

Exercise Sheet 6

Discussion: 5. February 2020

Exercise 1: Counting Crossings

Prove the following lemmas.

Let $\pi : \{1, \ldots, n\} \to \{1, \ldots, n\}$ be a permutation. A pair (i, j) with $1 \le i < j \le n$ is an *inversion*, if $\pi(i) > \pi(j)$.

Lemma 1 The number of inversions of a permutation π can be counted in $O(n \log n)$ time.

Hint: Use an approach similar to merge sort.

Lemma 2 Let Γ be a straight-line drawing of a bipartite graph $G = (A \cup B, E)$ where the vertices of A and B are drawn on separate layers. Then the number of crossing in Γ can be counted in $O(|E| \log |V|)$ time.

Can all crossings be reported in the same time?

Exercise 2: Crossings in Layered Layouts

Prove the following.

Lemma 3 The barycenter heuristic computes an optimal solution of the one-sided crossing minimization problem, if the instance admits a planar drawing.

**

 \star

Exercise 3: Feedback Arc Set

In the lecture we introduced the MINIMUM FEEDBACK ARC SET and the MINIMUM FEEDBACK SET problems. Let D = (V, A) be a directed graph and A' be a subset of A. The set A' is a *feedback* arc set of D if $D_f = (V, A \setminus A')$ is acyclic. If $D_r = (V, (A \setminus A') \cup \{vu \mid uv \in A'\})$ is acyclic, then A'is a *feedback set of* D. Every feedback set is a feedback arc set, the reverse is not necessarily true. Prove the following.

Lemma 4 A set $A' \subset A$ is a minimum feedback arc set of D if and only if A' is a minimum feedback set of D.

Exercise 4: Contact Representation of Maximal Planar Graphs **

The figure below gives an example of contact representation of a planar graph with T-shapes. Prove the following Lemma.

Lemma 5 Every maximal planar graph admits a contact representation with T-shapes.

Hint: Use canonical ordering in the way similar to the construction of a visibility representation.

