(2) D admits an upward planar straight-line drawing
(3) D is the spanning subgraph of a planar st-digraph

\ [Di Battista, Tamassia TCS 1988]

st-digraph: (i) single source s and sink ¢, (ii) edge (s,t) € E

Proof: ® (2) = (1) obvious
® (1) & (3) simple augmentation of a layout (blackboard)

® (3) = (2) triangulation and construction of straight-line
drawing (blackboard)
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Thm 4: For a directed graph D = (V, A) the following
statements are equivalent:
(1) D is upward planar
(2) D admits an upward planar straight-line drawing
(3) D is the spanning subgraph of a planar st-digraph

\ [Di Battista, Tamassia TCS 1988]

st-digraph: (i) single source s and sink ¢, (ii) edge (s,t) € E

Proof: ® (2) = (1) obvious
® (1) & (3) simple augmentation of a layout (blackboard)

® (3) = (2) triangulation and construction of straight-line
drawing (blackboard)

(>  Pair, think and share:
‘q 7&;' ?‘ Is the area produced by the algorithm described 3

in the proof of (3) = (2) polynomial? 5 min
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Thm 4: For a directed graph D = (V, A) the following
statements are equivalent:
(1) D is upward planar
(2) D admits an upward planar straight-line drawing
(3) D is the spanning subgraph of a planar st-digraph

\ [Di Battista, Tamassia TCS 1988]

st-digraph: (i) single source s and sink ¢, (ii) edge (s,t) € E

Proof: ® (2) = (1) obvious
® (1) & (3) simple augmentation of a layout (blackboard)

® (3) = (2) triangulation and construction of straight-line
drawing (blackboard)

® Step (3) = (2) implies an O(n) algorithm to construct a planar
straight-line drawing of an st-digraph.
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Problem: Consider a directed acyclic graph D = (V, A) with
embedding F, fy . Test whether D, F, fy is upward
planar and construct corresponding drawing.
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Problem: Consider a directed acyclic graph D = (V, A) with
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embedding F, fy . Test whether D, F, fy is upward
planar and construct corresponding drawing.

Embedding is bimodal
If for each node:

~ outgoing

Incomming
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Fixed Outer Face: Observations

® Bimodality is necessary but not sufficient
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Fixed Outer Face: Observations QAT
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® Bimodality is necessary but not sufficient

® measure angles between two incoming or two outgoing

edges  Angle o is large when a > 7, small otherwise

L(v) := # large angles at node v
L(f) := # large angles in face f
S(v) resp. S(f): # small angles

Torsten Ueckerdt
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® Bimodality is necessary but not sufficient
® measure angles between two incoming or two outgoing

edges  Apgle o is large when o > 7, small otherwise
L(v) := # large angles at node v
L(f) := # large angles in face f
S(v) resp. S(f): # small angles

Lemma 1: In any upward layout of D holds:
0 v not source/sink

() Vv e V: L(v) = {1

v source/sink

{2 f # fo

@) f e F -8 =1," 17
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® Bimodality is necessary but not sufficient

® measure angles between two incoming or two outgoing

edges  Angle o is large when a > 7, small otherwise

L(v) := # large angles at node v
L(f) := # large angles in face f
S(v) resp. S(f): # small angles

.CP. Pair, think and share: 5 .
M—H Think about property (2). Why does it hold? min

Lemma 1: In any upward layout of D holds:
0 v not source/sink

() Vv e V: L(v) = {1

v source/sink

-2 f# fo

(2)Vf€f:L(f)S(f){2 L
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® A(f) := # sources in face f (equal to the number of sinks)
It holds that: L(f) 4+ S(f) = 2A(f) for all faces.

® in any upward planar layout of D holds:
Af) =1 [#fo

VfEF:L(f):<A(f)_I_1 ff




Fixed Outer Face: Observations QAT
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® A(f) := # sources in face f (equal to the number of sinks)
It holds that: L(f) 4+ S(f) = 2A(f) for all faces.

® in any upward planar layout of D holds:
(A(f) =1 f#fo
Af)+1 f=1o
® Define assignment ® : SUT — F

(S set of sources, T' sinks), where
® : v — incident face, where v is forms large angle

A(f) =1 f+#fo
Af)+1 f=To

VfeF:L(f) =«

® & is called consistent, if: |21 (f)| = «
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Thm 5: For a directed acyclic graph D = (V, A) with
combinatorial embedding F, fy it holds:
D is upward planar < D bimodal and 4 consistent ®
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Thm 5: For a directed acyclic graph D = (V, A) with
combinatorial embedding F, fy it holds:
D is upward planar < D bimodal and 4 consistent ®

Proof:
= already clear
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Thm 5: For a directed acyclic graph D = (V, A) with
combinatorial embedding F, fy it holds:
D is upward planar < D bimodal and 4 consistent ®

Proof:
= already clear

< construct an st-digraph that contains D as spanning
subgraph:
® insert edges in faces until they have single source and sink
® prove acyclicity, planarity and bimodality
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Assign labels sy, %1, sg,ts to each source/sink of each face f.
Sequence o¢.
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Proof of Theorem 5 QAT

® |nvariants of construction: planarity, acyclicity, bimodality
® In the outerface: select super source (resp. super sink) and
add edges to (from) other sources (resp. sinks)
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Proof of

heorem 5 QAT

® |nvariants of construction: planarity, acyclicity, bimodality
® In the outerface: select super source (resp. super sink) and
add edges to (from) other sources (resp. sinks)

How to check whether a consistent assignment exists?
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Flow Network AT
Def: Flow network N (D, F, fo) = (W, An); ¢;u; b)

* W ={v eV |wvissource or sink } UF
®* An ={(v, f) | v incident to f}
‘Z(a):O Va € Ay
®*u(a) =1 Vae An
1 VoeWnVv
*blg) = —(Alg) —1) VYge F\{fo}
—(Alg) +1) a=fo
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* normal nodes
o sources/sinks
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* normal nodes
o sources/sinks

face nodes
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Thm 6:
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* normal nodes
o sources/sinks

face nodes

Let G be a directed acyclic digraph with embedding F
and outer face f;. The bipartite flow network
N(D, F, fo) admits a valid flow of value r (# of
sources/sinks) if and only if G has a consistent
assignment of sources and sinks to faces.
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* normal nodes
o sources/sinks

face nodes

® start with zero flow
® search for augmenting path (r times for total of r sources
and sinks)
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Final Remarks AT
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® O(rn) to decide whether consistent assignment exists

® works also without fixed outer face fy: first compute all
faces as internal and then add two units of demand to a
face vertex and test whether the total flow can be
augmented by two units. Do it for every face.

Torsten Ueckerdt



14 -

2

Final Remarks AT

tttttttttttttttttttttttttttttt

® O(rn) to decide whether consistent assignment exists

® works also without fixed outer face fy: first compute all
faces as internal and then add two units of demand to a
face vertex and test whether the total flow can be
augmented by two units. Do it for every face.

(recall)

Torsten Ueckerdt



14 -

3

Final Remarks AT

tttttttttttttttttttttttttttttt

® O(rn) to decide whether consistent assignment exists

® works also without fixed outer face fy: first compute all
faces as internal and then add two units of demand to a
face vertex and test whether the total flow can be
augmented by two units. Do it for every face.

(recall)

+ algorithm to test the existence of assignment, imply:

Torsten Ueckerdt



Final Remarks AT

tttttttttttttttttttttttttttttt

® O(rn) to decide whether consistent assignment exists

® works also without fixed outer face fy: first compute all
faces as internal and then add two units of demand to a
face vertex and test whether the total flow can be
augmented by two units. Do it for every face.

(recall)

+ algorithm to test the existence of assignment, imply:
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® O(rn) to decide whether consistent assignment exists

® works also without fixed outer face fy: first compute all
faces as internal and then add two units of demand to a
face vertex and test whether the total flow can be
augmented by two units. Do it for every face.

(recall)

+ algorithm to test the existence of assignment, imply:

Thm 2: For a combinatorially embedded planar directed
graph it can be tested in O(n?) time whether it is
upward planar.

The layout can be constructed in the same time: O(n) to
augment to st-digraphs and O(n) to draw the st-digraph

14 -5 Torsten Ueckerdt
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Discussion T

tttttttttttttttttttttttttttttt

® There exists a fixed-parameter tractable algorithm to test
upward planarity, with parameter being the number of
triconnected components [Healy, Lynch SOFSEM 2005]

® The decision of Theorem 2 can be done in O(n + r!-°)

time where r = # sources/sinks [Abbasi, Healy, Rextin IPL 2010]
® many related concepts have been studied ¢«
recently: quasi-planarity, upward drawings of ep
mixed graphs Mo
r';i: :F‘ = [
,a —
’ § o
SO A
.
i
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