Exercise Sheet 2
Discussion: 12. November 2019

Exercise 1: Outerplanar and Series-Parallel Graphs

A graph G is called **outerplanar** if it has a planar drawing where all vertices lie on the boundary of the outer face. Prove the following lemma.

Lemma 1

1. There is an outerplanar graph that is not series-parallel.
2. Every biconnected outerplanar graph is series-parallel.

Exercise 2: Visibility Representation

In a **visibility representation** of a graph $G = (V,E)$ the vertices are represented by horizontal segments (**vertex-segments**). We say that two vertices u and v see each other, if their vertex-segments can be connected by a vertical rectangle of non-zero width that does not cross any other vertex-segment. Thus, in a visibility representation of G, two vertices u, v see each other if and only if $(u,v) \in E$; see Figure 1. Prove the following lemma.

Lemma 2 Every series-parallel graph has a visibility representation.
Exercise 3: Canonical Orderings for Triconnected Planar Graphs

Let $G = (V, E)$ be a triconnected plane graph with a vertex v_1 on the outer face. Further, let $\pi = (V_1, \ldots, V_K)$ be an ordered partition of V, i.e., $V_1 \cup \cdots \cup V_K = V$ and $V_i \cap V_j = \emptyset$ for $i \neq j$. We define G_k to be the subgraph of G induced by $V_1 \cup \cdots \cup V_K$ and denote by C_k the outer face of G_k.

The sequence π is a canonical ordering of G, if

- V_1 consists of $\{v_1, v_2\}$, where v_2 lies on the outer face and $(v_1, v_2) \in E$.
- $V_K = \{v_n\}$ is a singleton, where v_n lies on the outer face, $\{v_1, v_n\} \in E$, and $v_n \neq v_2$.
- Each C_k $(k > 1)$ is a cycle containing $\{v_1, v_2\}$.
- Each G_k is biconnected and internally triconnected, that is, removing two interior vertices of G_k does not disconnect it.
- For each k with $2 \leq k \leq K - 1$, one of the following conditions holds:
 1. $V_k = \{z\}$, where z belongs to C_k and has at least one neighbor in $G - G_k$.
 2. $V_k = \{z_1, \ldots, z_\ell\}$ is a chain, where each z_i has at least one neighbor in $G - G_k$ and where z_1 and z_ℓ each have one neighbor on $C_k - 1$, and these are the only two neighbors of V_k in G_{k-1}.

Prove the following lemma.

Lemma 3 Every triconnected planar graph admits a canonical ordering.

Hint: Use reverse induction. For the induction step, consider the two cases that G_k is triconnected and G_k is not triconnected.
Exercise 4: Barycentric Coordinates

Let \(\Delta_{a,b,c} \) be a triangle on the plane on vertices \(a, b \) and \(c \). For each point \(x \) laying inside triangle \(\Delta_{a,b,c} \) there exists a triple \((x_a, x_b, x_c) \) such that \(x_a \cdot a + x_b \cdot b + x_c \cdot c = x \) and \(x_a + x_b + x_c = 1 \). The triple \((x_a, x_b, x_c) \) is called barycentric coordinates of \(x \) with respect to \(\Delta_{a,b,c} \).

Prove that:

(a) If \(A(\Delta) \) denotes the area of the triangle \(\Delta \), then

\[
x_a = \frac{A(\Delta_{b,c,x})}{A(\Delta_{a,b,c})}, \quad x_b = \frac{A(\Delta_{a,c,x})}{A(\Delta_{a,b,c})}, \quad x_c = \frac{A(\Delta_{a,b,x})}{A(\Delta_{a,b,c})}
\]

(b) Equations \(x_a = 0, x_b = 0, x_c = 0 \) represent lines through \(bc, ab \) and \(ab \), respectively.

(c) Let \((x_a, x_b, x_c) \) be barycentric coordinates of point \(x \) in triangle \(\Delta_{abc} \). The set of points \(\{(x_a, x_b, x_c') : x_b', x_c' \in \mathbb{R}\} \) represents a line parallel to edge \(bc \) passing through point \(x \). Similarly, sets of points \(\{(x_a', x_b, x_c) : x_a', x_c \in \mathbb{R}\}, \{(x_a', x_b', x_c) : x_a', x_b' \in \mathbb{R}\} \) represent lines parallel to edges \(ac, ab \), respectively, passing through point \(x \).