Algorithmen zur Visualisierung von Graphen Wintersemester 2019/2020

Tamara Mchedlidze, Torsten Ueckerdt, Marcel Radermacher

Exercise Sheet 6

Discussion: 5. February 2020

Exercise 1: Counting Crossings **

Prove the following lemmas.
Let $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be a permutation. A pair (i, j) with $1 \leq i<j \leq n$ is an inversion, if $\pi(i)>\pi(j)$.

Lemma 1 The number of inversions of a permutation π can be counted in $O(n \log n)$ time.

Hint: Use an approach similar to merge sort.

Lemma 2 Let Γ be a straight-line drawing of a bipartite graph $G=(A \dot{\cup} B, E)$ where the vertices of A and B are drawn on separate layers. Then the number of crossing in Γ can be counted in $O(|E| \log |V|)$ time.

Can all crossings be reported in the same time?

Exercise 2: Crossings in Layered Layouts

Prove the following.

Lemma 3 The barycenter heuristic computes an optimal solution of the one-sided crossing minimization problem, if the instance admits a planar drawing.

Exercise 3: Feedback Arc Set

In the lecture we introduced the Minimum Feedback Arc Set and the Minimum Feedback SET problems. Let $D=(V, A)$ be a directed graph and A^{\prime} be a subset of A. The set A^{\prime} is a feedback arc set of D if $D_{f}=\left(V, A \backslash A^{\prime}\right)$ is acyclic. If $D_{r}=\left(V,\left(A \backslash A^{\prime}\right) \cup\left\{v u \mid u v \in A^{\prime}\right\}\right)$ is acyclic, then A^{\prime} is a feedback set of D. Every feedback set is a feedback arc set, the reverse is not necessarily true. Prove the following.

Lemma $4 A$ set $A^{\prime} \subset A$ is a minimum feedback arc set of D if and only if A^{\prime} is a minimum feedback set of D.

Exercise 4: Contact Representation of Maximal Planar Graphs

The figure below gives an example of contact representation of a planar graph with T-shapes. Prove the following Lemma.

Lemma 5 Every maximal planar graph admits a contact representation with T-shapes.

Hint: Use canonical ordering in the way similar to the construction of a visibility representation.

