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Orthogonal Layouts

® Edges consist of vertical and horizontal segments

® Applied in many areas
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Orthogonal Layouts AT

Karlsruhe Institute of Technology

® Edges consist of vertical and horizontal segments
® Applied in many areas L
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Orthogonal Layouts AT

Karlsruhe Institute of Technology

® Edges consist of vertical and horizontal segments
® Applied in many areas L
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Aesthetic criteria: =
number of bends

length of edges
width, height, area
monotonicity of edges

ER diagram in OGDF
UML diagram by Oracle
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(Planar) Orthogonal Drawings AT
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Three-step approach: Topology — Shape — Metrics

[Tamassia SIAM J. Comput. 1987]

V — {Ulav27v3av4}
E = {v1v2, 0103, V1U4, V2V3, U204 }

-1 Torsten Ueckerdt



(Planar) Orthogonal Drawings
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Three-step approach: Topology — Shape — Metrics

[Tamassia SIAM J. Comput. 1987]

V — {U17v27v37/04}
E = {v1v2, 0103, V1U4, V2V3, U204 }
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Three-step approach: Topology — Shape — Metrics

[Tamassia SIAM J. Comput. 1987]
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(Planar) Orthogonal Drawings AT
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Three-step approach: Topology — Shape — Metrics

[Tamassia SIAM J. Comput. 1987]
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(Planar) Orthogonal Drawings AT
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Three-step approach: Topology — Shape — Metrics

[Tamassia SIAM J. Comput. 1987]
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Orthogonal Representation AT

tttttttttttttttttttttttttttttt

Given: planar graph G = (V, F), set of faces F,
outer face fj
Find: orthogonal representation H(G) ={H(f) | f € F}

Face representation H(f): of f is a clockwise ordered
sequence of edge descriptions (e, d, a) with

® e edge of f
® § is sequence of {0,1}* (0 = right bend, 1 = left bend)

® aisangle € {5,, 3777, 21w} between e and next edge €’

Torsten Ueckerdt



Orthogonal Representation: Example

H(fO) — ((617 117 %)7 (657 1117 37#)7 (647 (bvﬂ-)a (637 ®77T)7 (627®
H(fl) — ((617 00, STW)) (627 @7 %)7 (667 0077‘-))

Karlsruhe Institute of Technology




Orthogonal Representation: Example QAT

tttttttttttttttttttttttttttttt

H(f()) — ((617 117 %)7 (657 1117 3771-)7 (647 (Z)aﬂ_)a (637 (Daﬂ-)a (627 (Z)v %))
H(fl) — ((617007 37%)7 (627 @7 %)7 (6670077T)>
H(fQ) — ((6570007 %)7 (667 117 %)7 (637@77T)7 (647@7 %))

1 €1 1
fo 0 0
1 €2 €3 . €4 .
0
0 1 0
1 €6 1 f2
0 0
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Orthogonal Representation: Example AUT

tttttttttttttttttttttttttttttt

H(f()) — ((617 117 %)7 (657 1117 3771-)7 (647 (D?ﬂ_)a (637 (Daﬂ-)a (627 (Z)v %))

H(f1) = ((e1,00, %), (e2, 0, ), (6670077T)Nis fo listed wrongly!?
H(fQ) — ((657 0007 %)7 <€67 117 %)7 (637 @7 7T)7 (647 @7 %))

Jo 0 0|
1 €2 €3 . €4 .
0
0 f1 O[
1 €6 1 f2
0 0

Torsten Ueckerdt
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Orthogonal Representation: Example QAT

tttttttttttttttttttttttttttttt

H(f()) — ((617 117 %)7 (657 1117 3771-)7 (647 (Z)aﬂ_)a (637 (Daﬂ-)a (627 (Z)v %))
H(fl) — ((617007 3%)7 (627 @7 %)7 (6670077T)>
H(fQ) — ((6570007 %)7 (667 117 %)7 (637@77T)7 (647@7 %))

1 €1 1
fo 0 0
1 %ﬂ. 371_%627'(' €3 m €4 3«
G A I
2 2|2 2
fi
0 0
1 €6 1 f2
0 0
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Orthogonal Representation: Example QAT
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H(f()) — ((617 117 %)7 (657 1117 3771-)7 (647 (Z)aﬂ_)a (637 (Daﬂ-)a (627 (Z)v %))
H(fl) — ((617007 3%)7 (627 @7 %)7 (6670077T)>
H(fQ) — ((6570007 %)7 (667 117 %)7 (637@77T)7 (647@7 %))

1 €1 1
Jo [0 0
— 287 |z
110 = 32627T637r€4 37
2l =5 T g =] 2
2 AR 2
f1
0 0 /o
1 €6 1
0 0
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Orthogonal Representation: Example QAT

tttttttttttttttttttttttttttttt

H(f()) — ((617 117 %)7 (657 1117 3771-)7 (647 (D?ﬂ_)a (637 (D?ﬂ-)a (627 (Z)a %))
H(fl) — ((617007 37%)7 (627 @7 %)7 (6670077T))
H(fQ) — ((6570007 %)7 (667 117 %)7 (637@77T)7 (647@7 %))

1 €1 1
Jo [0 0
27 s
1[0 = 32627r€37r64 37
2l =5 T g =] 2
2 2[2 2
J1
0 0 J2
1 €6 1
0 0
1 €5 1

concrete coordinates are not fixed yet!

-6 Torsten Ueckerdt
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Correctness of an Orthogonal Representation QAT
(H1) H(G) corresponds to F, fo

Torsten Ueckerdt
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Correctness of an Orthogonal Representation QAT

(H1) H(G) corresponds to F, fo

(H2) for an edge {u,v} shared by faces f and g with
((uﬂv)7517a1) = H(f) and ((Uau)a(SZaaZ) c H(g)
sequence J; is reversed and inverted 0o

Torsten Ueckerdt



Correctness of an Orthogonal Representation QAT

(H1) H(G) corresponds to F, fo

(H2) for an edge {u,v} shared by faces f and g with
((uav)7517a1) < H(f) and ((U,U/),(SQ,OQ) c H(g)
sequence J; is reversed and inverted 0o

(H3) Let ||p (resp. |0]1) be the number of zeros (resp.
ones) in § and r = (e, d, ). For

’5‘0 — ‘(5’1 + 2 — 2&/7’(’ it holds that
Z C(ry=4for f# foand »  C(r

reH(f) reH (fo)



Correctness of an Orthogonal Representation QAT

(H1) H(G) corresponds to F, fo

(H2) for an edge {u,v} shared by faces f and g with
((uav)7517a1) c H(f) and ((U,U/),(SQ,OQ) c H(g)
sequence J; is reversed and inverted 0o

(H3) Let ||p (resp. |0]1) be the number of zeros (resp.
ones) in 6 and r = (e, d, ). For

’5‘0 — ‘(5’1 + 2 — 2&/7’(’ it holds that
Z C(ry=4for f# foand »  C(r

reH(f) reH (fo)

(H4) For each node v the sum of incident angles is 27



Correctness of an Orthogonal Representation QAT

(H1) H(G) corresponds to F, fo

(H2) for an edge {u,v} shared by faces f and g with
((uav)7517a1) c H(f) and ((U,U),(SQ,OQ) c H(g)
sequence J; is reversed and inverted 0o

(H3) Let ||p (resp. |0]1) be the number of zeros (resp.
ones) in 6 and r = (e, d, ). For

’5‘0 — ‘(5’1 + 2 — 2&/7’(’ it holds that
Z C(ry=4for f# foand »  C(r

reH(f) reH (fo)

(H4) For each node v the sum of incident angles is 27

D Pair, think and share:

5 min
Qi—%ﬁ What does the condition (H3) mean

intuitively?

6-5 Torsten Ueckerdt
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Bend Minimization with Given Embedding QAT

tttttttttttttttttttttttttttttt

Problem: Geometric Bend Minimization

Given: ® planar Graph G = (V, F) with maximum degree 4
® combinatorial embedding F and outer face fj
Find: orthogonal drawing with minimum number of bends that
preserves the embedding

Torsten Ueckerdt
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Bend Minimization with Given Embedding AUT

tttttttttttttttttttttttttttttt

Problem: Geometric Bend Minimization

Given: ® planar Graph G = (V, F) with maximum degree 4
® combinatorial embedding F and outer face fj
Find: orthogonal drawing with minimum number of bends that
preserves the embedding

compare with the following variation

Problem: Combinatorial Bend Minimization

Given: ® planar Graph G = (V, E) with maximum degree 4
® combinatorial embedding F and outer face fj

Find: orthogonal representation H(G) with minimum number
of bends that preserves the embedding

Torsten Ueckerdt
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Combinatorial Bend Minimization AUT

tttttttttttttttttttttttttttttt

Problem Combinatorial Bend Minimization
Given: ® Graph G = (V, E) with maximum degree 4
® combinatorial embedding F and outer face fj

Find: orthogonal representation H(G) with minimum number
of bends that preserves the embedding

Torsten Ueckerdt



Combinatorial Bend Minimization AUT

tttttttttttttttttttttttttttttt

Problem Combinatorial Bend Minimization
Given: ® Graph G = (V, E) with maximum degree 4
® combinatorial embedding F and outer face fj

Find: orthogonal representation H(G) with minimum number
of bends that preserves the embedding

Idea: formulate as a network flow problem
® a unit of flow represents an angle of /2
® flow from vertices to faces represents the angles at the
vertices
® flow between adjacent faces represent the bends at the
edges

8-2 Torsten Ueckerdt



Reminder: s-t Flow Network QAT

Flow network (D = (V, A); s,t; u) with
® directed graph D = (V, A)
® edge capacity u: A — Ry
®source sc V,sinkt eV

A function X: A — R(}L Is called s-t-flow, if:

0<X(i,7) <wuli,j)  V(,j)eA (1)
Y X)) - Y X(@Gi=0 VieV\{st} (2)

(i,j)EA (4,1)EA

Torsten Ueckerdt



Reminder: General Flow Network QAT

Flow network (D = (V, A); ¢; u; b) with
® directed graph D = (V, A)
® edge lower bound /: A — R(J{
® edge capacity u: A — RY
® node production/consumption b: V' — R with

Ziev b(z) =0
A function X: A — R(J{ Is called valid flow, if:
£(i,7) < X(4,7) < ul, j) v(i,5) €A (3)
ZXZJ ZX(], ) =0b(¢ VieV (4)

(i,5)€EA (j,i)EA

10 Torsten Ueckerdt



Problems for Flow Networks QAT

(A) Valid Flow Problem:
Find a valid flow X: A — R(J{, l.e., such that
® lower bounds and capacities £(e), u(e) are respected
(inequalities (3))
® consumption/production b(7) satisfied (inequalities (4))

11-1 Torsten Ueckerdt



Problems for Flow Networks QAT

(A) Valid Flow Problem:
Find a valid flow X: A — R(J{, l.e., such that
® lower bounds and capacities £(e), u(e) are respected
(inequalities (3))
® consumption/production b(7) satisfied (inequalities (4))

Additionally provided: Cost function cost: A — Ry
Def: cost(X) := ) _(; iyea cost(i, j) - X (¢, j)

11-2 Torsten Ueckerdt



Problems for Flow Networks QAT

(A) Valid Flow Problem:
Find a valid flow X: A — ]R(J{, 1.e., such that

® lower bounds and capacities £(e), u(e) are respected
(inequalities (3))
® consumption/production b(7) satisfied (inequalities (4))

Additionally provided: Cost function cost: A — Ry
Def: cost(X) := ) _(; iyea cost(i, j) - X (¢, j)

(B) Miminum Cost Flow Problem:

Find a valid flow X : A — RZ, that minimizes cost function
cost(X) (over all valid flows)

11-3 Torsten Ueckerdt



Flow Network for Bend Minimization QAT

tttttttttttttttttttttttttttttt

Define flow network N(G) = ((V U F, A); {; u; b; cost):

®* A={(v,f) € V x F|vincident tof} U
{(f,g9) € F x F| f,g adjacent through edge e}



Flow Network for Bend Minimization QAT

tttttttttttttttttttttttttttttt

Define flow network N(G) = ((V U F, A); {; u; b; cost):

®* A={(v,f) € V x F|vincident tof} U
{(f,g9) € F x F| f,g adjacent through edge e}

*bhv)=4 WYweV



Flow Network for Bend Minimization QAT

tttttttttttttttttttttttttttttt

Define flow network N(G) = ((V U F, A); {; u; b; cost):

®* A={(v,f) € V x F|vincident tof} U
{(f,g9) € F x F| f,g adjacent through edge e}

*Hv)=4 YveV

)
®*b(f)=—-2(da(f) —2) VfeF\{fo}
® b(fo) = —2(dg(fo) +2)



Flow Network for Bend Minimization QAT

tttttttttttttttttttttttttttttt

Define flow network N(G) = ((V U F, A); {; u; b; cost):

®* A={(v,f) € V x F|vincident tof} U
{(f,g9) € F x F| f,g adjacent through edge e}

*hv)=4 YveV
* b(f) = —2(da(f) —2) VfeF\{fo} } S b(w) L0
® b(fo) = —2(dg(fo) +2)



Flow Network for Bend Minimization QAT

tttttttttttttttttttttttttttttt

Define flow network N(G) = ((V U F, A); {; u; b; cost):

®* A={(v,f) € V x F|vincident tof} U
{(f,g9) € F x F| f,g adjacent through edge e}

*Hv)=4 YveV
*0(f) = —2(da(f) —2) VfeF\{fo} } = 2 b(i) =
* b(fo) = ~2(dc(fo) +2) (Euter)



Flow Network for Bend Minimization QAT

tttttttttttttttttttttttttttttt

Define flow network N(G) = ((V U F, A); {; u; b; cost):

®* A={(v,f) € V x F|vincident tof} U
{(f,g9) € F x F| f,g adjacent through edge e}

*Hv)=4 YveV
*0(f) = —2(da(f) —2) VfeF\{fo} } = 2 b(i) =
* b(fo) = ~2(dc(fo) +2) (Euter)

V(f,g) €A f,ge F U(f,9) =0<X(f,g9) <oo=:u(f,g

cost(f,g) =1
Vo, f) €AvEV,FEF v, f)i=1<X(v,f) <4=:uv, f)
cost(v, f) =0



Example Flow Network AT

fo
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Example Flow Network AT
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Example Flow Network AT

Karlsruhe Institute of Technology

fo
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Example Flow Network AT

Karlsruhe Institute of Technology

fo
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Example Flow Network AT

Karlsruhe Institute of Technology

fo
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Example Flow Network AT

Karlsruhe Institute of Technology

fo

¢/u/cost 1/4/0

* VXFO—
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Example Flow Network AT

Karlsruhe Institute of Technology

fo

¢/u/cost 1/4/0
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Example Flow Network AT
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fo

13-8 Torsten Ueckerdt



Example Flow Network

fo

13-9 Torsten Ueckerdt
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cost = 1
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vs  outside



Main Statement AT

tttttttttttttttttttttttttttttt

Thm 1: A planar embedded graph (G, F, fo) has a valid

orthogonal representation H(G) with k bends if and
only if the flow network N(G) has a valid flow X with
cost k.

14 -1 Torsten Ueckerdt



Main Statement AT

tttttttttttttttttttttttttttttt

Thm 1: A planar embedded graph (G, F, fo) has a valid
orthogonal representation H(G) with k bends if and

only if the flow network N(G) has a valid flow X with
cost k.

Proof:

< Given valid flow X in N(G) with cost k
Construct orthogonal representation H(G) with k bends

14 -2 Torsten Ueckerdt



Main Statement AT

tttttttttttttttttttttttttttttt

Thm 1: A planar embedded graph (G, F, fo) has a valid
orthogonal representation H(G) with k bends if and

only if the flow network N(G) has a valid flow X with
cost k.

Proof:

< Given valid flow X in N(G) with cost k
Construct orthogonal representation H(G) with k bends
® transform from flow to orthogonal description
® show properties (H1)—(H4)
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Main Statement AT

tttttttttttttttttttttttttttttt

Thm 1: A planar embedded graph (G, F, fo) has a valid

orthogonal representation H(G) with k bends if and
only if the flow network N(G) has a valid flow X with

cost k.

Proof:

< Given valid flow X in N(G) with cost k
Construct orthogonal representation H(G) with k bends
® transform from flow to orthogonal description

® show properties (H1)—(H4)

= Given an orthogonal representation H(G) with k bends
Construct valid flow X in N(G) with cost k&

14 - 4 Torsten Ueckerdt



Main Statement AT

tttttttttttttttttttttttttttttt

Thm 1: A planar embedded graph (G, F, fo) has a valid

orthogonal representation H(G) with k bends if and
only if the flow network N(G) has a valid flow X with

cost k.

Proof:

< Given valid flow X in N(G) with cost k
Construct orthogonal representation H(G) with k bends
® transform from flow to orthogonal description

® show properties (H1)—(H4)
= Given an orthogonal representation H(G) with k bends

Construct valid flow X in N(G) with cost k&

® define flow X: A — R
® show that X is a valid flow and has cost k

14 -5 Torsten Ueckerdt



Summary of Bend Minimization AT

tttttttttttttttttttttttttttttt

® From Theorem 1 it follows that the combinatorial
orthogonal bend minimization problem for embedded
planar graphs can be solved using an algorithm for the
Min-Cost-Flow Problem.

15-1 Torsten Ueckerdt
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Summary of

Bend Minimization QAT

tttttttttttttttttttttttttttttt

® From Theorem 1 it follows that the combinatorial

orthogonal

planar grap
Min-Cost-F

pend minimization problem for embedded
ns can be solved using an algorithm for the

ow Problem.

® This special flow problem for a planar network N(G) can

be solved in O(n3/?) time.

Torsten Ueckerdt

[Cornelsen, Karrenbauer GD 2011]
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3

Summary of

Bend Minimization QAT

tttttttttttttttttttttttttttttt

® From Theorem 1 it follows that the combinatorial

orthogonal

planar grap
Min-Cost-F

pend minimization problem for embedded
ns can be solved using an algorithm for the

ow Problem.

® This special flow problem for a planar network N(G) can

be solved in O(n3/?) time.

[Cornelsen, Karrenbauer GD 2011]

® Bend minimization without a given combinatorial

embedding

Torsten Ueckerdt

Is an NP-hard prOblem_ [Garg, Tamassia SIAM J. Comput. 2001]



(Planar) Orthogonal Drawings AT
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Three-step approach: Topology — Shape — Metrics

[Tamassia SIAM J. Comput. 1987]

14
V = {Ul,UQ,'U3,U4}
E = {v1vz2,v103, 0104, V2U3, V204 | 11 | 3
combinatorial 2
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(Planar) Orthogonal Drawings AT
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Three-step approach: Topology — Shape — Metrics

[Tamassia SIAM omput. 1987]

V — {Ul,UQ,’Ug,U4}
E = {v1v9, 0103, V1U4, V2V3, U2V4 }
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Compaction Problem:

Given: ® planar graph G = (V, E) with maximum degree 4
® orthogonal representation H(G)

Find: compact orthogonal layout of G that realizes H(G)
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Compaction Problem:

Given: ® planar graph G = (V, E) with maximum degree 4
® orthogonal representation H(G)

Find: compact orthogonal layout of G that realizes H(G)

Special Case: all faces are rectangles

— Guarantees possible ® minimum total edge length
® minimum area

17 -2 Torsten Ueckerdt



Compaction AT

tttttttttttttttttttttttttttttt

Compaction Problem:

Given: ® planar graph G = (V, E) with maximum degree 4
® orthogonal representation H(G)

Find: compact orthogonal layout of G that realizes H(G)

Special Case: all faces are rectangles

— Guarantees possible ® minimum total edge length
® minimum area

Properties:

® bends only on the outer face
® opposite sides of a face have the same length
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Compaction Problem:

Given: ® planar graph G = (V, E) with maximum degree 4
® orthogonal representation H(G)

Find: compact orthogonal layout of G that realizes H(G)

Special Case: all faces are rectangles

— Guarantees possible ® minimum total edge length
® minimum area

Properties:

® bends only on the outer face
® opposite sides of a face have the same length
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Flow Network for Edge Length Computation QT

Def: Flow Network Nnor = ((Whor, Anor ); £; u; b; cost)

® Whor = F\{fo} U{s,t}

® Anor ={(f,9) | f,g share a horizontal segment and f lies
below g} U{(t,s)}

o K(CL) — 1 Va € Ay

® u(a) =00 Va € Anor

® cost(a) =1 Va € Anor

¢ b(f) = Ot Vi€ Whor




Flow Network for Edge Length Computation QT

Def: Flow Network Nnor = ((Whor, Anor ); £; u; b; cost)

® Whor = F\{fo} U{s,t}

® Anor ={(f,9) | f,g shailg a horizontal segment and f lies
below g} U{(t,s)}

o K(CL) — 1 Va € Ay

® u(a) =00 Va € Anor

® cost(a) =1 Va € Anor

¢ b(f) = Ot Vi€ Whor

s and t represent lower and
upper side of fg




Flow Network for Edge Length Computation QT

Def Flow Network Nyer = ((Wier, Aver); £;u; b; cost)
ver —F\{fO}U{S t}

® Aver ={(f,9) | f, g share a vertical segment and f lies to
the left of g} U {(¢,s)}

®la)=1 Va & Ay

® u(a) =00 Va &€ Aye
® cost(a) =1 Va & Aye
*b(f) =0 VfeE Wi




Flow Network for Edge Length Computation QT

Def Flow Network Nyer = ((Wier, Aver); £;u; b; cost)
ver —F\{fO}U{S t}

® Aver ={(f,9) | f, g share a vertical segment and f lies to
the left of g} U {(¢,s)}

®la)=1 Va & Ay

® u(a) =00 Va &€ Aye
® cost(a) =1 Va & Aye
*b(f) =0 VfeE Wi

q ? Pair, think, share: 3 min

What values of the drawing represent
the following?
® | Xhor(t,s)] and | Xye (2, s)|7?

® 2 acan, Xhor(@) 2 aea,, Xver(a)

t
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