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Three-step approach: Topology — Shape — Metrics

[Tamassia SIAM J. Comput. 1987]
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Flow Network for Edge Length Computation QT

Def: Flow Network Nnor = ((Whor, Anor ); £; u; b; cost)

® Whor = F\{fo} U{s,t}

® Anor ={(f,9) | f,g share a horizontal segment and f lies
below g} U{(t,s)}

o K(CL) — 1 Va € Ay

® u(a) =00 Va € Anor

® cost(a) =1 Va € Anor

¢ b(f) = Ot Vi€ Whor
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Flow Network for Edge Length Computation QT

Def Flow Network Nyer = ((Wier, Aver); £;u; b; cost)
ver —F\{fO}U{S t}

® Aver ={(f,9) | f, g share a vertical segment and f lies to
the left of g} U {(¢,s)}

®la)=1 Va & Ay

® u(a) =00 Va &€ Aye
® cost(a) =1 Va & Aye
*b(f) =0 VfeE Wi

q ? Pair, think, share: 3 min

What values of the drawing represent
the following?
® | Xhor(t,s)] and | Xye (2, s)|7?

® 2 acan, Xhor(@) 2 aea,, Xver(a)
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Optimal Layout QAT
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Thm 2:Integer flows Xpor and X e In Npor and Nyer With
minimum cost induce a valid orthogonal layout with
minimum total edge length. The layout can be
computed in O(n3/2) time.
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Faster Flow Computation QAT
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® construct the duals N and N7,
® topologial numbering T},or and 1, of N
® for edge (f,g) of Npor set flow
Xhor(f59) = Thor(u) — Thor(v), where u is dual vertex on
the left and v is dual vertex on the right of (f, g), similar
for X, e

® the constructed functions Xy, Xyer have minimum cost

of]th.and pﬂmr
and N*

hor ver
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Faster Flow Computation QAT
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® This approach finds minimum width, height, area, but does
not guarantee minimum total edge length
® Time complexity O(n)
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Faster Flow Computation AUT
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But what if not all faces are rectangles?
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® This approach finds minimum width, height, area, but does
not guarantee minimum total edge length
® Time complexity O(n)
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Refinement of (G, H) — Inner Face AUT
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Refinement of (G, H) — Inner Face AUT
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Refinement of (G, H) — Inner Face AUT

tttttttttttttttttttttttttttttt

e
¢ 14 0
\_ -
corner(e)
€15 [
< next(e) / €8
€9 €13
o
€0 €10
€1 €11
®
€2 €12
€3
ey
€4
€5
Dummy nodes for bends: o

Torsten Ueckerdt



Refinement of (G, H) — Inner Face AUT

tttttttttttttttttttttttttttttt

lg €14 ol
—1 —1
€15 @ ® e
€9 €13
O - 1 —1
1 €0 €10
€1 €11
1 _
€2 ! 1 €12 *
€3
1 €7
€4 —1
€5
Dummy nodes for bends: o

1 c6 1 (1 left bend
turn(e) =<0  no bend
_—1 right bend

Torsten Ueckerdt



Refinement of (G, H) — Inner Face AUT

tttttttttttttttttttttttttttttt

10 c14 ol
—1 —1
€15 @ ® ea
€9 €13
O - 1 —1
1 €0 €10
€1 €11
1 _
o ! e .
€3 front%eo): edge following ey such
1 51 €7 that for the edges in between
es| *—"> turn(e) =1
s Dummy nodes for bends: o
1 “6 1 (1 left bend

turn(e) =<0  no bend
_—1 right bend

Torsten Ueckerdt



Refinement of (G, H) — Inner Face AUT

tttttttttttttttttttttttttttttt

10 c14 ol
—_
o .—1 —1 7™~ extend(ep)
15 G —
€9 €13
10 = _--1----0 1 an —1 ot
0 e — — project(eg)
o b1 |
€2 ! 1 2T .
€3 front%eo): edge following ey such
1 51 €7 that for the edges in between
es| *—"> turn(e) =1
Dummy nodes for bends: o
1 € .1 4
6 1 left bend

turn(e) =<0  no bend
_—1 right bend

Torsten Ueckerdt



Refinement of (G, H) — Inner Face AUT

tttttttttttttttttttttttttttttt

€
1. 14 o 1
—1
€15
€9 €13
O —1
1 €10
®
€12 1

Dummy nodes for bends: o
(1 left bend

turn(e) =<0  no bend
_—1 right bend




Refinement of (G, H) — Inner Face AUT

tttttttttttttttttttttttttttttt

€
1. 14 o 1
—1
€15
€9 €13
O —1
1 €10
®
€12 1

Dummy nodes for bends: o
(1 left bend

turn(e) =<0  no bend
_—1 right bend




Refinement of (G, H) — Inner Face AUT

tttttttttttttttttttttttttttttt

€
1. 14 o 1
—1
€15
€9 €13
O —1
1 €10
®
€12 1

Dummy nodes for bends: o
(1 left bend

turn(e) =<0  no bend
_—1 right bend

7-9 Torsten Ueckerdt



Refinement of (G, H) — Inner Face AUT

tttttttttttttttttttttttttttttt

€14
le O ol
—1
€15
€9 €13
O —1
1 €10
®
€12 1

Dummy nodes for bends: o
(1 left bend

turn(e) =<0  no bend
_—1 right bend




Refinement of (G, H) — Inner Face AUT

tttttttttttttttttttttttttttttt

€14
lg O ol
—1
et st (£ @¢——0------ O
€9 €13
0 —1
1 €10
®
€12 1

Dummy nodes for bends: o
(1 left bend

turn(e) =<0  no bend
_—1 right bend




Refinement of (G, H) — Inner Face AUT

tttttttttttttttttttttttttttttt

Dummy nodes for bends: o
1 (1 left bend

turn(e) =<0  no bend
_—1 right bend




Refinement of (G, H) — Inner Face AUT

tttttttttttttttttttttttttttttt

Dummy nodes for bends: o
1 (1 left bend

turn(e) =<0  no bend
_—1 right bend
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Refinement of (G, H) — Outer Face AUT

tttttttttttttttttttttttttttttt

® front(e) may be
undefined
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® front(e) may be
undefined

® when ) turn(e) < 1
for the complete turn
around fy, project on R
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S5 turn(e) =<0  no bend
| —1 right bend
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® front(e) may be
undefined

® when ) turn(e) < 1
for the complete turn
around fy, project on R

€15

all faces are rectangles —
apply flow network
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Refinement of (G, H) — Outer Face AUT
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Has minimum area?

NO!

Area Minimization with a given orthogonal representation is an
NP-hard problem!
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Summary QAT
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® An orthogonal representation with minimum number of
bends can be found in O(n3/?) time

® Given an orthogonal representation a layout with minimum
area and total edge length is achievable for the case of
rectangular faces

® |n case of non-rectangular faces, reduce the problem to
rectangular case. The resulting area iIs not minimum.
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® An orthogonal representation with minimum number of
bends can be found in O(n3/?) time

® Given an orthogonal representation a layout with minimum
area and total edge length is achievable for the case of
rectangular faces

® |n case of non-rectangular faces, reduce the problem to

rectangular case. The resulting area iIs not minimum.
® Area minimization with a given orthogonal representation is

an NP-hard problem. [Patrignany CGTA 2001]
® Solvable with an integer linear program (ILP)
[Klau, Mutzel IPCO 1999]
® Various heuristics have been implemented and

experimentally evaluated w.r.t. running time and quality
[Klau, Klein, Mutzel GD 2001]

® For non-planar graphs the area minimization is hard to
apprOXimate [Bannister, Eppstein, Simons JGAA 2012]
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Upward Planarity T
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Def: A directed acyclic graph D = (V, A) is called upward
planar, when D admits a drawing (vertices points, edges
simple curves), which is planar and each edge is a
monotone curve Increasing in y-direction.
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Def: A directed acyclic graph D = (V, A) is called upward
planar, when D admits a drawing (vertices points, edges
simple curves), which is planar and each edge is a
monotone curve Increasing in y-direction.

Example:

planar!

upward planar? — NO!
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