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Motivation ﬂ(".

Karlsruhe Institute of Technology

® Buildings are major energy consumer worldwide q
(Pérez-Lombard et al. 2008) EH

® Minimize the energy wastage and making power generation and
distribution more efficient by intelligent control decisions
(Marino et al. 2016, p. 7046)

® Load forecasting crucial for mitigating uncertainties of the future
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® Deep Learning proved to be useful in manifold fields

Computer vision

Speech and audio processing
Natural language processing

Robotics

Bioinformatics and chemistry

Finance

(Goodfellow et al. 2016, p.8f)

Kai Schmieder: Deep Learning for Energy Time Series

@ -|||||-|-
L

%

[

Energy Informatics Seminar
Institute for Automation and Applied Informatics (IAl)



Agenda ﬂ(".

Karlsruhe Institute of Technology

Foundation
Long Short-Term Memory for Energy Time Series
Evaluation
Discussion
Conclusion

08.01.19 Kai Schmieder: Deep Learning for Energy Time Series Energy Informatics Seminar
Institute for Automation and Applied Informatics (IAl)



AT

Karlsruhe Institute of Technology

FOUNDATION

5 08.01.19 Kai Schmieder: Deep Learning for Energy Time Series Energy Informatics Seminar
Institute for Automation and Applied Informatics (IAl)



Energy Time Series ﬂ(".

stitute of Technology

® Aggregate level and building level forecasting categorized by

® Short-term —> one hour to one week
® Medium-term —> one week to one year IIII
® Long-term —> ranges longer than one year

(Mocanu et al. 2016, p. 91)

® Two main approaches to forecast Energy Time Series
W Statistical and Machine Learning based models
® Physical Principles based models
(Mocanu et al. 2016, p. 91; Marino et al. 2016, p. 7046)

@

® - here: Short-term & Statistical and Machine Learning based models

Long Short-Term Memory for >

Energy Time Series Evaluaton  »>  Discussion »>  Conclusion

Foundation >
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Deep Learning ﬂ(".

® Central goal of Machine Learning
B Learn useful representations of input data
® That get us closer to expected output

Artificial
Intelligence

Machine
Learning

Deep
Learning

® Deep Learning

Figure 1: Own representation

® Specific subfield of Machine Learning based on Chollet, 2018, p.4

® Idea of successive layers of representations
® Depth: how many layers contribute to a model of the data
® Layered representations (almost always) learned via neural networks

(Chollet 2018, p. 6ff) n

Long Short-Term Memory for >

Foundation > Energy Time Series

Evaluation @ »>  Discussion  »>  Conclusion
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Overview of relevant Deep Architectures ﬁ(".
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Deep Forward
Networks

e.g. Multi-Layer-Perceptrons

Convolutional
Neural Networks

e.g. AlexNet for image classification

B Recurrent

Neural Networks
Deep |
Architectures

| REEBRECUEENTE] ¢ . Boltzman Machines
Models

e.g. Long Short-Term Memory

— BVi\T(e)= 121000 sl €.9. For Feature Extraction

Mixes of e.g. Convolutional Neural
architectures Networks with Recurrent

y Neural Network

Figure 2: Own representation based on Goodfellow et al., 2016, p.

Foundation > Long Short-Term Memory for >

Energy Time Series Evaluation = »>  Discussion »>  Conclusion
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Recurrent Neural Networks Q(IT

® Family of neural networks for processing sequential data
® Basic principle

® Each member of the output is a function of the previous member of the
output

® Unrolled Recursive Neural Network
http://colah.gith
ub.io/posts/201

©, b  ®
L> T T T T 5.08-
A = —> — A Understanding-

LSTMs/imag/RN
N-unrolled.png,
Retrieved on

16.12.18
(Goodfellow et al. 2016, p. 363f)

® Vanishing gradient problem: challenge to learn long-term dependencies
(Hochreiter 1991; Bengio et al. 1993, 1994)

@ Figure 3: Olah, 2015,
A

Long Short-Term Memory for >

Foundation > Energy Time Series
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Short abstract of Marino et al. (2016)

® Application of two architectural
variations of Long Short-Term Memory

W Stacked Long Short-Term Memory

B Sequence-to-Sequence Long Short-
Term Memory

Marino et al. 2016

® Experiments on benchmark dataset of
electricity consumption for a single
residential customer (“Individual
household electric power consumption”

Dheeru and Taniskidou 2017

Long Short-Term Memory for
Energy Time Series

> >

Foundation Evaluation
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Building Energy Load Forecasting using Deep Neural
Networks

Daniel L. Marino, Kasun Amarasinghe, Milos Manic
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Abstract—Ensuring_sustainability demands more_efficient
energy management with minimized energy wastage. Therefore,
the power grid of the future should provide an unprecedented level
of flexibility in energy management. To that end, intelligent
decision making requires accurate
demand/load, both at aggregate an
energy load forecasting have received increased attention in the
recent past. However, it has proven to be a difficult problem. This
paper presents a novel energy load forecasting methodology based
on Deep Neural Networks, specifically, Long Short Term Memory
(LSTM) algorithms. The presented work investigates two LSTM
based architectures: 1) standard LSTM and 2) LSTM-based
Sequence to Sequence (S25) architecture. Both methods were
implemented on a benchmark data set of electricity consumption
data from one residential customer. Both architectures were
trained and tested on one hour and one-minute time-step
resolution datasets. Experimental results showed that the
standard LSTM failed at one-minute resolution data while
performing well in one-hour resolution data. It was shown that
S28 architecture performed well on both datasets. Further, it was
shown that the presented methods produced comparable results
with the other deep learning methods for energy forecasting in
literature.

Keywords—Deep Learning; Deep Neural Networks; Long-
Short-Term memory; LSTM; Energy; Building Energy; Energy
Load forecasting

1. INTRODUCTION

Buildings are identified as a major energy consumer
worldwide, accounting for 20%-40% of the total energy
production [1]-[3]. In addition to being a major cnergy
consumer, buildings are shown to account for a significant
portion of energy wastage as well [4]. As energy wastage poses
a threat to sustainability, making buildings energy efficient is
extremely crucial. Therefore, in making building energy
consumption more efficient, it is necessary to have accurate
predictions of its future energy consumption.

At the grid level, to minimizing the energy wastage and
making the power generation and distribution more efficient, the
future of the power grid is moving to a new paradigm of smart
grids [5], [6]. Smart grids arc promising, unprecedented
flexibility in energy generation and distribution [7]. In order to
provide that flexibility, the power grid has to be able to
dynamically adapt to the changes in demand and efficiently
distribute the generated energy from the various sources such as
renewables [8]. Therefore, intelligent control decisions should

978-1-5090-3474-1/16/831.00 ©2016 IEEE 7046

be made continuously at aggregate level as well as modular level
in the grid. In achieving that goal and ensuring the reliability of
the grid, the ability of forecasting the future demands is
important. [6], [9].

Further, demand or load forecasting is crucial for mitigating
uncertainties of the future [6]. In that, individual building level
demand forccasting is crucial as well as forecasting aggregate
loads. In terms of demand response, building level forecasting
helps carry out demand response locally since the smart grids
incorporate distributed energy generation [6]. The advent of
smart meters have made the acquisition of energy consumption
data at building and individual site level feasible. Thus data
driven and statistical forecasting models are made possible [7].

Aggregate level and building level load forecasting can be
viewed in three different categories: 1) Short-term 2) Medium-
term and 3) Long-term [6]. It has been determined that the load
forecasting is a hard problem and in that, individual building
level load forecasting is even harder than aggregate load
forecasting [6], [10]. Thus, it has received increased attention
from researchers. In literature, two main methods can be found
for performing energy load forecasting: 1) Physics principles
based models and 2) Statistical and machine learning based
models. Focus of the presented work is on the second category
of statistical load forecasting. In [7], the authors used Artificial
Neural Network (ANN) ensembles to perform the building level
load forecasting. ANNs have been explored in detail for the
purpose of all three categories of load forecasting [9], [11]-{13].
In [14], the authors use a support vector machines based
regression model coupled with empirical mode decomposition
to for long-term load forecasting. In [15], electricity demand is
forecast using a kernel based multi-task learning methodologies
In [10], authors model individual household electricity loads
using sparse coding to perform medium term load forecasting
In the interest of brevity, not all methods in literature are
introduced in the paper. For surveys of different techniques used
for load forecasting, readers are referred to [16], [17] and [8].
Despite the extensive rescarch carried out in the area, individual
site level load forecasting remains to be a difficult problem.

Therefore, the work presented in this paper investigates a
deep learning based methodology for performing individual
building level load forecasting. Deep learning allows models
composed of multiple layers to learn representations in data. The
use of multiple layers allow the learning process to be carried
out with multiple layers of abstraction. A comprehensive
overview and a review of deep learning methodologies can be

Discussion

Figure 4: Marino et al., 2016, p. 7046
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Overview of presented ﬂ(IT
Long Short-Term Memory architectures

Stacked Sequence-to-Sequence
Long Short-Term Memory Long Short-Term Memory
Z)[t] Encoder Decoder
T Yy Yt
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Ao Fo:
LSTM s™m | | ST
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N

Figure 5: Layer 1 * T % ¢ ¢
Own representation |
based on T Ye-1] fi ! Jit
XaYriOn4o7et al, 2016, Yrp—1] f[t] Figure 6: Initial State |

Own representation
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Long Short-Term Memory ﬂ(".

® Type of Recurrent Neural Network introduced by Sepp Hochreiter and
Jurgen Schmidhuber (1997)

® Great success in various applications (Goodfellow et al. 2016, p. 363f)
® Solves vanishing gradient problem

® Key concepts

® Cell State & ® &
® Gates | - |
® Input . Sl
® Forget A }:Eﬁg’ A
® Output VA

| I
&) x) &)
Figure 7: Olah, 2015,

http://colah.github.io/posts/2015-08-Understanding-
LSTMs/img/LSTMS3-chain.png, Retrieved on 03.12.2018

Long Short-Term Memory for >

Energy Time Series Evaluation @ »>  Discussion  »>  Conclusion
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Long Short-Term Memory Cells IT
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Legend
1 o — > <
NeurlNetwork  Partuse  Vecter  Concatenate  Copy
Q Cell State 0 Forget Gate
C
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t—1 ® @ >
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hi—1
Tt
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Figure 8: Olah, 2015, Figure 9: Adapted from Olah, 2015,
http://colah.qgithub.io/posts/2015-08- http://colah.qgithub.io/posts/2015-08-
Understanding-LSTMs/img/LSTM3-C- Understanding-LSTMs/img/LSTM3- n
line.png, Retrieved on 03.12.2018 focus-f.png, Retrieved on 03.12.2018
: Long Short-Term Memory for . . . :
Foundation > Energy Time Series >>  Evaluaton »>  Discussion »>  Conclusion
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Long Short-Term Memory Cells

e Input Gate
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hi—1

it =0 (Wi lhi—1, 2] + b;i)

ét :tanh(Wc-[ht_l,:ct] + bc)

Figure 10: Adapted from Olah, 2015,
http://colah.qithub.io/posts/2015-08-
Understanding-LSTMs/img/LSTM3-
focus-i.png, Retrieved on 03.12.2018

: Long Short-Term Memory for
Foundation > Energy Time Series

15 08.01.19

Kai Schmieder: Deep Learning for Energy Time Series

AT

Karlsruhe Institute of Technology
Neural Network Pointwise Vector
Layer Operation Transfer Concatenate Copy

e Update Cell State

Ct:ft*ct—l"‘it*ét

Figure 11: Adapted from Olah, 2015,
http://colah.qgithub.io/posts/2015-08-
Understanding-LSTMs/img/LSTM3-
focus-C.png, Retrieved on 03.12.2018
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Figure 12: Adapted from Olah, 2015,
http://colah.qgithub.io/posts/2015-08-
Understanding-LSTMs/img/LSTM3-
focus-o0.png, Retrieved on 03.12.2018
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Stacked Long Short-Term Memory architecture ﬂ(".

W Stacked architecture Y]
® Stack multiple Long Short-Term Memory Cells T
into a multi-layer architecture f(og)
® Dense layer T02
LSTM
ﬁﬂ Layer 2
® Input vector: iy, = [ ypq) dayy day-of-weeky; houry] TOl
B Use also more than one time step as “context” L'-ST'Vl
ayer
A P4
® Output vector: yy vy S
Figure 5:
(Marino et al. 2016) own representation
Marino et al., 2016,
p. 7047

> Long Short-Term Memory for >
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Overview of presented N
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Figure 5: Layer 1 * T % ¢ ¢
Own representation |
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XaYriOn4o7et al, 2016, Yrp—1] f[t] Figure 6: Initial State |

Own representation
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The idea of Sequence-to-Sequence Learning ﬂ(".

® Introduced by Sutskever et al. (2014) to map sequences of different
lengths

® Comprised of two sub-models

® Encoder
® Convert input sequences of variable length and

® Encode them in a fixed length vector, which is then used as input state for the
decoder

® Decoder
® Generates an output sequence of fixed length

(Marino et al. 2016, p. 7048)

® Applications in speech recognition, machine translation and question
answering (Goodfellow et al. 2016, p. 385)

Long Short-Term Memory for
> g 4 >

Energy Time Series Evaluation ~ >>  Discussion 2> Conclusion

Foundation
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Sequence-to-Sequence ﬂ(IT
Long Short-Term Memory architecture

® Encoder Encoder Decoder
® Input vector: n Urg
ig=[ Y1) dayy day-of-weeky houry] A A
fEt] f(02) f(02)
T 09 T02
® “Output”. Cell State g Lst™m | | g LSTM
Layer 2 : Layer 2
TOl i TOl
® Decoder LSTM i g LSTM
® |nput vector: f Layer 1 . Layer 1
p ! S I I
! |
® Output vector: Q[t] Y- fiy i I Ji
| ital State |
(Marino et al. 201 6) Figure 6: Own representation

Long Short-Term Memory for
> g 4 >
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Foundation

Kai Schmieder: Deep Learning for Energy Time Series Energy Informatics Seminar
Institute for Automation and Applied Informatics (IAl)



AT

Karlsruhe Institute of Technology

EVALUATION

21 08.01.19 Kai Schmieder: Deep Learning for Energy Time Series Energy Informatics Seminar
Institute for Automation and Applied Informatics (IAl)



22

AT

Experiments in Marino et al. (2016)

Gata

® “Individual household electric power consumption” (Dheeru and Taniskidou 2017)
® Aggregation Level

® 1 minute (original)

® 1 hour
Q Training set: 3 years; Test set: 1 year

~

4 . )
Model Horizon
® Stacked LSTM ® One Step
o Sequence-to-Sequence LSTM ® 60 Steps y
(Evaluation and results )
® Stacked LSTM performs well with inputs further in the past for hourly data
® Sequence-to-Sequence LSTM performs well in both datasets
® Comparable results to Mocanu et al. (2016) y
Foundation > LongEiZ?g);-l:l?i:rTe '\gzrrrigy for >>  Evaluation >  Discussion »  Conclusion
08.01.19 Kai Schmieder: Deep Learning for Energy Time Series Energy Informatics Seminar
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Implementation and hardware resources

® Jupyter Notebooks at
https://github.com/nicoleludwig/EnergyInformatics

® Implementation with Python

Pandas

NumPy

scikit-learn

Keras with TensorFlow as backend
Chartify

® Hardware resources for training
® GPU: NVIDIA Tesla V100*

* Made possible by Andreas Bartschat (lAl), thanks again! ©

: Long Short-Term Memory for . . :
Foundation > : . > Evaluation > Discussion > nclusion
Energy Time Series Conclusio
08.01,19 Kai Schmieder: Deep Learning for Energy Time Series Energy Informatics Seminar
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Data for evaluation

® Energy consumption data of KIT Campus Nord
® Building 124
® 15 minutes resolution

® Training set of three years

(Mid May 2012 until Mid May 2015)
B Test set of one year

(Mid May 2015 until Mid May 2016)

Line chart for hourly data of Building 124
Grouped by Train and Test data

e Testom== Train

Measurement [kWh]

Figure 13: https://www.kit.edu/downloads/Campus-Nord.pdf,

AT

Karlsruhe Institute of Technology

1/2013 1/2014 1/2015 1/2016

Time - Retrieved on 05.01.2019

. Long Short-Term Memory for
Foundation b Energy Time Series %
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Additional time series approaches ﬂ(".

B Stationarity

B “A stationary time series is one whose properties do not depend on the
time at which the series is observed.” (Hyndman and Athanasopoulos
2018)

® Implementation with differencing to remove effects

® Normalization (Brownlee 2018, p. 249, Chollet 2018, p. 210f)
® Min-Max-Scaling
® Transform features by scaling each feature to a given range
® Implementation with range [0, 1]
@ Standardization

W Standardize features by removing the mean and scaling to unit variance (z-
transformation)

® Implementation with mean = 0 and standard deviation = 1

Long Short-Term Memory for
> g Y >

Energy Time Series Evaluation >  Discussion »>  Conclusion

Foundation
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Overview of evaluation scenario characteristics Q(IT

Characteristic Category

Level of Aggregation 15 minutes 1 hour

Stationarity Stationary Non-Stationary

Normalization None Min-Max-Scaling Standardization

Stacked Sequence-to-Sequence
Long Short-Term Memory Long Short-Term Memory

One step One Day One Week

—> 72 scenarios per building

> Long Short-Term Memory for >

Energy Time Series Evaluation >>  Discussion »>  Conclusion

Foundation
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Evaluation metric ﬂ(".

Karlsruhe Institute of Technology

® Root mean squared error (RMSE)

T ny

1
RMSE = T *nvZZ(vi,t — Dy¢)?
t=11i=1

n,, = number of steps in horizon

T -> total number of steps predicted into the future
v; > real values for time-step t

D; = value predicted by the model for time-step t

(Mocanu et al. 2016, p. 95)

: Long Short-Term Memory for . . . :
Foundation >> : : >>  Evaluation >>  Discussion >>  Conclusion
oundatio Energy Time Series
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Baseline models ﬂ(".

Karlsruhe Institute of Technology

Legend: (15 minutes / 1 hour)

® Naive Forecast

® Value of the last week on the same day of the week at the same time
® Prediction for timestep t: (t- 672/t - 168)

® Ordinary Regression

B Regression of the respective load time series with the following regressors
® Load before one day (t-96/1t-24)
® Load before two days (t- 192/t - 48)
® Load before one week (t- 672/t - 168)
® Dummy variables for weekend, month, hour and minute (only for 15 minutes)

Long Short-Term Memory for
> g Y >

Energy Time Series Evaluation >  Discussion »>  Conclusion

Foundation
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Results for Building 124

Level of
Aggre-
gation

15

Sta-
tionary

No

Normal-
ization

None

Stacked-LSTM

(0,015; 0,853; 0,893)

RMSE per time horizon

S2S-LSTM

(1,474; 1,496; 1,491

Min-Max

(0,01; 0,792; 0,865)

(1,482; 1,473; 1,491

Standard

0,011; 0,816; 0,868)

(1,475; 1,489; 1,494

Minutes

Yes

None

0,007; 1,193; 1,726)

(0,427; 1,755; 2,022

Min-Max

(0,427; 1,761; 2,093

Standard

0,008; 1,177; 1,693)

Naive Forecast

0,909

AT

Karlsruhe Institute of Technology

Ordinary
Regression

(0,397; 0,789; 0,825)

No

None

(
(
(0,016; 1,039; 3,196)
(
(

0,021; 0,742; 0,871)

(1,453; 1,449; 1,452

Min-Max

(0,026; 0,712; 0,81)

(1,433;|1,447; 1,453

Standard

(0,03; 0,73; 0,864)

(1,443; 1,456; 1,452

1 Hour

Yes

None

(0,008; 0,839; 1,291)

(0,558;|1,693; 1,964

Min-Max

(0,049; 0,885; 1,899)

)
)
)
)
)
(0,427; 1,755; 2,023)
)
)
)
)
)

(0,558; 1,695; 2,015

Standard

(0,009; 0,856; 1,208)

(0,558; 1,7; 1,964)

0,829

(0,311; 0,724; 0,76)

Legend

Root Mean Squared Error (One Step; One Day; One Week) | LSTM — Long Short-Term Memory | S2S — Sequence-to-Sequence
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Remarks on results ﬂ(".

Karlsruhe Institute of Technology

® Technical and practical insights
® Handling time shift and some missing days in 2012

® Data pre-processing pipeline
® Traditional time series analysis: 2D [samples, features]
® Deep Learning: 3D tensor [samples, time-steps, features]

® Distinction between one-step and multi-step forecasts
® Parameters

® Time for training per Long Short-Term Memory model c
approx. 6,5 hours for all scenarios

: Long Short-Term Memory for . . . :
Foundation > : . > Evaluation > Discussion > Conclusion
oundatio Energy Time Series
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Critical reflection on Marino et al. (2016) ﬂ(".

/Missinq parameter configurations \
® Training batch and epochs
® Norm clipping
® Dropout
® Activation function at Dense layer

/Comparable results with Mocanu et al. (2016) \

® In Mocanu et al. (2016) seven experiments with different resolutions and time horizons
on the same dataset (Dheeru and Taniskidou 2017)

® Implementation and evaluation of Conditional Restricted Boltzmann Machine and
Factored Conditional Restricted Boltzmann Machine

® Comparable result in one of seven scenarios - Results of other scenarios?

o /

. Long Short-Term Memory for . . . .
Foundation > : . > Evaluation > Discussion > Conclusion
oundatio Energy Time Series
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Related work ﬂ(".
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Con-
Architecture Deep volutional Recurrent Deep Auto-
Forward Neural Generative
Paper Neural encoders
Networks Networks Networks
Reference Networks
Amarasinghe et al. 2017 CNN
Gensler et al. 2016 LSTM* AE*
He 2017 CNN* LSTM*
Heghedus et al. 2018 GRU
Jarabek et al. 2017 S2S-LSTM
Li et al. 2017 ELM* SAE*
) Stacked- &
Marino et al. 2016 3231 STM
CRBM &
Mocanu et al. 2016 RNN FCRBM
Ryu et al. 2016 RBM

Vol et al. 2018 WaveNet

Legend: * - Combined Approach | CNN — Convolutional Neural Networks | (F)(C)RBM — (Factored) (Conditional) Restricted
Boltzmann Machine | ELM — Extreme Learning Machine | GRU — Gated Recurrent Unit | LSTM — Long Short-Term
Memory | RNN — Recurrent Neural Network | S2S — Sequence-to-Sequence | (S)AE — (Stacked) Autoencoder
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® Achievements

® Long Short-Term Memory as one Deep Learning method for Energy Time
Series Forecasting

® Overview of current Deep Architectures for Energy Time Series
® Implementation and evaluation of

®m Stacked Long Short-Term Memory and
B Sequence-to-Sequence Long Short-Term Memory

based on Marino et. al. (2016)

B Summarised results

B Stacked Long Short-Term Memory outperformed baseline models for
hourly data in one-step and one-day predictions

® Good performance of Sequence-to-Sequence Long Short-Term Memory
could not be confirmed (without hyperparameter optimization)
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/Deep Learning

B Hyperparameter optimization
® Grid Search
® Random Search
® Bayesian Optimization, etc.

\l Variations of Long Short-Term Memory

~

ﬂr

® Verify results with more buildings
B “Real” univariate Time Series Forecast
® Multivariate Time Series Forecast
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How does deep learning basically work?

Input X

v

' Layer
Weights  —> (data transformation)

v

. Layer
Weights  —> (data transformation)

A
Weight o
update Predictions True targets
Y' Y
Optimizer Loss function/

Objective function

[ Loss score ]

Source: Own representation based on Chollet (2018, p.11)
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® Sigmoid (o)

1
o O'(t)= m

® Value range [0; 1]

sig(t
_Sig(t) = # 1.0 blg( )
0.8
0.6
0.
0.2
t
-8 —6 —4 —2 2 4 6 8
Source:

https://upload.wikimedia.org/wikipedia/commons/thumb
/5/53/Sigmoid-function-2.sva/1920px-Sigmoid-function-
2.svg.png (Retrieved on 06.01.2019)
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® Tangens hyperbolicus (tanh)

el —e~t

et+et
® Value range [-1; 1]

® tanh(t) =

tanh(x) p

Source:
https://upload.wikimedia.org/wikipedia/commons/thumb
/8/87/Hyperbolic_Tangent.sva/1920px-
Hyperbolic_Tangent.svg.png (Retrieved on 06.01.2019)
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Details: Stacked Long Short-Term Memory ﬂ(".

M
Obijective function L = Z()’[t] — Pie)?

t=1

Unrolling implemented with M=50

Optimizer Adam

Training with Backpropagation Through Time

Optimization with Norm clipping
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Layer 1
Yi—1 S

Figure 5:

Own representation
based on

Marino et al., 2016,
p. 7047
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Details: S2S Long Short-Term Memory ﬂ(".

® Similar setup as Stacked Long

Short-Term Memory Encoder Decoder
yf[t] yg]
® Encoder objective function 7(09) F(09)

L i 5 )2 T - TOQ
— — LSTM LSTM
E t=1(y[t] y[t]) C Layer 2 R g Layer 2

£

|
|
|
|
|
® Decoder objective function g LSV | g LSTM
T ayer 1 : Layer 1
D = e — Vi) Y1 fi i | fir
t=M+1 - i
 Irifal St |
® Optimization with Norm clipping Figure 6:
] ] . Own representation
® Regularization with Dropout
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Backpropagation Through Time for S2S LSTM

Encoder Decoder
L, Error
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~fo, _ fo, lo, fo. o fo-. _ Too-
LSTM [ LSTM _fe LSTM .41 LSTM -} LSTM .7} LSTM LSTM
...... S e < [ —>e 0 0—p e T L e —Peee—p| . .
Layer 2 Layer 2 Layer 2 'Layer 2 Layer 2 Layer 2 Layer 2
for " fo T O O A S 1 o
LSTM . LSTM o - LSTM ------- .l LSTM"";_, ...... _ LSTM .. LSTM _” ---------- LSTM
' eo—p| ) e eo—p . :
Layer 1 Layer 1 Layer 1 Lay(?r 1 [ Laye‘r 1 [ Layer 1 Layer 1
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