

Algorithms for Graph Visualization

Flow Methods: Orthogonal Layouts - Part II

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Torsten Ueckerdt

04.12.2019

(Planar) Orthogonal Drawings

Three-step approach: Topology – Shape – Metrics

[Tamassia SIAM J. Comput. 1987]

(Planar) Orthogonal Drawings

Three-step approach: Topology - Shape - Metrics

Def: Flow Network $N_{\mathsf{hor}} = ((W_{\mathsf{hor}}, A_{\mathsf{hor}}); \ell; u; b; \mathsf{cost})$

- $W_{\mathsf{hor}} = \mathcal{F} \setminus \{f_0\} \cup \{s, t\}$
- $A_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$
- $\ell(a) = 1 \quad \forall a \in A_{\mathsf{hor}}$
- $u(a) = \infty \quad \forall a \in A_{\mathsf{hor}}$
- $cost(a) = 1 \quad \forall a \in A_{hor}$
- $\bullet \ b(f) = 0 \ \forall f \in W_{\mathsf{hor}}$

Def: Flow Network $N_{\mathsf{hor}} = ((W_{\mathsf{hor}}, A_{\mathsf{hor}}); \ell; u; b; \mathsf{cost})$

• $W_{\mathsf{hor}} = \mathcal{F} \setminus \{f_0\} \cup \{s, t\}$

• $A_{\text{hor}} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$

• $\ell(a) = 1 \quad \forall a \in A_{\mathsf{hor}}$

- $u(a) = \infty \quad \forall a \in A_{\mathsf{hor}}$
- $cost(a) = 1 \quad \forall a \in A_{hor}$
- $\bullet \ b(f) = 0 \ \underline{t} \ \forall f \in W_{\mathrm{hor}}$

s and t represent lower and upper side of f_0

Def: Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, A_{\text{ver}}); \ell; u; b; \text{cost})$

- $W_{\mathsf{ver}} = \mathcal{F} \setminus \{f_0\} \cup \{s, t\}$
- $A_{\text{ver}} = \{(f,g) \mid f,g \text{ share a vertical segment and } f \text{ lies to the left of } g\} \cup \{(t,s)\}$
- $\ell(a) = 1 \quad \forall a \in A_{\text{ver}}$
- $u(a) = \infty \quad \forall a \in A_{\text{ver}}$
- $cost(a) = 1 \quad \forall a \in A_{ver}$
- $b(f) = 0 \quad \forall f \in W_{\text{ver}}$

Def: Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, A_{\text{ver}}); \ell; u; b; \text{cost})$

- $W_{\mathsf{ver}} = \mathcal{F} \setminus \{f_0\} \cup \{s, t\}$
- $A_{\text{ver}} = \{(f,g) \mid f,g \text{ share a vertical segment and } f \text{ lies to the left of } g\} \cup \{(t,s)\}$
- $\ell(a) = 1 \quad \forall a \in A_{\text{ver}}$
- $u(a) = \infty \quad \forall a \in A_{\text{ver}}$
- $cost(a) = 1 \quad \forall a \in A_{ver}$
- $b(f) = 0 \quad \forall f \in W_{\text{ver}}$

Pair, think, share:

3 min

What values of the drawing represent the following?

- $|X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$?
- $\bullet \sum_{a \in A_{\mathsf{hor}}} X_{\mathsf{hor}}(a) + \sum_{a \in A_{\mathsf{ver}}} X_{\mathsf{ver}}(a)$

Optimal Layout

Thm 2:Integer flows $X_{\rm hor}$ and $X_{\rm ver}$ in $N_{\rm hor}$ and $N_{\rm ver}$ with minimum cost induce a valid orthogonal layout with minimum total edge length. The layout can be computed in $O(n^{3/2})$ time.

- ullet construct the duals $N_{
 m hor}^{\star}$ and $N_{
 m ver}^{\star}$ of $N_{
 m hor}$ and $N_{
 m ver}$
- ullet topologial numbering T_{hor} and T_{ver} of N_{hor}^{\star} and N_{ver}^{\star}
- for edge (f,g) of N_{hor} set flow $X_{\mathsf{hor}}(f,g) = T_{\mathsf{hor}}(u) T_{\mathsf{hor}}(v)$, where u is dual vertex on the left and v is dual vertex on the right of (f,g), similar for X_{ver}
- the constructed functions X_{hor} , X_{ver} have minimum cost

- ullet construct the duals $N_{
 m hor}^{\star}$ and $N_{
 m ver}^{\star}$ of $N_{
 m hor}$ and $N_{
 m ver}$
- ullet topologial numbering T_{hor} and T_{ver} of N_{hor}^{\star} and N_{ver}^{\star}
- for edge (f,g) of N_{hor} set flow $X_{\mathsf{hor}}(f,g) = T_{\mathsf{hor}}(u) T_{\mathsf{hor}}(v)$, where u is dual vertex on the left and v is dual vertex on the right of (f,g), similar for X_{ver}
- the constructed functions X_{hor} , X_{ver} have minimum cost

- ullet construct the duals $N_{
 m hor}^{\star}$ and $N_{
 m ver}^{\star}$ of $N_{
 m hor}$ and $N_{
 m ver}$
- ullet topologial numbering $T_{
 m hor}$ and $T_{
 m ver}$ of $N_{
 m hor}^{\star}$ and $N_{
 m ver}^{\star}$
- for edge (f,g) of N_{hor} set flow $X_{\mathsf{hor}}(f,g) = T_{\mathsf{hor}}(u) T_{\mathsf{hor}}(v)$, where u is dual vertex on the left and v is dual vertex on the right of (f,g), similar for X_{ver}
- the constructed functions X_{hor} , X_{ver} have minimum cost

- ullet construct the duals $N_{
 m hor}^{\star}$ and $N_{
 m ver}^{\star}$ of $N_{
 m hor}$ and $N_{
 m ver}$
- ullet topologial numbering $T_{
 m hor}$ and $T_{
 m ver}$ of $N_{
 m hor}^{\star}$ and $N_{
 m ver}^{\star}$
- for edge (f,g) of N_{hor} set flow $X_{\mathrm{hor}}(f,g)=T_{\mathrm{hor}}(u)-T_{\mathrm{hor}}(v)$, where u is dual vertex on the left and v is dual vertex on the right of (f,g), similar for X_{ver}
- the constructed functions X_{hor} , X_{ver} have minimum cost

- ullet construct the duals $N_{
 m hor}^{\star}$ and $N_{
 m ver}^{\star}$ of $N_{
 m hor}$ and $N_{
 m ver}$
- ullet topologial numbering T_{hor} and T_{ver} of N_{hor}^{\star} and N_{ver}^{\star}
- for edge (f,g) of N_{hor} set flow $X_{\mathrm{hor}}(f,g)=T_{\mathrm{hor}}(u)-T_{\mathrm{hor}}(v)$, where u is dual vertex on the left and v is dual vertex on the right of (f,g), similar for X_{ver}
- the constructed functions X_{hor} , X_{ver} have minimum cost

- $^{\bullet}$ construct the duals $N_{\rm hor}^{\star}$ and $N_{\rm ver}^{\star}$ of $N_{\rm hor}$ and $N_{\rm ver}$
- ullet topologial numbering T_{hor} and T_{ver} of N_{hor}^{\star} and N_{ver}^{\star}
- for edge (f,g) of N_{hor} set flow $X_{\mathsf{hor}}(f,g) = T_{\mathsf{hor}}(u) T_{\mathsf{hor}}(v)$, where u is dual vertex on the left and v is dual vertex on the right of (f,g), similar for X_{ver}
- the constructed functions X_{hor} , X_{ver} have minimum cost

- This approach finds minimum width, height, area, but does not guarantee minimum total edge length
- Time complexity O(n)

- This approach finds minimum width, height, area, but does not guarantee minimum total edge length
- Time complexity O(n)

front(e) may be undefined

$$\operatorname{turn}(e) = \begin{cases} 1 & \text{left bend} \\ 0 & \text{no bend} \\ -1 & \text{right bend} \end{cases}$$

front(e) may be undefined

$$\operatorname{turn}(e) = \begin{cases} 1 & \text{left bend} \\ 0 & \text{no bend} \\ -1 & \text{right bend} \end{cases}$$

- front(e) may be undefined
- when $\sum \operatorname{turn}(e) < 1$ for the complete turn around f_0 , project on R

$$\operatorname{turn}(e) = \begin{cases} 1 & \text{left bend} \\ 0 & \text{no bend} \\ -1 & \text{right bend} \end{cases}$$

- front(e) may be undefined
- when $\sum \operatorname{turn}(e) < 1$ for the complete turn around f_0 , project on R

$$\operatorname{turn}(e) = \begin{cases} 1 & \text{left bend} \\ 0 & \text{no bend} \\ -1 & \text{right bend} \end{cases}$$

- front(e) may be undefined
- when $\sum \operatorname{turn}(e) < 1$ for the complete turn around f_0 , project on R

$$\operatorname{turn}(e) = \begin{cases} 1 & \text{left bend} \\ 0 & \text{no bend} \\ -1 & \text{right bend} \end{cases}$$

- front(e) may be undefined
- when $\sum \operatorname{turn}(e) < 1$ for the complete turn around f_0 , project on R

$$\operatorname{turn}(e) = \begin{cases} 1 & \text{left bend} \\ 0 & \text{no bend} \\ -1 & \text{right bend} \end{cases}$$

- front(e) may be undefined
- when $\sum \operatorname{turn}(e) < 1$ for the complete turn around f_0 , project on R

$$\mathsf{turn}(e) = egin{cases} 1 & \mathsf{left} \; \mathsf{bend} \ 0 & \mathsf{no} \; \mathsf{bend} \ -1 & \mathsf{right} \; \mathsf{bend} \end{cases}$$

- front(e) may be undefined
- when $\sum \operatorname{turn}(e) < 1$ for the complete turn around f_0 , project on R

$$\operatorname{turn}(e) = \begin{cases} 1 & \text{left bend} \\ 0 & \text{no bend} \\ -1 & \text{right bend} \end{cases}$$

- front(e) may be undefined
- when $\sum \operatorname{turn}(e) < 1$ for the complete turn around f_0 , project on R

turn
$$(e) = \begin{cases} 1 & \text{left bend} \\ 0 & \text{no bend} \\ -1 & \text{right bend} \end{cases}$$

- front(e) may be undefined
- when $\sum \operatorname{turn}(e) < 1$ for the complete turn around f_0 , project on R

turn
$$(e)=egin{cases} 1 & \text{left bend} \\ 0 & \text{no bend} \\ -1 & \text{right bend} \end{cases}$$

- front(e) may be undefined
- when $\sum \operatorname{turn}(e) < 1$ for the complete turn around f_0 , project on R

$$\operatorname{turn}(e) = \begin{cases} 1 & \text{left bend} \\ 0 & \text{no bend} \\ -1 & \text{right bend} \end{cases}$$

- front(e) may be undefined
- when $\sum \operatorname{turn}(e) < 1$ for the complete turn around f_0 , project on R

$$\operatorname{turn}(e) = \begin{cases} 1 & \text{left bend} \\ 0 & \text{no bend} \\ -1 & \text{right bend} \end{cases}$$

- front(e) may be undefined
- when $\sum \operatorname{turn}(e) < 1$ for the complete turn around f_0 , project on R

all faces are rectangles \rightarrow apply flow network

Has minimum area?

NO!

Has minimum area?

NO!

Area Minimization with a given orthogonal representation is an NP-hard problem!

- An orthogonal representation with minimum number of bends can be found in $O(n^{3/2})$ time
- Given an orthogonal representation a layout with minimum area and total edge length is achievable for the case of rectangular faces
- In case of non-rectangular faces, reduce the problem to rectangular case. The resulting area is not minimum.

- An orthogonal representation with minimum number of bends can be found in $O(n^{3/2})$ time
- Given an orthogonal representation a layout with minimum area and total edge length is achievable for the case of rectangular faces
- In case of non-rectangular faces, reduce the problem to rectangular case. The resulting area is not minimum.
- Area minimization with a given orthogonal representation is an NP-hard problem.

- An orthogonal representation with minimum number of bends can be found in $O(n^{3/2})$ time
- Given an orthogonal representation a layout with minimum area and total edge length is achievable for the case of rectangular faces
- In case of non-rectangular faces, reduce the problem to rectangular case. The resulting area is not minimum.
- Area minimization with a given orthogonal representation is an NP-hard problem.
 [Patrignany CGTA 2001]
- Solvable with an integer linear program (ILP)
 [Klau, Mutzel IPCO 1999]

- An orthogonal representation with minimum number of bends can be found in $O(n^{3/2})$ time
- Given an orthogonal representation a layout with minimum area and total edge length is achievable for the case of rectangular faces
- In case of non-rectangular faces, reduce the problem to rectangular case. The resulting area is not minimum.
- Area minimization with a given orthogonal representation is an NP-hard problem.
- Solvable with an integer linear program (ILP)
 [Klau, Mutzel IPCO 1999]
- Various heuristics have been implemented and experimentally evaluated w.r.t. running time and quality

[Klau, Klein, Mutzel GD 2001]

- An orthogonal representation with minimum number of bends can be found in $O(n^{3/2})$ time
- Given an orthogonal representation a layout with minimum area and total edge length is achievable for the case of rectangular faces
- In case of non-rectangular faces, reduce the problem to rectangular case. The resulting area is not minimum.
- Area minimization with a given orthogonal representation is an NP-hard problem.
- Solvable with an integer linear program (ILP)
 [Klau, Mutzel IPCO 1999]
- Various heuristics have been implemented and experimentally evaluated w.r.t. running time and quality [Klau, Klein, Mutzel GD 2001]
- For non-planar graphs the area minimization is hard to
 approximate [Bannister, Eppstein, Simons JGAA 2012]

Upward Planarity

Def: A directed acyclic graph D = (V, A) is called **upward planar**, when D admits a drawing (vertices points, edges simple curves), which is planar and each edge is a monotone curve increasing in y-direction.

Upward Planarity

Def: A directed acyclic graph D = (V, A) is called **upward planar**, when D admits a drawing (vertices points, edges simple curves), which is planar and each edge is a monotone curve increasing in y-direction.

Example:

Upward Planarity

Def: A directed acyclic graph D = (V, A) is called **upward planar**, when D admits a drawing (vertices points, edges simple curves), which is planar and each edge is a monotone curve increasing in y-direction.

Example:

planar!

upward planar? - NO!