

Algorithms for Graph Visualization

Flow Methods: Orthogonal Layouts - Part I

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Torsten Ueckerdt

20.11.2019

Orthogonal Layouts

Karlsruhe Institute of Technology

Oracle

UML diagram by

Edges consist of vertical and horizontal segments

Applied in many areas

Orthogonal Layouts

Karlsruhe Institute of Technology

Edges consist of vertical and horizontal segments

Applied in many areas

Orthogonal Layouts

- Kartsruhe Institute of Technology
- Edges consist of vertical and horizontal segments
- Applied in many areas

Three-step approach: Topology – Shape – Metrics

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

Three-step approach: Topology – Shape – Metrics

[Tamassia SIAM J. Comput. 1987]

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

Reduce Crossings

combinatorial embedding/planarization

Three-step approach: Topology - Shape - Metrics

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

$$\begin{array}{c} \text{combinatorial} \\ \text{embedding/} \\ \text{planarization} \\ \end{array}$$

$$\begin{array}{c} \text{Bend Minim} \end{array}$$

Three-step approach: Topology – Shape – Metrics

Three-step approach: Topology – Shape – Metrics

Orthogonal Representation

Given: planar graph G = (V, E), set of faces \mathcal{F} , outer face f_0

Find: orthogonal representation $H(G) = \{H(f) \mid f \in \mathcal{F}\}$

Face representation H(f): of f is a clockwise ordered sequence of edge descriptions (e, δ, α) with

- \bullet e edge of f
- δ is sequence of $\{0,1\}^*$ (0 = right bend, 1 = left bend)
- ullet α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

Combinatorial "drawing" of H(G)?

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$
 is f_0 listed wrongly!?
$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

concrete coordinates are not fixed yet!

(H1) H(G) corresponds to \mathcal{F}, f_0

- (H1) H(G) corresponds to \mathcal{F}, f_0
- (H2) for an edge $\{u,v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1)\in H(f)$ and $((v,u),\delta_2,\alpha_2)\in H(g)$ sequence δ_1 is reversed and inverted δ_2

- (H1) H(G) corresponds to \mathcal{F}, f_0
- (H2) for an edge $\{u,v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1)\in H(f)$ and $((v,u),\delta_2,\alpha_2)\in H(g)$ sequence δ_1 is reversed and inverted δ_2
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r=(e,\delta,\alpha)$. For $C(r):=|\delta|_0-|\delta|_1+2-2\alpha/\pi$ it holds that: $\sum_{r\in H(f)}C(r)=4 \text{ for } f\neq f_0 \text{ and } \sum_{r\in H(f_0)}C(r)=-4$

- (H1) H(G) corresponds to \mathcal{F}, f_0
- (H2) for an edge $\{u,v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1)\in H(f)$ and $((v,u),\delta_2,\alpha_2)\in H(g)$ sequence δ_1 is reversed and inverted δ_2
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r=(e,\delta,\alpha)$. For $C(r):=|\delta|_0-|\delta|_1+2-2\alpha/\pi$ it holds that: $\sum_{r\in H(f)}C(r)=4 \text{ for } f\neq f_0 \text{ and } \sum_{r\in H(f_0)}C(r)=-4$
- (H4) For each node v the sum of incident angles is 2π

- (H1) H(G) corresponds to \mathcal{F}, f_0
- (H2) for an edge $\{u,v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1)\in H(f)$ and $((v,u),\delta_2,\alpha_2)\in H(g)$ sequence δ_1 is reversed and inverted δ_2
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r=(e,\delta,\alpha)$. For $C(r):=|\delta|_0-|\delta|_1+2-2\alpha/\pi$ it holds that: C(r)=4 for $f\neq f_0$ and C(r)=-4

$$\sum_{r \in H(f)} C(r) = 4 \text{ for } f \neq f_0 \text{ and } \sum_{r \in H(f_0)} C(r) = -4$$

(H4) For each node v the sum of incident angles is 2π

Pair, think and share:

What does the condition (H3) mean intuitively?

5 min

Bend Minimization with Given Embedding

Problem: Geometric Bend Minimization

- Given: \bullet planar Graph G=(V,E) with maximum degree 4
 - ullet combinatorial embedding ${\cal F}$ and outer face f_0

Find: orthogonal drawing with minimum number of bends that preserves the embedding

Bend Minimization with Given Embedding

Problem: Geometric Bend Minimization

Given: \bullet planar Graph G = (V, E) with maximum degree 4

ullet combinatorial embedding ${\mathcal F}$ and outer face f_0

Find: orthogonal drawing with minimum number of bends that preserves the embedding

compare with the following variation

Problem: Combinatorial Bend Minimization

Given: \bullet planar Graph G = (V, E) with maximum degree 4

ullet combinatorial embedding ${\cal F}$ and outer face f_0

Find: orthogonal representation H(G) with minimum number of bends that preserves the embedding

Combinatorial Bend Minimization

Problem Combinatorial Bend Minimization

Given: \bullet Graph G = (V, E) with maximum degree 4

ullet combinatorial embedding ${\cal F}$ and outer face f_0

Find: orthogonal representation H(G) with minimum number of bends that preserves the embedding

Combinatorial Bend Minimization

Problem Combinatorial Bend Minimization

Given: ullet Graph G=(V,E) with maximum degree 4

ullet combinatorial embedding ${\cal F}$ and outer face f_0

Find: orthogonal representation H(G) with minimum number of bends that preserves the embedding

Idea: formulate as a network flow problem

- ullet a unit of flow represents an angle of $\pi/2$
- flow from vertices to faces represents the angles at the vertices
- flow between adjacent faces represent the bends at the edges

Reminder: s-t Flow Network

Flow network (D = (V, A); s, t; u) with

- directed graph D = (V, A)
- edge capacity $u \colon A \to \mathbb{R}_0^+$
- source $s \in V$, sink $t \in V$

A function $X: A \to \mathbb{R}_0^+$ is called s-t-flow, if:

$$0 \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in A \tag{1}$$

$$\sum_{(i,j)\in A} X(i,j) - \sum_{(j,i)\in A} X(j,i) = 0 \qquad \forall i \in V \setminus \{s,t\}$$
 (2)

Reminder: General Flow Network

Flow network $(D = (V, A); \ell; u; b)$ with

- directed graph D = (V, A)
- edge lower bound $\ell \colon A \to \mathbb{R}_0^+$
- edge capacity $u: A \to \mathbb{R}_0^+$
- node production/consumption $b: V \to \mathbb{R}$ with $\sum_{i \in V} b(i) = 0$

A function $X: A \to \mathbb{R}_0^+$ is called **valid flow**, if:

$$\ell(i,j) \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in A \qquad (3)$$

$$\sum_{(i,j)\in A} X(i,j) - \sum_{(j,i)\in A} X(j,i) = b(i) \qquad \forall i \in V$$
 (4)

Problems for Flow Networks

(A) Valid Flow Problem:

Find a valid flow $X \colon A \to \mathbb{R}_0^+$, i.e., such that

- lower bounds and capacities $\ell(e), u(e)$ are respected (inequalities (3))
- ullet consumption/production b(i) satisfied (inequalities (4))

Problems for Flow Networks

(A) Valid Flow Problem:

Find a valid flow $X:A\to\mathbb{R}^+_0$, i.e., such that

- lower bounds and capacities $\ell(e), u(e)$ are respected (inequalities (3))
- ullet consumption/production b(i) satisfied (inequalities (4))

Additionally provided: Cost function $cost: A \to \mathbb{R}_0^+$

Def: $cost(X) := \sum_{(i,j) \in A} cost(i,j) \cdot X(i,j)$

Problems for Flow Networks

(A) Valid Flow Problem:

Find a valid flow $X:A\to\mathbb{R}_0^+$, i.e., such that

- lower bounds and capacities $\ell(e), u(e)$ are respected (inequalities (3))
- consumption/production b(i) satisfied (inequalities (4))

Additionally provided: **Cost function** cost: $A \to \mathbb{R}_0^+$

Def: $cost(X) := \sum_{(i,j) \in A} cost(i,j) \cdot X(i,j)$

(B) Miminum Cost Flow Problem:

Find a valid flow $X: A \to \mathbb{R}_0^+$, that minimizes cost function $\cot(X)$ (over all valid flows)

•
$$A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to } f\} \cup \{(f, g) \in \mathcal{F} \times \mathcal{F} \mid f, g \text{ adjacent through edge } e\}$$

- $A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to } f\} \cup \{(f, g) \in \mathcal{F} \times \mathcal{F} \mid f, g \text{ adjacent through edge } e\}$
- $b(v) = 4 \quad \forall v \in V$

- $A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to } f\} \cup \{(f, g) \in \mathcal{F} \times \mathcal{F} \mid f, g \text{ adjacent through edge } e\}$
- \bullet $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2(d_G(f) 2) \quad \forall f \in \mathcal{F} \setminus \{f_0\}$
- $b(f_0) = -2(d_G(f_0) + 2)$

- $A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to } f\} \cup$ $\{(f,g)\in\mathcal{F}\times\mathcal{F}\mid f,g \text{ adjacent through edge }e\}$
- $\bullet \ b(v) = 4 \quad \forall v \in V$
- $\bullet b(f) = -2(d_G(f) 2) \quad \forall f \in \mathcal{F} \setminus \{f_0\} \\
 \bullet b(f_0) = -2(d_G(f_0) + 2)$ $\Rightarrow \sum_{w} b(w) \stackrel{?}{=} 0$

$$\Rightarrow \sum_{w} b(w) \stackrel{?}{=} 0$$

- $A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to } f\} \cup$ $\{(f,g)\in\mathcal{F}\times\mathcal{F}\mid f,g \text{ adjacent through edge }e\}$
- $\bullet \ b(v) = 4 \quad \forall v \in V$
- $b(v) = 4 \quad \forall v \in V$ $b(f) = -2(d_G(f) 2) \quad \forall f \in \mathcal{F} \setminus \{f_0\}$ $b(f_0) = -2(d_G(f_0) + 2)$ (Euler)

$$\Rightarrow \sum_{i} b(i) = 0$$
 (Euler)

- $A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to } f\} \cup$ $\{(f,g)\in\mathcal{F}\times\mathcal{F}\mid f,g \text{ adjacent through edge }e\}$
- $\bullet \ b(v) = 4 \quad \forall v \in V$
- $\begin{array}{l} \bullet \ b(f) = -2(d_G(f)-2) \quad \forall f \in \mathcal{F} \setminus \{f_0\} \\ \bullet \ b(f_0) = -2(d_G(f_0)+2) \end{array} \right\} \Rightarrow \sum_i b(i) = 0 \\ \text{(Euler)}$

$$\forall (f,g) \in A, f,g \in \mathcal{F}$$

$$\forall (v, f) \in A, v \in V, f \in \mathcal{F}$$

$$\ell(f,g) := 0 \le X(f,g) \le \infty =: u(f,g)$$

$$\mathsf{cost}(f,g) = 1$$

$$\ell(v, f) := 1 \le X(v, f) \le 4 =: u(v, f)$$
$$cost(v, f) = 0$$

V \mathcal{C}

Thm 1: A planar embedded graph (G, \mathcal{F}, f_0) has a valid orthogonal representation H(G) with k bends if and only if the flow network N(G) has a valid flow X with cost k.

Thm 1: A planar embedded graph (G, \mathcal{F}, f_0) has a valid orthogonal representation H(G) with k bends if and only if the flow network N(G) has a valid flow X with cost k.

Proof:

 \Leftarrow Given valid flow X in N(G) with cost k Construct orthogonal representation H(G) with k bends

Thm 1: A planar embedded graph (G, \mathcal{F}, f_0) has a valid orthogonal representation H(G) with k bends if and only if the flow network N(G) has a valid flow X with cost k.

Proof:

- \Leftarrow Given valid flow X in N(G) with cost k Construct orthogonal representation H(G) with k bends
 - transform from flow to orthogonal description
 - show properties (H1)–(H4)

Thm 1: A planar embedded graph (G, \mathcal{F}, f_0) has a valid orthogonal representation H(G) with k bends if and only if the flow network N(G) has a valid flow X with cost k.

Proof:

- \Leftarrow Given valid flow X in N(G) with cost k Construct orthogonal representation H(G) with k bends
 - transform from flow to orthogonal description
 - show properties (H1)–(H4)
- \Rightarrow Given an orthogonal representation H(G) with k bends Construct valid flow X in N(G) with cost k

Thm 1: A planar embedded graph (G, \mathcal{F}, f_0) has a valid orthogonal representation H(G) with k bends if and only if the flow network N(G) has a valid flow X with cost k.

Proof:

- \Leftarrow Given valid flow X in N(G) with cost k Construct orthogonal representation H(G) with k bends
 - transform from flow to orthogonal description
 - show properties (H1)–(H4)
- \Rightarrow Given an orthogonal representation H(G) with k bends Construct valid flow X in N(G) with cost k
 - define flow $X: A \to \mathbb{R}_0^+$
 - ullet show that X is a valid flow and has cost k

Summary of Bend Minimization

• From Theorem 1 it follows that the combinatorial orthogonal bend minimization problem for embedded planar graphs can be solved using an algorithm for the Min-Cost-Flow Problem.

Summary of Bend Minimization

- From Theorem 1 it follows that the combinatorial orthogonal bend minimization problem for embedded planar graphs can be solved using an algorithm for the Min-Cost-Flow Problem.
- ullet This special flow problem for a planar network N(G) can be solved in $O(n^{3/2})$ time. [Cornelsen, Karrenbauer GD 2011]

Summary of Bend Minimization

- From Theorem 1 it follows that the combinatorial orthogonal bend minimization problem for embedded planar graphs can be solved using an algorithm for the Min-Cost-Flow Problem.
- ullet This special flow problem for a planar network N(G) can be solved in $O(n^{3/2})$ time. [Cornelsen, Karrenbauer GD 2011]
- Bend minimization without a given combinatorial embedding is an NP-hard problem. [Garg, Tamassia SIAM J. Comput. 2001]

(Planar) Orthogonal Drawings

Three-step approach: Topology – Shape – Metrics

[Tamassia SIAM J. Comput. 1987]

(Planar) Orthogonal Drawings

Three-step approach: Topology – Shape – Metrics

Compaction Problem:

Given: \bullet planar graph G=(V,E) with maximum degree 4

ullet orthogonal representation H(G)

Find: compact orthogonal layout of G that realizes H(G)

Compaction Problem:

Given: \bullet planar graph G = (V, E) with maximum degree 4

ullet orthogonal representation H(G)

Find: compact orthogonal layout of G that realizes H(G)

Special Case: all faces are rectangles

→ Guarantees possible • minimum total edge length

minimum area

Compaction Problem:

Given: \bullet planar graph G = (V, E) with maximum degree 4

ullet orthogonal representation H(G)

Find: compact orthogonal layout of G that realizes H(G)

Special Case: all faces are rectangles

→ Guarantees possible • minimum total edge length

minimum area

Properties:

- bends only on the outer face
- opposite sides of a face have the same length

Compaction Problem:

Given: \bullet planar graph G = (V, E) with maximum degree 4

ullet orthogonal representation H(G)

Find: compact orthogonal layout of G that realizes H(G)

Special Case: all faces are rectangles

→ Guarantees possible • minimum total edge length

minimum area

Properties:

- bends only on the outer face
- opposite sides of a face have the same length

We will formulate a flow network for (horizontal) compaction

Def: Flow Network $N_{\mathsf{hor}} = ((W_{\mathsf{hor}}, A_{\mathsf{hor}}); \ell; u; b; \mathsf{cost})$

- $W_{\mathsf{hor}} = \mathcal{F} \setminus \{f_0\} \cup \{s, t\}$
- $A_{\text{hor}} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$
- $\ell(a) = 1 \quad \forall a \in A_{\mathsf{hor}}$
- $u(a) = \infty \quad \forall a \in A_{\mathsf{hor}}$
- $cost(a) = 1 \quad \forall a \in A_{hor}$
- $\bullet \ b(f) = 0 \ \forall f \in W_{\mathsf{hor}}$

18 - 1

Def: Flow Network $N_{\mathsf{hor}} = ((W_{\mathsf{hor}}, A_{\mathsf{hor}}); \ell; u; b; \mathsf{cost})$

• $W_{\mathsf{hor}} = \mathcal{F} \setminus \{f_0\} \cup \{s, t\}$

• $A_{\text{hor}} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$

- $\ell(a) = 1 \quad \forall a \in A_{\mathsf{hor}}$
- $u(a) = \infty \quad \forall a \in A_{\mathsf{hor}}$
- $cost(a) = 1 \quad \forall a \in A_{hor}$
- $\bullet \ b(f) = 0 \ \underline{t} \ \forall f \in W_{\mathrm{hor}}$

s and t represent lower and upper side of f_0

Def: Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, A_{\text{ver}}); \ell; u; b; \text{cost})$

- $W_{\mathsf{ver}} = \mathcal{F} \setminus \{f_0\} \cup \{s, t\}$
- $A_{\text{ver}} = \{(f,g) \mid f,g \text{ share a vertical segment and } f \text{ lies to the left of } g\} \cup \{(t,s)\}$
- $\ell(a) = 1 \quad \forall a \in A_{\text{ver}}$
- $u(a) = \infty \quad \forall a \in A_{\mathsf{ver}}$
- $cost(a) = 1 \quad \forall a \in A_{ver}$
- $b(f) = 0 \quad \forall f \in W_{\text{ver}}$

Def: Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, A_{\text{ver}}); \ell; u; b; \text{cost})$

- $W_{\mathsf{ver}} = \mathcal{F} \setminus \{f_0\} \cup \{s, t\}$
- $A_{\text{ver}} = \{(f,g) \mid f,g \text{ share a vertical segment and } f \text{ lies to the left of } g\} \cup \{(t,s)\}$
- $\ell(a) = 1 \quad \forall a \in A_{\text{ver}}$
- $u(a) = \infty \quad \forall a \in A_{\text{ver}}$
- $cost(a) = 1 \quad \forall a \in A_{ver}$
- $b(f) = 0 \quad \forall f \in W_{\text{ver}}$

Pair, think, share:

3 min

What values of the drawing represent the following?

- $|X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$?
- $\bullet \sum_{a \in A_{\mathsf{hor}}} X_{\mathsf{hor}}(a) + \sum_{a \in A_{\mathsf{ver}}} X_{\mathsf{ver}}(a)$