Algorithms for graph visualization

Divide and Conquer - Tree Layouts - Part 2
Overview

- H(horizontal) V(vertical) tree layout algorithm
- Radial tree layout algorithm
- Other visualization styles
Applications

Cons cell diagram in LISP.
Cons(constructs) are memory objects which hold two values or pointers to values.

![Cons cell diagram in LISP](http://gajon.org/)

Figure 3: Diagram of cons cells of the simple tree.

Discuss with your neighbour(s) and then share

2+3 min
Applications

Cons cell diagram in LISP.

Cons(constructs) are memory objects which hold two values or pointers to values.

![Diagram of cons cells of the simple tree.](http://gajon.org/)

Figure 3: Diagram of cons cells of the simple tree.

Discuss with your neighbour(s) and then share.

- What are the drawing conventions and aesthetics?
HV-Layout

Drawing Conventions:
- Children are vertically and horizontally aligned with the root
- The bounding boxes of the children do not intersect

Drawing Aesthetics:
- Height, width, area
HV-Layout

Divide & Conquer Approach:

HV-Layout
HV-Layout

Induction base: ⊣

Induction step: combine layouts

horizontal combination

vertical combination
Right-Heavy HV-Layout

Right-Heavy approach:
- At every induction step apply horizontal combination
- Place the larger subtree to the right
Right-Heavy HV-Layout

Right-Heavy approach:
- At every induction step apply horizontal combination
- Place the larger subtree to the right

Lemma
Let T be a binary tree. The height of the drawing constructed by Right-Heavy approach is at most $\log n$.
Right-Heavy HV-Layout

Right-Heavy approach:
- At every induction step apply horizontal combination
- Place the larger subtree to the right

Lemma
Let T be a binary tree. The height of the drawing constructed by Right-Heavy approach is at most $\log n$.

Proof:
- Each vertical edge has length 1
- Let w be the lowest node in the drawing
- Let P be a path from w to the root of T
- For every edge (u, v) in P: $|T(v)| > 2|T(u)|$
- $\Rightarrow P$ contains at most $\log n$ edges
Right-Heavy HV-Layout

- At every induction step apply horizontal combination
- Place the larger subtree to the right

Think:
- What are the implementational details of the algorithm?
 How to compute the coordinates? Can we do it in $O(n)$ time?
Right-Heavy HV-Layout

Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:
Right-Heavy HV-Layout

Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
Right-Heavy HV-Layout

Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
- The width of Γ is at most 1 min

Take a minute to think about the width of the layout
Right-Heavy HV-Layout

Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
- The width of Γ is at most $n-1$
Right-Heavy HV-Layout

Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
- The width of Γ is at most $n-1$
- The height is at most $\log n$
Right-Heavy HV-Layout

Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
- The width of Γ is at most $n-1$
- The height is at most $\log n$
- The area is $O(n \log n)$
Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
- The width of Γ is at most $n-1$
- The height is at most $\log n$
- The area is $O(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings, up to translation
Right-Heavy HV-Layout

Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:
- Γ is HV-drawing (planar, orthogonal)
- The width of Γ is at most $n-1$
- The height is at most $\log n$
- The area is $O(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings, up to translation

General rooted tree:

```
  largest subtree
```

9 - 8
HV-Layout

Bad news We can not minimize the area by using divide & conquer approach
HV-Layout

Bad news We can not minimize the area by using divide & conquer approach

Good news We can compute minimum area using Dynamic Programming
HV-Layout

Bad news We can not minimize the area by using divide & conquer approach
Good news We can compute minimum area using Dynamic Programming

HV-Layout for Trees

- Book Di Battista et al: Chapter 3.1.4
- Skript: page 86

10 - 3
Applications

An unrooted phylogenetic tree for myosin, a superfamily of proteins. "A myosin family tree" Journal of Cell Science

Radial layout

An unrooted phylogenetic tree for myosin, a superfamily of proteins.
Applications

An unrooted phylogenetic tree for myosin, a superfamily of proteins.

"A myosin family tree“ Journal of Cell Science
Applications

Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family by Ribecca, 2011
Radial Layout

Drawing Conventions:
- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing Aesthetics:
- Distribution of the vertices
Radial Layout

Drawing Conventions:
- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing Aesthetics:
- Distribution of the vertices

Take a minute to think about a possible algorithm to optimize the distribution of the vertices 1 min
Radial Layout

Example: Angle corresponding to the subtree rooted at \(u \):

\[
\tau_u = \frac{\ell(u)}{\ell(v) - 1}
\]
Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v) - 1}$
Radial Layout

Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v)-1}$
Radial Layout

Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v) - 1}$
Radial Layout

Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v)-1}$

$\ell(u)$

τ_u = $\frac{\ell(u)}{\ell(v)-1}$
Example:

Angle corresponding to the subtree rooted at \(u \):
\[
\tau_u = \frac{\ell(u)}{\ell(v) - 1}
\]
Radial Layout

Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v)-1}$
Radial Layout

Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v) - 1}$
Radial Layout

How to avoid crossings:

- τ_u - angle of the wedge corresponding to vertex u
- ρ_i - radius of layer i
- $\ell(v)$ - number of nodes in the subtree rooted at v
- $\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$
Radial Layout

How to avoid crossings:

- τ_u - angle of the wedge corresponding to vertex u
- ρ_i - radius of layer i
- $\ell(v)$ - number of nodes in the subtree rooted at v
- $\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$
Radial Layout

How to avoid crossings:

- τ_u - angle of the wedge corresponding to vertex u
- ρ_i - radius of layer i
- $\ell(v)$-number of nodes in the subtree rooted at v
- $\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$

$$\tau_u = \min\left\{ \frac{\ell(u)}{\ell(v)-1}, 2 \arccos \frac{\rho_i}{\rho_{i+1}} \right\}$$
(correction)
Radial Layout

How to avoid crossings:

- \(\tau_u \) - angle of the wedge corresponding to vertex \(u \)
- \(\rho_i \) - radius of layer \(i \)
- \(\ell(v) \)-number of nodes in the subtree rooted at \(v \)
- \(\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}} \)

\[\tau_u = \min \left\{ \frac{\ell(u)}{\ell(v)} - 1, 2 \arccos \frac{\rho_i}{\rho_{i+1}} \right\} \]
 (correction)

Alternatively use number of leaves in the subtree to subdivide the angles [book Di Battista et al.]
Radial Layout

Discuss with your neighbour(s) and then share

- Why the produced drawing is planar?

- $\ell(v)$-number of nodes in the subtree rooted at v

- $\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$

- $\tau_u = \min\{\frac{\ell(u)}{\ell(v)} - 1, 2 \arccos \frac{\rho_i}{\rho_{i+1}}\}$ (correction)

- Alternatively use number of leaves in the subtree to subdivide the angles [book Di Battista et al.]
Radial Layout

Theorem

Let T be a rooted tree with n vertices. The radial algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is planar
- Each vertex lies on the radial layer equal to its height
- The area of the drawing is at most $O(h^2d_M^2)$, h-height, d_M-max number of children

Assuming that the radii of consecutive layers differ by the same number and the distance between the vertices on the layer is a constant
Radial Layout

Theorem

Let T be a rooted tree with n vertices. The radial algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is planar
- Each vertex lies on the radial layer equal to its height
- The area of the drawing is at most $O(h^2d_M^2)$, h-height, d_M-max number of children

Assuming that the radii of consecutive layers differ by the same number and the distance between the vertices on the layer is a constant
Radial Layout

Theorem

Let T be a rooted tree with n vertices. The radial algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is planar
- Each vertex lies on the radial layer equal to its height
- The area of the drawing is at most $O(h^2d_M^2)$, h-height, d_M-max number of children

Assuming that the radii of consecutive layers differ by the same number and the distance between the vertices on the layer is a constant

radius is at least d_M
radius is at least hd_M
Radial Layout for Trees

- Book Di Battista et al: Chapter 3.1.3
- Skript: Chapter 6.1.2
Other Visualization Styles

Writing Without Words: the project explores methods of visually-representing text and visualises the differences in writing styles when comparing different authors.
Other Visualization Styles

Writing Without Words: the project explores methods of visually-representing text and visualises the differences in writing styles when comparing different authors.

similar to Ballon layout
Other Visualization Styles

A phylogenetically organised display of data for all placental mammal species.

Fractal tree layout
for more applications and layouts...