Exercise Sheet 6
Discussion: 30. January 2019

Exercise 1: Properties of \textit{st}-Graphs
Let $D=(V,A)$ be a planar \textit{st}-graph with a given embedding. For a face f of D denote by V_f and E_f the vertices and edges on f. Let \text{start}(f)$ and \text{target}(f)$ be the source and sink of the graph (V_f,E_f), respectively. Prove or disprove:

(a) D is bimodal.
(b) The boundary of each face f consists of two directed paths from \text{start}(f) to \text{target}(f).
(c) For every vertex $v \in V$ there is a simple directed \textit{st}-path that contains v.

Exercise 2: Duals of \textit{st}-Graphs
Let D be a planar embedded \textit{st}-graph. For a directed edge $e=(u,v)$, let $\ell(e)$ denote the face left of e, and let $r(e)$ denote the face right of e. Without loss of generality assume that D is embedded such that $r(s,t)$ is the external face. The directed dual graph $D^*=(V^*,A^*)$ of D is defined as follows:

• V^* is the set of faces of D, where $s^*=r(s,t)$ and $t^* = \ell(s,t)$.
• $A^* = \{(\ell(e),r(e)) \mid e \in A \setminus \{(s,t)\}\} \cup \{(s^*,t^*)\}$

(a) Prove that D^* is a planar \textit{st}-graph.
(b) Prove that for any two faces f and g of D exactly one of the following properties holds:
 i) D contains a directed path from \text{target}(f) to \text{start}(g)
 ii) D contains a directed path from \text{target}(g) to \text{start}(f)
 iii) D^* contains a directed path from f to g
 iv) D^* contains a directed path from g to f

\textit{Hint:} Consider a topological numbering $\sigma : V \to \mathbb{N}$ of the nodes of D, such that for every $(u,v) \in A$ it holds that $\sigma(u) < \sigma(v)$.
Exercise 3: Extended Canonical Ordering for 4-Connected Graphs

A planar graph \(G = (V,E) \) is called proper triangular planar (PTP, for short) if every interior face of \(G \) is a triangle and the exterior face of \(G \) is a quadrangle, and \(G \) has no separating triangles.

Let \(G = (V,E) \) be a PTP graph with vertices \(a,b,c,d \) on the outer face. A labeling \(v_1 = a, v_2 = b, v_3, \ldots, v_n = d \) of the vertices of \(G \) is called an extended canonical ordering of \(G \) if for every \(4 \leq k \leq n \):

(i) The subgraph \(G_{k-1} \) induced by \(v_1, \ldots, v_{k-1} \) is biconnected and the boundary \(C_{k-1} \) of \(G_{k-1} \) contains the edge \((a,b)\), and

(ii) the vertex \(v_k \) is on the boundary of exterior face of \(G_{k-1} \), and its neighbors in \(G_{k-1} \) form a subinterval of the path \(C_{k-1} \setminus (a,b) \) with at least two elements. If \(k \leq n - 2 \), then \(v_k \) has at least two neighbors in \(G \setminus G_{k-1} \).

Let \(G = (V,E) \) be a PTP graph with vertices \(a,b,c,d \) on the outer face. Prove the following statements. We denote by \(G_C \) the graph that is induced by the vertices in the interior and on the boundary of a simple cycle \(C \).

(a) The graph obtained from \(G \) by the removal of the vertices \(c,d \) and all edges incident to them is biconnected.

(b) Let \(C = \{a = u_1, \ldots, u_k = b, a\} \) be a simple cycle of \(G \) such that \(c,d \notin C \). Let \(u_i \in C \), \(2 \leq i \leq k - 1 \) such that no internal chord of \(C \) is incident to \(u_i \). Then the graph \(G_C \setminus \{u_i\} \) is biconnected.

(c) Let \(C \) be as above and let \((v_i, v_j)\), \(1 \leq i < j \leq k \), be an internal chord of \(C \). Then there exists a vertex \(v_l \), \(i < l < j \) that is adjacent to at least two vertices of \(G \setminus G_C \).

Use the previous statements to prove the following lemma.

Lemma 1 Every PTP graph \(G \) with four vertices \(a,b,c,d \) on the outer face has an extended canonical ordering such that \(v_1 = a, v_2 = b, v_{n-1} = c, v_n = d \).
Exercise 4: Contact Representation of Maximal Planar Graphs

The figure below gives an example of contact representation of a planar graph with T-shapes. Prove the following Lemma.

Lemma 2 Every maximal planar graph admits a contact representation with T-shapes.

Hint: Use canonical ordering in the way similar to the construction of a visibility representation (Exercise Sheet 3).

Exercise 5: Construction of Rectangular Dual

Consider the graph G of the figure below. Check whether G satisfies the necessary conditions to have a rectangular dual. In affirmative, construct a rectangular dual of G.