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Upward Planarity

Def: A directed acyclic graph D = (V,A) is called upward
planar, when D admits a drawing (vertices points, edges
simple curves), which is planar and each edge is a
monotone curve increasing in y-direction.
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Upward Planarity

Def: A directed acyclic graph D = (V,A) is called upward
planar, when D admits a drawing (vertices points, edges
simple curves), which is planar and each edge is a
monotone curve increasing in y-direction.

Example:

planar!

upward planar? – NO!
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Complexity

Thm 1:For a directed acyclic graph it is NP-hard to decide
whether it is upward planar.

[Garg, Tamassia GD 1995]
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Complexity

Thm 1:For a directed acyclic graph it is NP-hard to decide
whether it is upward planar.

[Garg, Tamassia GD 1995]

Thm 2:For a combinatorially embedded planar directed
graph it can be tested in O(n2) time whether it is
upward planar. [Bertolazzi et al.Algorithmica, 1994]

Corol: For a triconnected planar directed graph it can be
tested in O(n2) time whether it is upward planar.

[Bertolazzi et al.Algorithmica, 1994]

Thm 3:For a single-source acyclic digraph it can be tested
whether it is upward planar in O(n) time.

[Hutton, Lubiw, SIAM J.Comp.,1996]

NEXT
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Characterization

Thm 4:For a directed graph D = (V,A) the following
statements are equivalent:
(1) D is upward planar
(2) D admits an upward planar straight-line drawing
(3) D is the spanning subgraph of a planar st-digraph

[Di Battista, Tamassia TCS 1988]
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Characterization

Thm 4:For a directed graph D = (V,A) the following
statements are equivalent:
(1) D is upward planar
(2) D admits an upward planar straight-line drawing
(3) D is the spanning subgraph of a planar st-digraph

st-digraph: (i) single source s and sink t, (ii) edge (s, t) ∈ E

Proof: • (2) ⇒ (1) obvious
• (1) ⇔ (3) simple augmentation of a layout (blackboard)
• (3) ⇒ (2) triangulation and construction of straight-line

drawing (blackboard)

[Di Battista, Tamassia TCS 1988]

Pair, think and share:

3 minHow to do the augmentation in case of a
disconnected graph?
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Characterization

Thm 4:For a directed graph D = (V,A) the following
statements are equivalent:
(1) D is upward planar
(2) D admits an upward planar straight-line drawing
(3) D is the spanning subgraph of a planar st-digraph

st-digraph: (i) single source s and sink t, (ii) edge (s, t) ∈ E

Proof: • (2) ⇒ (1) obvious
• (1) ⇔ (3) simple augmentation of a layout (blackboard)
• (3) ⇒ (2) triangulation and construction of straight-line

drawing (blackboard)

[Di Battista, Tamassia TCS 1988]

Pair, think and share:

5 minIs the area produced by the algorithm described
in the proof of (3) ⇒ (2) polynomial?
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Characterization

Thm 4:For a directed graph D = (V,A) the following
statements are equivalent:
(1) D is upward planar
(2) D admits an upward planar straight-line drawing
(3) D is the spanning subgraph of a planar st-digraph

st-digraph: (i) single source s and sink t, (ii) edge (s, t) ∈ E

Proof: • (2) ⇒ (1) obvious
• (1) ⇔ (3) simple augmentation of a layout (blackboard)
• (3) ⇒ (2) triangulation and construction of straight-line

drawing (blackboard)

[Di Battista, Tamassia TCS 1988]

• Step (3) ⇒ (2) implies an O(n) algorithm to construct a planar
straight-line drawing of an st-digraph.
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Fixed Outer Face: Angles

Problem:Consider a directed acyclic graph D = (V,A) with
embedding F , f0 . Test whether D,F , f0 is upward
planar and construct corresponding drawing.
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Fixed Outer Face: Angles

Problem:Consider a directed acyclic graph D = (V,A) with
embedding F , f0 . Test whether D,F , f0 is upward
planar and construct corresponding drawing.

Embedding is bimodal
if for each node:

incomming

outgoing
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Fixed Outer Face: Observations

• Bimodality is necessary but not sufficient
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L(f) := # large angles in face f
S(v) resp. S(f): # small angles
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• Bimodality is necessary but not sufficient
• measure angles between two incoming or two outgoing
edges Angle α is large when α > π, small otherwise

L(v) := # large angles at node v
L(f) := # large angles in face f
S(v) resp. S(f): # small angles

Lemma 1: In any upward layout of D holds:

(1) ∀v ∈ V : L(v) =

{
0 v not source/sink

1 v source/sink

(2) ∀f ∈ F : L(f)− S(f) =

{
−2 f 6= f0

2 f = f0

Pair, think and share:
5 minThink about property (2). Why does it hold?
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Fixed Outer Face: Observations

Lemma 1: In any upward layout of D holds:

(1) ∀v ∈ V : L(v) =
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Fixed Outer Face: Observations

• A(f) := # sources in face f (equal to the number of sinks)

It holds that: L(f) + S(f) = 2A(f) for all faces.

• in any upward planar layout of D holds:

∀f ∈ F : L(f) =

{
A(f)− 1 f 6= f0

A(f) + 1 f = f0
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Fixed Outer Face: Observations

• A(f) := # sources in face f (equal to the number of sinks)

It holds that: L(f) + S(f) = 2A(f) for all faces.

• in any upward planar layout of D holds:

∀f ∈ F : L(f) =

{
A(f)− 1 f 6= f0

A(f) + 1 f = f0

• Define assignment Φ : S ∪ T → F
(S set of sources, T sinks), where
Φ : v 7→ incident face, where v is forms large angle

• Φ is called consistent, if: |Φ−1(f)| =

{
A(f)− 1 f 6= f0

A(f) + 1 f = f0
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Example: Vertex-Face Assignment

f1

f2

f3

f4

f5

f6

f7

f8

f9

f0
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Example: Vertex-Face Assignment

L(f1) = 2

A(f1) = 3

L(f4) = 1

A(f4) = 2

A(f5) = 2

L(f5) = 1

L(f2) = 0

A(f2) = 1

L(f0) = 4

A(f0) = 3

L(f7) = 1

A(f7) = 2

L(f3) = 0

A(f3) = 1

L(f6) = 0

A(f6) = 1

L(f8) = 0

A(f8) = 1

L(f9) = 0

A(f9) = 1

f1

f2

f3

f4

f5

f6

f7

f8

f9

f0
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Example: Vertex-Face Assignment

L(f1) = 2

A(f1) = 3

L(f4) = 1

A(f4) = 2

A(f5) = 2

L(f5) = 1

L(f2) = 0

A(f2) = 1

L(f0) = 4

A(f0) = 3

L(f7) = 1

A(f7) = 2

L(f3) = 0

A(f3) = 1

L(f6) = 0

A(f6) = 1

L(f8) = 0

A(f8) = 1

L(f9) = 0

A(f9) = 1

f1

f2

f3

f4

f5

f6

f7

f8

f9

f0

v1

v2

v3

v4

v5

v6

v7

v8

v9
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Example: Vertex-Face Assignment

L(f1) = 2

A(f1) = 3

L(f4) = 1

A(f4) = 2

A(f5) = 2

L(f5) = 1

L(f2) = 0

A(f2) = 1

L(f0) = 4

A(f0) = 3

L(f7) = 1

A(f7) = 2

L(f3) = 0

A(f3) = 1

L(f6) = 0

A(f6) = 1

L(f8) = 0

A(f8) = 1

L(f9) = 0

A(f9) = 1

f1

f2

f3

f4

f5

f6

f7

f8

f9

f0

v1

v2

v3

v4

v5

v6

v7

v8

v9

Φ(v1) = f0
Φ(v2) = f0
Φ(v3) = f7
Φ(v4) = f5
Φ(v5) = f1
Φ(v6) = f1
Φ(v7) = f4
Φ(v8) = f0
Φ(v9) = f0
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Characterization

Thm 5: For a directed acyclic graph D = (V,A) with
combinatorial embedding F , f0 it holds:
D is upward planar ⇔ D bimodal and ∃ consistent Φ
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Characterization

Thm 5: For a directed acyclic graph D = (V,A) with
combinatorial embedding F , f0 it holds:
D is upward planar ⇔ D bimodal and ∃ consistent Φ

Proof:
⇒ already clear
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Characterization

Thm 5: For a directed acyclic graph D = (V,A) with
combinatorial embedding F , f0 it holds:
D is upward planar ⇔ D bimodal and ∃ consistent Φ

Proof:
⇒ already clear

⇐ construct an st-digraph that contains D as spanning
subgraph:
• insert edges in faces until they have single source and sink
• prove acyclicity, planarity and bimodality
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Proof of Theorem 5

Assign labels sL, tL, sS , tS to each source/sink of each face f .
Sequence σf .

S

S
S

S
S

S
S

S

S

S

L

L

L

LL

f1

f2

f0

f3

σf1 := (S, S, L, S, L, S)
σf2 := (L, S, S, S)
σf3 := (S, S)
σf0 := (L,L, S, L)L
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Proof of Theorem 5

• Cancel all sources and sinks: search for subsequence LSS.

S S S

S

LL

x
y

z

f ′ f ′′

S S

S

L

x

y

z

f ′′ f ′
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S S S

S

LL

x
y

z

f ′ f ′′

S S

S

L

x

y

z

f ′′ f ′

• Invariants of construction: planarity, acyclicity, bimodality
• In the outerface: select super source (resp. super sink) and

add edges to (from) other sources (resp. sinks)
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Proof of Theorem 5

• Cancel all sources and sinks: search for subsequence LSS.

S S S

S

LL

x
y

z

f ′ f ′′

S S

S

L

x

y

z

f ′′ f ′

• Invariants of construction: planarity, acyclicity, bimodality
• In the outerface: select super source (resp. super sink) and

add edges to (from) other sources (resp. sinks)

How to check whether a consistent assignment exists?
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Flow Network

Def: Flow network N(D,F , f0) = ((W,AN ); `;u; b)

• W = {v ∈ V | v is source or sink } ∪ F
• AN = {(v, f) | v incident to f}
• `(a) = 0 ∀a ∈ AN
• u(a) = 1 ∀a ∈ AN

• b(q) =


1 ∀q ∈W ∩ V
−(A(q)− 1) ∀q ∈ F \ {f0}
−(A(q) + 1) q = f0
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Example

normal nodes
sources/sinks
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Example

normal nodes
sources/sinks
face nodes
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Example

normal nodes
sources/sinks
face nodes

−2

−3

0

−1

1
1 1

1

1

1
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Example

normal nodes
sources/sinks
face nodes

−2

−3

0

−1

1
1 1

1

1

1

Thm 6:Let G be a directed acyclic digraph with embedding F
and outer face f0. The bipartite flow network
N(D,F , f0) admits a valid flow of value r (# of
sources/sinks) if and only if G has a consistent
assignment of sources and sinks to faces.
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Example

normal nodes
sources/sinks
face nodes

−2

−3

0

−1

1
1 1

1

1

1

• start with zero flow
• search for augmenting path (r times for total of r sources

and sinks)
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Final Remarks

• O(rn) to decide whether consistent assignment exists
• works also without fixed outer face f0: first compute all

faces as internal and then add two units of demand to a
face vertex and test whether the total flow can be
augmented by two units. Do it for every face.
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(recall)
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Final Remarks

• O(rn) to decide whether consistent assignment exists
• works also without fixed outer face f0: first compute all

faces as internal and then add two units of demand to a
face vertex and test whether the total flow can be
augmented by two units. Do it for every face.

Thm 2:For a combinatorially embedded planar directed
graph it can be tested in O(n2) time whether it is
upward planar.

Thm 5: For a directed acyclic graph D = (V,A) with
combinatorial embedding F , f0 it holds:
D is upward planar ⇔ D bimodal and ∃ consistent Φ

+ algorithm to test the existence of assignment, imply:

The layout can be constructed in the same time: O(n) to
augment to st-digraphs and O(n) to draw the st-digraph

(recall)
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Discussion
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Discussion

• There exists a fixed-parameter tractable algorithm to test
upward planarity, with parameter being the number of
triconnected components [Healy, Lynch SOFSEM 2005]

• The decision of Theorem 2 can be done in O(n+ r1.5)
time where r = # sources/sinks [Abbasi, Healy, Rextin IPL 2010]

• many related concepts have been studied
recently: quasi-planarity, upward drawings of
mixed graphs
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