

*

*

Exercise Sheet 6

Discussion: 30. January 2019

Exercise 1: Properties of st-Graphs

Let D = (V, A) be a planar st-graph with a given embedding. For a face f of D denote by V_f and E_f the vertices and edges on f. Let start(f) and target(f) be the source and sink of the graph (V_f, E_f) , respectively. Prove or disprove:

- (a) D is bimodal.
- (b) The boundary of each face f consists of two directed paths from start(f) to target(f).
- (c) For every vertex $v \in V$ there is a simple directed *st*-path that contains v.

Exercise 2: Duals of *st*-Graphs

Let D be a planar embedded st-graph. For a directed edge e = (u, v), let $\ell(e)$ denote the face left of e, and let r(e) denote the face right of e. Without loss of generality assume that D is embedded such that r(s, t) is the external face. The directed dual graph $D^* = (V^*, A^*)$ of D is defined as follows:

- V^{\star} is the set of faces of D, where $s^{\star} = r(s, t)$ and $t^{\star} = \ell(s, t)$.
- $A^{\star} = \{(\ell(e), r(e)) \mid e \in A \setminus \{(s, t)\}\} \cup \{(s^{\star}, t^{\star})\}$
- (a) Prove that D^* is a planar *st*-graph.
- (b) Prove that for any two faces f and g of D exactly one of the following properties holds:
 - i) D contains a directed path from $\mathrm{target}(f)$ to $\mathrm{start}(g)$
 - ii) D contains a directed path from $\mathrm{target}(g)$ to $\mathrm{start}(f)$
 - iii) D^* contains a directed path from f to g
 - iv) D^* contains a directed path from g to f

Hint: Consider a topological numbering $\sigma : V \to \mathbb{N}$ of the nodes of D, such that for every $(u, v) \in A$ it holds that $\sigma(u) < \sigma(v)$.

please turn over

Exercise 3: Extended Canonical Ordering for 4-Connected Graphs **

A planar graph G = (V, E) is called *proper triangular planar* (PTP, for short) if every interior face of G is a triangle and the exterior face of G is a quadrangle, and G has no separating triangles.

Let G = (V, E) be a PTP graph with vertices a, b, c, d on the outer face. A labeling $v_1 = a, v_2 = b, v_3, \ldots, v_n = d$ of the vertices of G is called an *extended canonical ordering* of G if for every $4 \le k \le n$:

- (i) The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and the boundary C_{k-1} of G_{k-1} contains the edge (a, b), and
- (ii) the vertex v_k is on the boundary of exterior face of G_{k-1} , and its neighbors in G_{k-1} form a subinterval of the path $C_{k-1} \setminus (a, b)$ with at least two elements. If $k \leq n-2$, then v_k has at least two neighbors in $G \setminus G_{k-1}$.

Let G = (V, E) be a PTP graph with vertices a, b, c, d on the outer face. Prove the following statements. We denote by G_C the graph that is induced by the vertices in the interior and on the boundary of a simple cycle C.

- (a) The graph obtained from G by the removal of the vertices c, d and all edges incident to them is biconnected.
- (b) Let $C = \{a = u_1, \ldots, u_k = b, a\}$ be a simple cycle of G such that $c, d \notin C$. Let $u_i \in C$, $2 \leq i \leq k-1$ such that no internal chord of C is incident to u_i . Then the graph $G_C \setminus \{u_i\}$ is biconnected.
- (c) Let C be as above and let (v_i, v_j) , $1 \le i < j \le k$, be an internal chord of C. Then there exists a vertex v_l , i < l < j that is adjacent to at least two vertices of $G \setminus G_C$.

Use the previous statements to prove the following lemma.

Lemma 1 Every PTP graph G with four vertices a, b, c, d on the outer face has an extended canonical ordering such that $v_1 = a, v_2 = b, v_{n-1} = c, v_n = d$.

Exercise 4: Contact Representation of Maximal Planar Graphs **

The figure below gives an example of contact representation of a planar graph with T-shapes. Prove the following Lemma.

Lemma 2 Every maximal planar graph admits a contact representation with T-shapes.

Hint: Use canonical ordering in the way similar to the construction of a visibility representation (Exercise Sheet 3).

Exercise 5: Construction of Rectangular Dual

Consider the graph G of the figure below. Check whether G satisfies the necessary conditions to have a rectangular dual. In affirmative, construct a rectangular dual of G.

*

