Algorithms for graph visualization

Incremental algorithms. Orthogonal drawing.
Definition: Orthogonal Drawing

A drawing Γ of a graph $G = (V, E)$ is called orthogonal if its vertices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.
Definition: Orthogonal Drawing

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if its vertices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.
Definition: Orthogonal Drawing

A drawing Γ of a graph $G = (V, E)$ is called orthogonal if its vertices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

Edges lie on the grid, i.e., bends lie on grid points.
Definition: Orthogonal Drawing

A drawing Γ of a graph $G = (V, E)$ is called orthogonal if its vertices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

- Edges lie on the grid, i.e., bends lie on grid points
- Degree of each vertex has to be at most 4
Orthogonal Layout

ER diagram in OGDF

Organigram of HS Limburg

Circuit diagram by Jeff Atwood

UML diagram by Oracle

Algorithmen zur Visualisierung von Graphen
Orthogonal Layout

Aesthetic criteria:
- number of bends
- length of edges
- width, height, area
- monotonicity of edges
- ...
Overview

- Our tool today: st-ordering
- Algorithm of Biedl & Kant
- Properties of the drawing, Planarity
- Construction of st-ordering through ear decomposition
Definition: \textit{st}-ordering

An \textit{st}-ordering of a graph $G = (V, E)$ is an ordering of the vertices $\{v_1, v_2, \ldots, v_n\}$, such that for each j, $2 \leq j \leq n - 1$, vertex v_j has at least one neighbour v_i with $i < j$, and at least one neighbour v_k with $k > j$.
An *st-ordering* of a graph $G = (V, E)$ is an ordering of the vertices $\{v_1, v_2, \ldots, v_n\}$, such that for each j, $2 \leq j \leq n - 1$, vertex v_j has at least one neighbour v_i with $i < j$, and at least one neighbour v_k with $k > j$.
An \textit{st-ordering} of a graph \(G = (V, E) \) is an ordering of the vertices \(\{v_1, v_2, \ldots, v_n\} \), such that for each \(j, 2 \leq j \leq n - 1 \), vertex \(v_j \) has at least one neighbour \(v_i \) with \(i < j \), and at least one neighbour \(v_k \) with \(k > j \).

Theorem [Lempel, Even, Cederbaum, 66]

Let \(G \) be a biconnected graph \(G \) and let \(s, t \) be vertices of \(G \). \(G \) has an \textit{st}-ordering such that \(s \) appears as the first and \(t \) as the last vertex in this ordering.
Biedl & Kant Orthogonal Drawing Algorithm
Biedl & Kant Orthogonal Drawing Algorithm

first vertex
indegree = 1
Biedl & Kant Orthogonal Drawing Algorithm

first vertex
indegree = 1
Biedl & Kant Orthogonal Drawing Algorithm

first vertex indegree = 1 indegree = 2
Biedl & Kant Orthogonal Drawing Algorithm

first vertex

indegree = 1

indegree = 2
Biedl & Kant Orthogonal Drawing Algorithm

first vertex
indegree = 1
indegree = 2
indegree = 3
Biedl & Kant Orthogonal Drawing Algorithm

first vertex indegree = 1 indegree = 2 indegree = 3
Biedl & Kant Orthogonal Drawing Algorithm

first vertex | indegree = 1 | indegree = 2 | indegree = 3 | indegree = 4

1

4

3

5

6

1

2

3

4

5

6
Biedl & Kant Orthogonal Drawing Algorithm

- First vertex
- Indegree = 1
- Indegree = 2
- Indegree = 3
- Indegree = 4

New columns
Biedl & Kant Orthogonal Drawing Algorithm

Lemma (Area of Biedl & Kant drawing)

The width is $m - n + 1$ and the height at most $n + 1$.
Biedl & Kant Orthogonal Drawing Algorithm

Lemma (Area of Biedl & Kant drawing)

The width is $m - n + 1$ and the height at most $n + 1$.

Proof

Width: At each step we increase the number of columns by $\text{outdeg}(v_i) - 1$, if $i > 1$ and $\text{outdeg}(v_1)$ for v_1.

Height: Vertices v_1 and v_2 use two rows, v_i, $i = 1, \ldots, n - 1$ is placed in a new row. Vertex v_n uses one more row if $\text{indeg}(v_n) = 4$.
Biedl & Kant Orthogonal Drawing Algorithm

Lemma (Area of Biedl & Kant drawing)

The width is $m - n + 1$ and the height at most $n + 1$.

Proof

Width: At each step we increase the number of columns by $\text{outdeg}(v_i) - 1$, if $i > 1$ and $\text{outdeg}(v_1)$ for v_1.

Height: Vertices v_1 and v_2 use two rows, $v_i, i = 1, \ldots, n - 1$ is placed in a new row. Vertex v_n uses one more row if $\text{indeg}(v_n) = 4$.
Biedl & Kant Orthogonal Drawing Algorithm

Lemma (Area of Biedl & Kant drawing)

The width is $m - n + 1$ and the height at most $n + 1$.

Proof

Width: At each step we increase the number of columns by $\text{outdeg}(v_i) - 1$, if $i > 1$ and $\text{outdeg}(v_1)$ for v_1.

Height: Vertices v_1 and v_2 use two rows, v_i, $i = 1, \ldots, n - 1$ is placed in a new row. Vertex v_n uses one more row if $\text{indeg}(v_n) = 4$.

Lemma (Number of bends in Biedl & Kant drawing)

There are at most $2m - 2n + 4$ bends.
Biedl & Kant Orthogonal Drawing Algorithm

Lemma (Area of Biedl & Kant drawing)

The width is \(m - n + 1 \) and the height at most \(n + 1 \).

Proof

Width: At each step we increase the number of columns by \(\text{outdeg}(v_i) - 1 \), if \(i > 1 \) and \(\text{outdeg}(v_1) \) for \(v_1 \).

Height: Vertices \(v_1 \) and \(v_2 \) use two rows, \(v_i, i = 1, \ldots, n - 1 \) is placed in a new row. Vertex \(v_n \) uses one more row if \(\text{indeg}(v_n) = 4 \).

Lemma (Number of bends in Biedl & Kant drawing)

There are at most \(2m - 2n + 4 \) bends.

Proof

Each vertex \(v_i, i \neq 1, n \), introduces \(\text{indeg}(v_i) - 1 \) and \(\text{outdeg}(v_i) - 1 \) new bends.
Biedl & Kant Orthogonal Drawing Algorithm

<table>
<thead>
<tr>
<th>Lemma (Number of bends per edge in Biedl & Kant drawing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All edges but one bent at most twice. The exceptional edge bents at most three times.</td>
</tr>
</tbody>
</table>
Biedl & Kant Orthogonal Drawing Algorithm

Lemma (Number of bends per edge in Biedl & Kant drawing)

All edges but one bent at most twice. The exceptional edge bends at most three times.

Proof

Let \((v_i, v_j), i < j, i, j \neq 1, n.\) Then \(\text{outdeg}(v_i), \text{indeg}(v_j) \leq 3.\) I.e \((v_i, v_j)\) gets at most one bend after placement of \(v_i\) and at most one before placement of \(v_j.\) Edges outgoing from \(v_1\) can me made 2-bend by using the column below \(v_1\) for the edge \((v_1, v_2).\)
Biedl & Kant Orthogonal Drawing Algorithm

Lemma (Number of bends per edge in Biedl & Kant drawing)
All edges but one bent at most twice. The exceptional edge bents at most three times.

Proof
Let \((v_i, v_j), i < j, i, j \neq 1, n\). Then \(\text{outdeg}(v_i), \text{indeg}(v_j) \leq 3\). I.e \((v_i, v_j)\) gets at most one bend after placement of \(v_i\) and at most one before placement of \(v_j\). Edges outgoing from \(v_1\) can me made 2-bend by using the column below \(v_1\) for the edge \((v_1, v_2)\).

Lemma (planarity)
For planar embedded graphs, with \(v_1\) and \(v_n\) on the outer face, the algorithm produces a planar drawing.
Biedl & Kant Orthogonal Drawing Algorithm

Lemma (Number of bends per edge in Biedl & Kant drawing)

All edges but one bent at most twice. The exceptional edge bents at most three times.

Proof

Let \((v_i, v_j), i < j, i, j \neq 1, n\). Then \(\text{outdeg}(v_i), \text{indeg}(v_j) \leq 3\). I.e \((v_i, v_j)\) gets at most one bend after placement of \(v_i\) and at most one before placement of \(v_j\). Edges outgoing from \(v_1\) can me made 2-bend by using the column below \(v_1\) for the edge \((v_1, v_2)\).

Lemma (planarity)

For planar embedded graphs, with \(v_1\) and \(v_n\) on the outer face, the algorithm produces a planar drawing.

Proof

Consider a planar embedding of \(G\). Let \(v_1, \ldots, v_n\) be an \(st\)-ordering of \(G\). Let \(G_i\) be the graph induced by \(v_1, \ldots, v_i\). It holds that

- **if** \(G\) is planar, vertex \(v_{i+1}\) lies on the outer face of \(G_i\).
Biedl & Kant Orthogonal Drawing Algorithm

Proof (Continuation)

- The proof is by induction on G_i, $i = 1, \ldots, n$, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an invariant that edges E_i appear in the same order in the orthogonal drawing of G_i.
Biedl & Kant Orthogonal Drawing Algorithm

Proof (Continuation)

- The proof is by induction on G_i, $i = 1, \ldots, n$, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an invariant that edges E_i appear in the same order in the orthogonal drawing of G_i.

\[\begin{align*}
 v_{i1} & \quad e_1 \quad v_{ik} \\
 e_2 & \quad v_{i1} \quad v_{ik} \\
 e_3 & \\
 e_{ik} \quad v_{i1} \quad v_{ik}
\end{align*} \]
Biedl & Kant Orthogonal Drawing Algorithm

Proof (Continuation)
- The proof is by induction on G_i, $i = 1, \ldots, n$, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an invariant that edges E_i appear in the same order in the orthogonal drawing of G_i.
- Since v_{i+1} is on the outer face of G_i, it can be placed without creating any crossing.
Biedl & Kant Orthogonal Drawing Algorithm

Proof (Continuation)

- The proof is by induction on G_i, $i = 1, \ldots, n$, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an invariant that edges E_i appear in the same order in the orthogonal drawing of G_i.
- Since v_{i+1} is on the outer face of G_i, it can be placed without creating any crossing.
Biedl & Kant Orthogonal Drawing Algorithm

Proof (Continuation)

- The proof is by induction on G_i, $i = 1, \ldots, n$, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an invariant that edges E_i appear in the same order in the orthogonal drawing of G_i.
- Since v_{i+1} is on the outer face of G_i, it can be placed without creating any crossing.
Biedl & Kant Orthogonal Drawing Algorithm

Proof (Continuation)
- The proof is by induction on G_i, $i = 1, \ldots, n$, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an invariant that edges E_i appear in the same order in the orthogonal drawing of G_i.
- Since v_{i+1} is on the outer face of G_i, it can be placed without creating any crossing.
- The invariant holds after the induction step.
The proof is by induction on G_i, $i = 1, \ldots, n$, with $G_n = G$.

Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.

We use as an invariant that edges E_i appear in the same order in the orthogonal drawing of G_i.

Since v_{i+1} is on the outer face of G_i, it can be placed without creating any crossing.

The invariant holds after the induction step.
Biedl & Kant Orthogonal Drawing Algorithm

Theorem (Biedl & Kant 98)

A biconnected graph G with vertex-degree at most 4 admits an orthogonal drawing such that:
- Area is $(m - n + 1) \times n + 1$
- Each edge (except maybe for one) has at most 2 bends
- The exceptional edge has at most 3 bends
- The total number if bends is at most $2m - 2n + 4$
- If G is plane, the orthogonal drawing is planar
- Finally, provided an st-ordering such a drawing can be constructed in $O(n)$ time.
Biedl & Kant Orthogonal Drawing Algorithm

Theorem (Biedl & Kant 98)

A biconnected graph G with vertex-degree at most 4 admits an orthogonal drawing such that:

- Area is $(m - n + 1) \times n + 1$
- Each edge (except maybe for one) has at most 2 bends
- The exceptional edge has at most 3 bends
- The total number of bends is at most $2m - 2n + 4$
- If G is plane, the orthogonal drawing is planar
- Finally, provided an st-ordering such a drawing can be constructed in $O(n)$ time.

- For the construction we have used an st-ordering of G!
Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incoming) edges. A directed acyclic graph with one source and one sink is called **st-digraph**.

![Diagram of an st-digraph](image-url)
st-digraph, topological ordering

Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incoming) edges. A directed acyclic graph with one source and one sink is called **st-digraph**.

Definition: topological ordering

A **topological ordering** of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), $\text{number}(v) > \text{number}(u)$.
Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incoming edges). A directed acyclic graph with one source and one sink is called **st-digraph**.

Definition: topological ordering

A **topological ordering** of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), $\text{number}(v) > \text{number}(u)$.
st-digraph, topological ordering

Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called source (resp. sink) of G if it has only outgoing (resp. incoming edges). A directed acyclic graph with one source and one sink is called *st-digraph*.

Definition: topological ordering

A topological ordering of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), $\text{number}(v) > \text{number}(u)$.
Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incoming edges). A directed acyclic graph with one source and one sink is called **st-digraph**.

Definition: topological ordering

A **topological ordering** of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), $\text{number}(v) > \text{number}(u)$.

How to construct a topological ordering?
st-ordering

Construction of an st-ordering:

G is undirected biconnected graph
st-ordering

Construction of an st-ordering:

G is undirected biconnected graph

Orient edges of G
st-ordering

Construction of an st-ordering:

G is an undirected biconnected graph

Orient edges of G

G' is an st-digraph
st-ordering

Construction of an st-ordering:

- \(G \) is undirected biconnected graph
- Orient edges of \(G \)
- \(G' \) is an st-digraph
- Let \(v_1, \ldots, v_n \) be a topological ordering of \(G' \)
Construction of an st-ordering:

G is undirected biconnected graph

Orient edges of G to form G'.

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'.

Since G' is an st-digraph, for v_i ($i \neq 1, n$) there exist (v_j, v_i) and (v_i, v_k). By the property of topological ordering, $j < i$ and $i < k$.
Construction of an \(st\)-ordering:

\(G\) is an undirected biconnected graph

Orient edges of \(G\)

\(G'\) is an \(st\)-digraph

Let \(v_1, \ldots, v_n\) be a topological ordering of \(G'\)

Since \(G'\) is an \(st\)-digraph, for \(v_i\) \((i \neq 1, n)\) \(\exists (v_j, v_i)\) and \((v_i, v_k)\). By the property of topological ordering \(j < i\) and \(i < k\).

\(v_1, \ldots, v_n\) is an \(st\)-ordering of \(G\)
Construction of an st-ordering:

G is an undirected biconnected graph

Orient edges of G

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i ($i \neq 1, n$) $\exists (v_j, v_i)$ and (v_i, v_k). By the property of topological ordering $j < i$ and $i < k$.

v_1, \ldots, v_n is an st-ordering of G
Construction of an st-ordering:

G is undirected biconnected graph

**HOW?**

Orient edges of G

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i ($i \neq 1, n$) \((v_j, v_i)\) and \((v_i, v_k)\). By the property of topological ordering \(j < i\) and \(i < k\).

v_1, \ldots, v_n is an st-ordering of G

EXAMPLE
Definition: Ear decomposition

An ear decomposition $D = (P_0, \ldots, P_r)$ of an undirected graph $G = (V, E)$ is a partition of E into an ordered collection of edge disjoint paths P_0, \ldots, P_r, such that:

- P_0 is an edge
- $P_0 \cup P_1$ is a simple cycle
- both end-vertices of P_i belong to $P_0 \cup \cdots \cup P_{i-1}$
- no internal vertex of P_i belong to $P_0 \cup \cdots \cup P_{i-1}$

An ear decomposition is open if P_0, \ldots, P_r are simple paths.
Lemma (Ear decomposition)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.

st-ordering
Lemma (Ear decomposition)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.

Proof

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
st-ordering

<table>
<thead>
<tr>
<th>Lemma (Ear decomposition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.</td>
</tr>
</tbody>
</table>

Proof
- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_0, \ldots, P_i are ears.
st-ordering

Lemma (Ear decomposition)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.

Proof

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.

- Induction hypothesis: P_0, \ldots, P_i are ears.

- Let (u, v) be an edge in G such that $u \in P_0 \cup \ldots \cup P_i$ and $v \notin P_0 \cup \cdots \cup P_i$. Let (u, u'), such that $u' \in P_0 \cup \cdots \cup P_i$. Let P be a path between v and u', not passing through u. P exists since G is biconnected.
Lemma (Ear decomposition)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.

Proof

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_0, \ldots, P_i are ears.
- Let (u, v) be an edge in G such that $u \in P_0 \cup \cdots \cup P_i$ and $v \notin P_0 \cup \cdots \cup P_i$. Let (u, u'), such that $u' \in P_0 \cup \cdots \cup P_i$. Let P be a path between v and u', not passing through u. P exists since G is biconnected.
Lemma (Ear decomposition)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.

Proof

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_0, \ldots, P_i are ears.
- Let (u, v) be an edge in G such that $u \in P_0 \cup \cdots \cup P_i$ and $v \notin P_0 \cup \cdots \cup P_i$. Let (u, u'), such that $u' \in P_0 \cup \cdots \cup P_i$. Let P be a path between v and u', not passing through u. P exists since G is biconnected.
- Let w be the first vertex of P that is contained in $P_0 \cup \cdots \cup P_i$. Set $P_{i+1} = (u, v) \cup P(v - \cdots - w)$.
st-ordering

Lemma (Ear decomposition)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.

Proof

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.

- Induction hypothesis: P_0, \ldots, P_i are ears.

- Let (u, v) be an edge in G such that $u \in P_0 \cup \cdots \cup P_i$ and $v \notin P_0 \cup \cdots \cup P_i$. Let (u, u'), such that $u' \in P_0 \cup \cdots \cup P_i$. Let P be a path between v and u', not passing through u. P exists since G is biconnected.

- Let w be the first vertex of P that is contained in $P_0 \cup \cdots \cup P_i$. Set $P_{i+1} = (u, v) \cup P(v - \cdots - w)$.

Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

![Diagram showing an ear decomposition with an st-path from s to t through P0 and P1.]
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

Diagram

![Diagram of st-ordering](image)
st-ordering

Lemma (*st*-orientation)**

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an *st*-digraph. G' is called *st*-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an *st*-orientation by induction on i.

![Diagram](image.png)
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

- Distinguish two cases based on whether u and v are connected by a directed path or not.
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

- Distinguish two cases based on whether u and v are connected by a directed path or not.
Lemma \((st\text{-}orientation)\)

Let \(G = (V, E)\) be a biconnected graph and let \((s, t) \in E\). There is an orientation \(G'\) of \(G\) which represents an \(st\)-digraph. \(G'\) is called \(st\)-orientation of \(G\).

Proof

- Let \(D = (P_0, \ldots, P_r)\) be an ear decomposition of \(G = (V, E)\). Notice that \(G = P_0 \cup \cdots \cup P_r\).
- Let \(G_i = P_0 \cup \cdots \cup P_i\). We prove that \(G_i\) has an \(st\)-orientation by induction on \(i\).
- Distinguish two cases based on whether \(u\) and \(v\) are connected by a directed path or not.
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called an st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.
 - Distinguish two cases based on whether u and v are connected by a directed path or not.
Construction of an st-ordering:

G is undirected biconnected graph

HOW?

Orient edges of G

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i

$(i \neq 1, n) \exists (v_j, v_i)$

and (v_i, v_k). By the property of topological ordering $j < i$ and $i < k$.

v_1, \ldots, v_n is an st-ordering of G
Construction of an st-ordering:

G is undirected biconnected graph

HOW?
Orient edges of G

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i ($i \neq 1, n$) $\exists (v_j, v_i)$ and (v_i, v_k). By the property of topological ordering $j < i$ and $i < k$.

v_1, \ldots, v_n is an st-ordering of G
Construction of an \(st\)-ordering:

\(G\) is undirected biconnected graph

HOW?

Orient edges of \(G\)

\(G'\) is an \(st\)-digraph

Let \(v_1, \ldots, v_n\) be a topological ordering of \(G'\)

Since \(G'\) is an \(st\)-digraph, for \(v_i\)
\((i \neq 1, n) \exists (v_j, v_i)\)
and \((v_i, v_k)\). By the property of topological ordering \(j < i\) and \(i < k\).

\(v_1, \ldots, v_n\) is an \(st\)-ordering of \(G\)
Construction of an st-ordering:

G is undirected biconnected graph

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i

$(i \neq 1, n) \exists (v_j, v_i)$ and (v_i, v_k). By the property of topological ordering $j < i$ and $i < k$.

v_1, \ldots, v_n is an st-ordering of G
St-ordering

Direct construction of st-ordering from ear decomposition
st-ordering

Direct construction of st-ordering from ear decomposition

We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.
Direct construction of st-ordering from ear decomposition

- We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.

- For G_1, let $P_1 = \{u_1, \ldots, u_p\}$, here $u_1 = s$ and $u_p = t$. The sequence $L = \{u_1, \ldots, u_p\}$ is an st-ordering of G_1.

Direct construction of st-ordering from ear decomposition

- We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.

- For G_1, let $P_1 = \{u_1, \ldots, u_p\}$, here $u_1 = s$ and $u_p = t$. The sequence $L = \{u_1, \ldots, u_p\}$ is an st-ordering of G_1.

- Assume that L contains an st-ordering of G_i and let ear $P_{i+1} = \{v_1, \ldots, v_q\}$. We insert vertices v_1, \ldots, v_q to L after vertex v_1 (or before v_q).
st-ordering

Direct construction of st-ordering from ear decomposition

- We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.

- For G_1, let $P_1 = \{u_1, \ldots, u_p\}$, here $u_1 = s$ and $u_p = t$. The sequence $L = \{u_1, \ldots, u_p\}$ is an st-ordering of G_1.

- Assume that L contains an st-ordering of G_i and let ear $P_{i+1} = \{v_1, \ldots, v_q\}$. We insert vertices v_1, \ldots, v_q to L after vertex v_1 (or before v_q).
Direct construction of \(st\)-ordering from ear decomposition

- We construct it incrementally, considering \(G_i = P_0 \cup \cdots \cup P_i, i = 0, \ldots, r\).

- For \(G_1\), let \(P_1 = \{u_1, \ldots, u_p\}\), here \(u_1 = s\) and \(u_p = t\). The sequence \(L = \{u_1, \ldots, u_p\}\) is an \(st\)-ordering of \(G_1\).

- Assume that \(L\) contains an \(st\)-ordering of \(G_i\) and let ear \(P_{i+1} = \{v_1, \ldots, v_q\}\). We insert vertices \(v_1, \ldots, v_q\) to \(L\) after vertex \(v_1\) (or before \(v_q\)).

- **Why this is an \(st\)-ordering?** Let \(G'_{i+1}\) be an \(st\)-orientation of \(G_i\) as constructed in the previous proof. \(L\) is a topological ordering of \(G'_{i+1}\) and therefore an \(st\)-ordering of \(G_i\).
Algorithm: st-ordering (example)

(Implementation details - Based on DFS)
\textit{st-ordering}

\textbf{Algorithm: \textit{st-ordering} (example)}

(Implementation details - Based on DFS)
st-ordering

Algorithm: st-ordering (example)

(Implementation details - Based on DFS)

st-ordering

Algorithm: st-ordering (example)

(Implementation details - Based on DFS)
st-ordering

Algorithm: st-ordering (example)

(Implementation details - Based on DFS)

![Graph Example](image-url)
Algorithm: \textit{st}-ordering (example)
(Implementation details - Based on DFS)
st-ordering

Algorithm: *st*-ordering (example)
(Implementation details - Based on DFS)

```
s, b, f, g, t
```
Algorithm: st-ordering (example)
(Implementation details - Based on DFS)
Algorithm: \textit{st-ordering} (example)
(Implementation details - Based on DFS)

\begin{itemize}
\item \texttt{s, b, f, g, h, t}
\end{itemize}
Algorithm: \textit{st}-ordering (example)
(Implementation details - Based on DFS)

\begin{itemize}
 \item \textit{st}-ordering
 \item Implementation details
 \item Based on DFS
\end{itemize}
Algorithm: \textit{st}-ordering (example)
(Implementation details - Based on DFS)
Algorithm: \(st \)-ordering (example)
(Implementation details - Based on DFS)

\[s, e, b, f, g, h, t \]
Algorithm: st-ordering (example)

(Implementation details - Based on DFS)

s, e, b, f, g, h, t
Algorithm: \textit{st-ordering} (example)
(Implementation details - Based on DFS)

\begin{itemize}
\item s
\item e
\item b
\item a
\item f
\item g
\item h
\item t
\end{itemize}
st-ordering

Algorithm: st-ordering (example)
(Implementation details - Based on DFS)

```
s, e, b, a, f, g, h, t
```
Algorithm: *st*-ordering (example)
(Implementation details - Based on DFS)

\[s, e, b, a, f, g, h, t \]
st-ordering

Algorithm: *st*-ordering (example)
(Implementation details - Based on DFS)

![Diagram of a directed graph with nodes labeled s, e, b, a, f, c, d, g, h, t and edges connecting them.]

\[s, e, b, a, f, c, d, g, h, t \]
Algorithm \textit{st}-ordering

\textbf{Data:} Undirected biconnected graph $G = (V, E)$, edge $\{s, t\} \in E$

\textbf{Result:} List L of nodes representing an \textit{st}-ordering of G

\begin{algorithmic}
\Function{dfs}{vertex v}
\State $i \leftarrow i + 1$; $DFS[v] \leftarrow i$
\While{there exists non-enumerated $e = \{v, w\}$}
\State $DFS[e] \leftarrow DFS[v]$
\If{w not enumerated}
\State $CHILDEDGE[v] \leftarrow e$; $PARENT[w] \leftarrow v$
\State $dfs(w)$
\Else
\State $\{w, x\} \leftarrow CHILDEDGE[w]$; $D[\{w, x\}] \leftarrow D[\{w, x\}] \cup \{e\}$
\If{$x \in L$}
\State process_ears$(w \rightarrow x)$
\EndIf
\EndIf
\EndWhile
\EndFunction

\begin{algorithmic}
\State initialize L as $\{s, t\}$
\State $DFS[s] \leftarrow 1$; $i \leftarrow 1$; $DFS[\{s, t\}] \leftarrow 1$; $CHILDEDGE[s] \leftarrow \{s, t\}$
\State $dfs(t)$
\end{algorithmic}
st-ordering

Function process_ears

```plaintext
process_ears(tree edge \( w \rightarrow x \)) begin
    foreach \( v \leftrightarrow w \in D[w \rightarrow x] \) do
        \( u \leftarrow v; \)
        while \( u \not\in L \) do \( u \leftarrow PARENT[u]; \)
        \( P \leftarrow (u \ast \rightarrow v \leftrightarrow w); \)
        if \( w \rightarrow x \) is oriented from \( w \) to \( x \) (resp. from \( x \) to \( w \)) then
            orient \( P \) from \( w \) to \( u \) (resp. from \( u \) to \( w \));
            paste the inner nodes of \( P \) to \( L \)
            before (resp. after) \( u \);
        foreach tree edge \( w' \rightarrow x' \) of \( P \) do process_ears(\( w' \rightarrow x' \));
    D[{\( w, x \}]} \leftarrow \emptyset;
```

Function process_ears
The described algorithm produces an \(st\)-ordering of a given biconnected graph \(G = (V, E)\) in \(O(E)\) time.
Theorem

The described algorithm produces an \(st\)-ordering of a given biconnected graph \(G = (V, E)\) in \(O(E)\) time.

Theorem (Biedl & Kant 98)

A biconnected graph \(G\) with vertex-degree at most 4 admits an orthogonal drawing such that:
- Area is \((m - n + 1) \times n + 1\)
- Each edge (except maybe for one) has at most 2 bends
- The exceptional edge has at most 3 bends
- The total number of bends is at most \(2m - 2n + 4\)
- If \(G\) is plane, the orthogonal drawing is planar
- Finally, provided an \(st\)-ordering such a drawing can be constructed in \(O(n)\) time.
st-ordering

Theorem

The described algorithm produces an *st*-ordering of a given biconnected graph $G = (V, E)$ in $O(E)$ time.

Theorem (Biedl & Kant 98)

A biconnected graph G with vertex-degree at most 4 admits an orthogonal drawing such that:
- Area is $(m - n + 1) \times n + 1$
- Each edge (except maybe for one) has at most 2 bends
- The exceptional edge has at most 3 bends
- The total number of bends is at most $2m - 2n + 4$
- If G is plane, the orthogonal drawing is planar
- Finally, provided an *st*-ordering such a drawing can be constructed in $O(n)$ time.

Together imply an $O(n)$ algorithm for constructing an orthogonal drawing.