Algorithms for Graph Visualization
Layered Layout – Part 2

Tamara Mchedlidze
11.12.2018
Layered Layout

Given: directed graph $D = (V, A)$

Find: drawing of D that emphasizes the hierarchy by positioning nodes on horizontal layers
Layered Layout

Given: directed graph $D = (V, A)$

Find: drawing of D that emphasizes the hierarchy by positioning nodes on horizontal layers

Criteria:
- many edges pointing to the same direction
- few layers or limited number of nodes per layer
- preferably few edge crossings
- nodes distributed evenly
- edges preferably straight and short
Sugiyama Framework
(Sugiyama, Tagawa, Toda 1981)

Dargestellt ist ein Algorithmus zur Visualisierung von Graphen. Der Algorithmus besteht aus folgenden Schritten:

1. **Layer Assignment**
 - Gegeben ein Graph.

2. **Resolve Cycles**
 - Cycles im Graphen auflösen.

3. **Crossing Minimization**
 - Minimierung der Kreuzungen.

4. **Node Positioning**
 - Positionierung der Knoten.

5. **Edge Drawing**
 - Zeichnen der Kanten.
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Layered Layout

Given

Resolve cycles

Layer assignment

crossing minimization

Node positioning

Edge drawing
Step 3: Crossing Minimization
Problem Statement

Given: DAG $D = (V, A)$, nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of crossing is minimized
Problem Statement

Given: DAG $D = (V, A)$, nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of crossing is minimized

Properties
- Problem is NP-hard even for two layers
 (Bipartite Crossing Number [Garey, Johnson ’83])
- No approach over several layers simultaneously
- Usually iterative optimization for two adjacent layers
- For that: insert dummy nodes at the intersection of edges with layers
One-sided Crossing Minimization (OSCM)

Given: 2-Layered-Graph $G = (L_1, L_2, E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2, such that the number of crossing among E is minimum
One-sided Crossing Minimization (OSCM)

Given: 2-Layered-Graph $G = (L_1, L_2, E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2, such that the number of crossing among E is minumum

Observation:

- The number of crossing in 2-layered drawing of G depends only on ordering of the nodes, not from the exact positions.
- For $u, v \in L_2$ the number of crossing among incident to them edges depends on whether $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$ and not on the positions of other vertices.
One-sided Crossing Minimization (OSCM)

Given: 2-Layered-Graph $G = (L_1, L_2, E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2, such that the number of crossing among E is minimum

Observation:
• The number of crossing in 2-layered drawing of G depends only on ordering of the nodes, not from the exact positions
• for $u, v \in L_2$ the number of crossing among incident to them edges depends on whether $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$ and not on the positions of other vertices

Def: $c_{uv} := \left| \{(uw, vz) : w \in N(u), z \in N(v), x_1(z) < x_1(w)\} \right|$
for $x_2(u) < x_2(v)$

\[c_{uv} = 5 \]
\[c_{vu} = 7 \]
One-sided Crossing Minimization (OSCM)

Given: 2-Layered-Graph $G = (L_1, L_2, E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2, such that the number of crossing among E is minimum

Observation:
- The number of crossing in 2-layered drawing of G depends only on ordering of the nodes, not from the exact positions
- for $u,v \in L_2$ the number of crossing among incident to them edges depends on whether $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$ and not on the positions of other vertices

Def: $c_{uv} := |\{(uw,vz) : w \in N(u), z \in N(v), x_1(z) < x_1(w)\}|$

for $x_2(u) < x_2(v)$

\[c_{uv} = 5 \]
\[c_{vu} = 7 \]
Further Properties

Def: Crossing number of G with orders x_1 and x_2 for L_1 and L_2 is denoted by $\text{cr}(G, x_1, x_2)$; for fixed x_1 then $\text{opt}(G, x_1) = \min_{x_2} \text{cr}(G, x_1, x_2)$

Lemma 1: The following equalities hold:

- $\text{cr}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv}$
- $\text{opt}(G, x_1) \geq \sum \{u,v\} \min\{c_{uv}, c_{vu}\}$
Further Properties

Def: Crossing number of G with orders x_1 and x_2 for L_1 and L_2 is denoted by $\text{cr}(G, x_1, x_2)$; for fixed x_1 then $\text{opt}(G, x_1) = \min_{x_2} \text{cr}(G, x_1, x_2)$

Lemma 1: The following equalities hold:
- $\text{cr}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv}$
- $\text{opt}(G, x_1) \geq \sum_{\{u,v\}} \min\{c_{uv}, c_{vu}\}$

Efficient computation of $\text{cr}(G, x_1, x_2)$ see Exercise.
Further Properties

Def: Crossing number of G with orders x_1 and x_2 for L_1 and L_2 is denoted by $\text{cr}(G, x_1, x_2)$; for fixed x_1 then $\text{opt}(G, x_1) = \min_{x_2} \text{cr}(G, x_1, x_2)$

Lemma 1: The following equalities hold:
- $\text{cr}(G, x_1, x_2) = \sum_{x_2(u)<x_2(v)} c_{uv}$
- $\text{opt}(G, x_1) = \sum_{\{u,v\}} \min\{c_{uv}, c_{vu}\}$

Efficient computation of $\text{cr}(G, x_1, x_2)$ see Exercise.

Think for a minute and then share

Why the second inequality is not an equality?

1 min
Iterative Crossing Minimization

Let $G = (V, E)$ be a DAG with layers L_1, \ldots, L_h.

1. compute a random ordering x_1 for layer L_1
2. for $i = 1, \ldots, h - 1$ consider layers L_i and L_{i+1} and minimize $\text{cr}(G, x_i, x_{i+1})$ with fixed x_i (→ OSCM)
3. for $i = h - 1, \ldots, 1$ consider layers L_{i+1} and L_i and minimize $\text{cr}(G, x_i, x_{i+1})$ with fixed x_{i+1} (→ OSCM)
4. repeat (2) and (3) until no further improvement happens
5. repeat steps (1)–(4) with another x_1
6. return the best found solution
Iterative Crossing Minimization

Let $G = (V, E)$ be a DAG with layers L_1, \ldots, L_h.

(1) compute a random ordering x_1 for layer L_1
(2) for $i = 1, \ldots, h - 1$ consider layers L_i and L_{i+1} and minimize $\text{cr}(G, x_i, x_{i+1})$ with fixed x_i (\rightarrow OSCM)
(3) for $i = h - 1, \ldots, 1$ consider layers L_{i+1} and L_i and minimize $\text{cr}(G, x_i, x_{i+1})$ with fixed x_{i+1} (\rightarrow OSCM)
(4) repeat (2) and (3) until no further improvement happens
(5) repeat steps (1)–(4) with another x_1
(6) return the best found solution

Theorem 1: The One-Sided Crossing Minimization (OSCM) problem is NP-hard (Eades, Wormald 1994).
Algorithms for OSCM

Heuristics:
- Barycenter
- Median

Exact:
- ILP Model
Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their neighbours

- set

\[x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v) \]

- in case of equality introduce tiny gap
Barycenter Heuristic
(Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their neighbours

- set

 \[x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v) \]

- in case of equality introduce tiny gap

Properties:

- trivial implementation
- quick (exactly?)
- usually very good results
- finds optimum if \(\text{opt}(G, x_1) = 0 \) (see Exercises)
- there are graphs on which it performs \(\Omega(\sqrt{n}) \) times worse than optimal
Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their neighbours

- set

 \[x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v) \]

- in case of equality introduce tiny gap

Properties:

- trivial implementation
- quick (exactly?)
- usually very good results
- finds optimum if \(\text{opt}(G, x_1) = 0 \) (see Exercises)
- there are graphs on which it performs \(\Omega(\sqrt{n}) \) times worse than optimal

Work with your neighbour and then share

Construct an example proving that barycenter method works at least \(\sqrt{n} \) times worse than optimal
Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neighbours

- for a node $v \in L_2$ with neighbours v_1, \ldots, v_k set

 $$x_2(v) = \text{med}(v) = x_1(v_{\lceil k/2 \rceil})$$

 and $x_2(v) = 0$ if $N(v) = \emptyset$

- if $x_2(u) = x_2(v)$ and u, v have different parity, place the node with odd degree to the left

- if $x_2(u) = x_2(v)$ and u, v have the same parity, place an arbitrary of them to the left

- Runs in time $O(|E|)$
Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neighbours

• for a node $v \in L_2$ with neighbours v_1, \ldots, v_k set

 $x_2(v) = \text{med}(v) = x_1(v_{\lceil k/2 \rceil})$

 and $x_2(v) = 0$ if $N(v) = \emptyset$

• if $x_2(u) = x_2(v)$ and u, v have different parity, place the node with odd degree to the left

• if $x_2(u) = x_2(v)$ and u, v have the same parity, place an arbitrary of them to the left

• Runs in time $O(|E|)$

Properties:

• trivial implementation

• fast

• mostly good performance

• finds optimum when $\text{opt}(G, x_1) = 0$

• Factor-3 Approximation
Approximation Factor

Theorem 2: Let $G = (L_1, L_2, E)$ be a 2-layered graph and x_1 an arbitrary ordering of L_1. Then it holds that

$$\text{med}(G, x_1) \leq 3 \text{ opt}(G, x_1).$$
Approximation Factor

Theorem 2: Let $G = (L_1, L_2, E)$ be a 2-layered graph and x_1 an arbitrary ordering of L_1. Then it holds that $\med(G, x_1) \leq 3 \opt(G, x_1)$.
Approximation Factor

Theorem 2: Let $G = (L_1, L_2, E)$ be a 2-layered graph and x_1 an arbitrary ordering of L_1. Then it holds that

$$\text{med}(G, x_1) \leq 3 \text{ opt}(G, x_1).$$
Integer Linear Programming

Properties:

• branch-and-cut technique for DAGS of limited size
• useful for graphs of small to medium size
• finds optimal solution
• solution in polynomial time is not guaranteed
Integer Linear Programming

Properties:
• branch-and-cut technique for DAGS of limited size
• useful for graphs of small to medium size
• finds optimal solution
• solution in polynomial time is not guaranteed

Modell: see Blackboard
Experimental Evaluation (Jünger, Mutzel 1997)

Results for 100 instances on 20 + 20 nodes with increasing density

Time for 100 instances on 20 + 20 nodes with increasing density
Experimental Evaluation (Jünger, Mutzel 1997)

Results for 10 instances of sparse graphs with increasing size

Time for 10 instances of sparse graphs with increasing size
Example
Example
Example
Example
Layered Layout
Example
Layered Layout

Example
There was even an iPad game *CrossingX* for the OSCM Problem!
Winner of Graph Drawing Game Contest 2012
Step 4: Coordinate Computation

Which could be the goals?
Steightening Edges

Goal: minimize deviation from a straight-line for the edges with dummy-nodes

Idea: use quadratic Program

- let $p_{uv} = (u, d_1, \ldots, d_k, v)$ path with k dummy nodes between u and v
- let $a_i = x(u) + \frac{i}{k+1}(x(v) - x(u))$ the x-coordinate of d_i when (u, v) is straight
- $g(p_{uv}) = \sum_{i=1}^{k} (x(d_i) - a_i)^2$
- minimize $\sum_{uv \in E} g(p_{uv})$
- constraints: $x(w) - x(z) \geq \delta$ for consecutive nodes on the same layer, w right from z (δ distance parameter)
Steigentning Edges

Goal: minimize deviation from a straight-line for the edges with dummy-nodes

Idea: use quadratic Program

- Let $p_{uv} = (u, d_1, \ldots, d_k, v)$ path with k dummy nodes between u and v
- Let $a_i = x(u) + \frac{i}{k+1}(x(v) - x(u))$ the x-coordinate of d_i when (u, v) is straight
- $g(p_{uv}) = \sum_{i=1}^{k} (x(d_i) - a_i)^2$
- Minimize $\sum_{uv \in E} g(p_{uv})$
- Constraints: $x(w) - x(z) \geq \delta$ for consecutive nodes on the same layer, w right from z (δ distance parameter)

Properties:

- Quadratic program is time-expensive
- Width can be exponential
- Optimization function can be adapted to optimize "verticality"
Example

Layered Layout
Example
Step 5: Drawing edges

Possibility: Substitute polylines by Bézier curves
Example
Example

Layered Layout
Example
Summary

given
resolve cycles
layer assignment

crossing minimization
node positioning
edge drawing
Summary

- flexible Framework to draw directed graphs
- sequential optimization of various criteria
- modelling gives NP-hard problems, which can still can be solved quite well

Layered Layout

crossing minimization node positioning edge drawing