Algorithmen zur Visualisierung von Graphen Wintersemester 2019/2020

Tamara Mchedlidze, Torsten Ueckerdt, Marcel Radermacher

Exercise Sheet 5

Discussion: 15. January 2019

Exercise 1: Properties of st-Graphs *
Let $D=(V, A)$ be a planar st-graph with a given embedding. For a face f of D denote by V_{f} and E_{f} the vertices and edges on f. Let $\operatorname{start}(\mathrm{f})$ and $\operatorname{target}(f)$ be the source and sink of the graph $\left(V_{f}, E_{f}\right)$, respectively. Prove or disprove:
(a) D is bimodal.
(b) The boundary of each face f consists of two directed paths from start (f) to target (f).
(c) For every vertex $v \in V$ there is a simple directed st-path that contains v.

Exercise 2: Duals of $s t$-Graphs

Let D be a planar embedded st-graph. For a directed edge $e=(u, v)$, let $\ell(e)$ denote the face left of e, and let $r(e)$ denote the face right of e. Without loss of generality assume that D is embedded such that $r(s, t)$ is the external face. The directed dual graph $D^{\star}=\left(V^{\star}, A^{\star}\right)$ of D is defined as follows:

- V^{\star} is the set of faces of D, where $s^{\star}=r(s, t)$ and $t^{\star}=\ell(s, t)$.
- $A^{\star}=\{(\ell(e), r(e)) \mid e \in A \backslash\{(s, t)\}\} \cup\left\{\left(s^{\star}, t^{\star}\right)\right\}$
(a) Prove that D^{\star} is a planar $s t$-graph.
(b) Prove that for any two faces f and g of D exactly one of the following properties holds:
i) D contains a directed path from $\operatorname{target}(f)$ to $\operatorname{start}(g)$
ii) D contains a directed path from $\operatorname{target}(g)$ to $\operatorname{start}(f)$
iii) D^{\star} contains a directed path from f to g
iv) D^{\star} contains a directed path from g to f

Hint: Consider a topological numbering $\sigma: V \rightarrow \mathbb{N}$ of the nodes of D, such that for every $(u, v) \in A$ it holds that $\sigma(u)<\sigma(v)$.

Exercise 3: Extended Canonical Ordering for 4-Connected Graphs

A planar graph $G=(V, E)$ is called proper triangular planar (PTP, for short) if every interior face of G is a triangle and the exterior face of G is a quadrangle, and G has no separating triangles.

Let $G=(V, E)$ be a PTP graph with vertices a, b, c, d on the outer face. A labeling $v_{1}=a, v_{2}=$ $b, v_{3}, \ldots, v_{n}=d$ of the vertices of G is called an extended canonical ordering of G if for every $4 \leq k \leq n$:
(i) The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and the boundary C_{k-1} of G_{k-1} contains the edge (a, b), and
(ii) the vertex v_{k} is on the boundary of the exterior face of G_{k}, and its neighbors in G_{k-1} form a subinterval of the path $C_{k-1} \backslash(a, b)$ with at least two elements. If $k \leq n-2$, then v_{k} has at least two neighbors in $G \backslash G_{k}$.
Let $G=(V, E)$ be a PTP graph with vertices a, b, c, d on the outer face. Prove the following statements. We denote by G_{C} the graph that is induced by the vertices in the interior and on the boundary of a simple cycle C.
(a) The graph obtained from G by the removal of the vertices c, d and all edges incident to them is biconnected.
(b) Let $C=\left\{a=u_{1}, \ldots, u_{m}=b, a\right\}$ be a simple cycle of G such that $c, d \notin C$. Let $u_{i} \in C$, $2 \leq i \leq m-1$ such that no internal chord of C is incident to u_{i}. Then the graph $G_{C} \backslash\left\{u_{i}\right\}$ is biconnected.
(c) Let C be as above and let $\left(v_{i}, v_{j}\right), 1 \leq i<j \leq m$, be an internal chord of C. Then there exists a vertex $u_{l}, i<l<j$ that is adjacent to at least two vertices of $G \backslash G_{C}$.

Use the previous statements to prove the following lemma.

Lemma 1 Every PTP graph G with four vertices a, b, c, d on the outer face has an extended canonical ordering such that $v_{1}=a, v_{2}=b, v_{n-1}=c, v_{n}=d$.

