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3.1 Introduction

Symmetry is one of the most important aesthetic criteria that clearly reveals the structure
and properties of a graph. Graphs in textbooks on graph theory are normally drawn sym-
metrically. In some cases, a symmetric drawing may be preferred over a planar drawing.
As an example, consider the two drawings of the same graph in Figure 3.1 (from [KK89]).
The left drawing has five edge crossings, but eight symmetries (four rotations and four re-
flections). On the right is a planar drawing; it only has axial symmetry. Most people prefer
the drawing on the left. As another example, the Petersen graph is normally drawn as in
Figure 3.2. This drawing shows ten symmetries (five rotations and five reflections). In fact,
it can be shown that a drawing of the Petersen graph can have at most ten symmetries,
and Figure 3.2 is maximally symmetric.

Of course, every drawing has the trivial symmetry, the identity mapping on the plane.
The aim of symmetric graph drawing is to draw a graph with nontrivial symmetry. More
ambitiously, we aim to draw a graph with as much symmetry as possible.

Symmetries of a drawing of a graph G are clearly related to the automorphisms of G;
intuitively, a symmetry of a drawing of G induces an automorphism of the graph. For
example, in Figure 3.2, a rotational of the plane by 27 /5 is a symmetry of the drawing and
induces the automorphism (0,1,2,3,4)(5,6,7,8,9). A reflection of the plane in a vertical
axis induces the automorphism (1,4)(6,9)(7,8)(2,3). The automorphism group of a graph
G defines its “combinatorial symmetries.” However, not every automorphism can be rep-
resented as a symmetry of a drawing of G. For example, the automorphism group of the
Petersen graph has 120 elements, but, as mentioned above, a drawing can display only ten
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A

Figure 3.1 Two drawings of the same graph: a planar drawing with eight symmetries
and five edge crossings, and a planar drawing with an axial symmetry [KK89].

Figure 3.2 A drawing of the Petersen graph.

of these. Symmetric graph drawing involves determining those automorphisms of a graph
G that can be represented as symmetries of a drawing of G.

This chapter describes a formal model for symmetric graph drawing in Section 3.2, and
gives a characterization of subgroups of the automorphism group of a graph that can be
displayed as symmetries of a drawing in Section 3.3. Most precise formulations of the
symmetric graph drawing problem are NP-complete. Section 3.4 describes a proof of the
NP-completeness of one such formulation and briefly reviews some heuristics for the general
symmetric graph drawing problem. Of course, we want a drawing of a graph to satisfy
other aesthetics as well as symmetry. In particular, it is useful to examine the problem
of constructing a planar straight-line drawing of a planar graph, such that symmetry is
maximized. Surprisingly, there is a linear-time algorithm for this problem; it is sketched
in Section 3.5. The chapter concludes with a brief survey of some other approaches to
symmetric graph drawing and some open problems.
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3.2 Basic Concepts for Symmetric Graph Drawing

3.2.1 Drawing of a graph

A graph G = (V, E) consists of a set V of vertices and a set E edges, that is, unordered
pairs of vertices. Unless explicitly stated otherwise, we assume that the graph is simple,
that is, it has no multiple edges and no self-loops.

A drawing D of a graph G consists of a point Dy (u) in R? for every vertex u € V, and
a closed curve segment Dg(u,v) in R? for every edge (u,v) € E. The curve Dg(u,v) has
its endpoints at Dy (u) and Dy (v). Through most of this chapter, the curve Dg(u,v) is a
straight-line segment.

For an investigation of symmetric graph drawing, we must take a little care about the
definition of the drawing of a graph. We allow two curves Dg(u,v) and Dg(u/,v") to cross
(share a point), but we have some non-degeneracy conditions as follows:

ND1 The mapping Dy is injective. This excludes, for example, the ultra-symmetric
case where all vertices are drawn at the origin.

ND2 A curve Dg(u,v) must not contain a point Dy (w) where u # w # v; in other
words, an edge must not intersect with a vertex to which it is not incident.
ND3 Two curves must not overlap; that is, they must not share a curve of nonzero
length. This excludes, for example, the axially symmetric case where all the

vertices of the graph are drawn on the x axis.

ND/ If two curves share a point, then they must cross at this point; that is, they
alternate in cyclic order around the crossing point.

Note that for straight-line drawings, ND2 implies both ND3 and ND4. Most of this chapter
is concerned with straight-line drawings, and so discussions of degeneracy concentrate on
ND1 and ND2.

3.2.2 Automorphisms of a graph

Basic concepts and terminology for permutation groups can be found in [Wie64].

An isomorphism from a graph Gy = (Vi,E;) to a graph Go = (V,, E3) is a one-
one mapping S of V; onto V, that preserves adjacency, that is, (u,v) € E; if and only
(B(w),B(v)) € Ea. An automorphism of a graph G = (V, E) is an isomorphism of G onto
itself, that is, a permutation of the vertex set that preserves adjacency. The order of an
automorphism 3 is the smallest positive integer k such that 8* is the identity.

Any set of automorphisms of G that forms a group is called an automorphism group of
G; the set of all automorphisms of G is denoted by aut(G). The size of an automorphism
group is the number of elements of the group.

We have defined an automorphism group A of a graph as a permutation group on the
vertex set V of a graph G = (V, E). It is easy to see that this defines a permutation group
A’ acting on the edge set E, and it is often convenient to regard A as acting on E. For

1The graph drawing literature is somewhat inconsistent about the precise details of the definition of
a graph drawing. In some places, a drawing with these non-degeneracy conditions is called a strict,
clear, and/or proper. In this chapter, however, we use the term “graph drawing” to includes these
non-degeneracy conditions.
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example, if 8 € A and (u,v) € E, then we write “the edge 5(u,v)” to denote the edge
(B(w), B(v)).

A subset B = {f1, B2, ..., Bk} of an automorphism group A generates A if every element
of A can be written as a product of elements of B. We denote the group A generated by B by
(B1,B2,...,Pk). From the computational point of view, generators are important because
they give a succinct way to represent an automorphism group. If we were to represent a
permutation explicitly, then it may require (n) space, where n = |V|. Thus, an explicit
representation of an automorphism group of size k may take space Q(kn). In many cases
this is too large; for example, the space requirement may preclude a linear-time algorithm,
merely because the representation of the output is super-linear. To avoid this problem, we
usually represent a group by a set of generators; in general the set of generators is smaller
than the group. Most of the groups discussed in this chapter are generated by one or two
elements.

Many of the difficulties of symmetric graph drawing arise when vertices and/or edges are
fixed by an automorphism. For this reason, we need a careful notion of “fix.” Suppose that
A is an automorphism group of G = (V, E). The stabilizer of uw € V, denoted by staba(u),
is the set of automorphisms in A that fix u, that is,

staba(u) ={B € A| B(u) = u}. (3.1)
The definition can be extended to subsets of V: if Y C V, then
staba(Y) ={B€ A|Vy €Y, By) €Y} (32)

Note that the stabilizer of a set fixes the set setwise.
For each automorphism § we denote {u € V' | f(u) = u} by fizg. The set of vertices
that are fixed elementwise by every element of A is denoted by fiz 4, that is,

fixa={veV|VBeA Bv)=uv}. (3.3)

Note that while stabs(Y) is a set of group elements, fix4 is a set of vertices. Further, the
expression “fix the edge (u,v)” does not necessarily entail “fixing v and fixing v”; it could
mean that v and v are swapped.

If 8 € A and u € V, then the orbit of v under 8, denoted by orbitg(u), is the set of
images of v under (3), that is,

orbitg(u) = {B'(u) | 0 < i < k}, (3.4)
where 8 has order k. We can extend this definition to groups: the orbit of u under A is
orbita(u) = {B(u) | B € A}. (3.5)

Note that the orbits partition V. The following theorem is fundamental in finite group
theory.

Theorem 3.1 (Orbit-stabilizer theorem [Arm88]) Suppose that A is a group acting
on a set X and let x € X. Then |A| = |orbita(z)| X |staba(x)|.

The following corollary is helpful in the following sections.

COROLLARY 3.1 Suppose that A is a group acting on a set X.

e If A has no fixed points, then |orbit4(z)| = |A] for every x € X.
o If A has one fixed point w € X, then |orbit4(x)| = |A| for every z # w € X.
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3.2.3 Symmetries of a graph drawing

Symmetry is an intuitive notion that can be formally defined in many different ways. In
this chapter we will concentrate on a standard mathematical notion of symmetry; other
notions are discussed in Section 3.6.

An isometry is a mapping of the plane onto itself that preserves distances. A symmetry
of a drawing D = (Dy, Dg) of a graph G = (V, E) is an isometry o of the plane that maps
the drawing onto itself, that is:

o for every vertex u € V, there is a vertex v € V such that o(Dy(u)) = Dy (v),
and

e for every edge (u,v) € E, there is an edge (a,b) € E such that o(Dg(u,v)) =
DE (a, b)

Note that if o is a symmetry of a drawing D = (Dy, Dg) of a graph G = (V, E), then
8= D;laDV is an automorphism of G. We say that D displays 8. Given an automorphism
3, if there is a drawing which displays (8, then we say that § is geometric.

An automorphism group A is geometric if every element of A is displayed in a single
drawing; in this case the drawing displays A.

To define the intuitive notion of “maximally symmetric drawing” of a graph, we need to
decide what it means for one drawing to display more symmetry than another. Here we
take a simple view: that if D displays A and D’ displays A’, then D is more symmetric than
D' if A has a larger size than A’. This means that searching for a maximally symmetric
drawing entails searching for a maximum size geometric automorphism group.

3.3 Characterization of Geometric Automorphism Groups

Suppose that a drawing D of a graph G = (V, E) displays the automorphism group A. Let
A’ denote the group of symmetries of D. It is useful to note the group-theoretic relationship
between A and A’. If D contains three non-collinear points, then A is isomorphic to A’
because a motion of three non-collinear points in the plane uniquely determines an isometry.
If all the vertices of the drawing lie on a single line, it may be the case that |A’| = 4 while
|A| = 2, because the rotation by 7 gives the same automorphism as a reflection in the line.
However, this is a pathological case, because the only graphs that have drawings on a single
line are sets of paths; in general, we assume that A is isomorphic to A’.

Next, we consider the simple question: Given an automorphism group A of a graph G,
is there a drawing of GG that displays A? The answer is straightforward, since a symmetry
of a finite set of points in the plane is relatively straightforward. The following theorem is
an extension of results of Lipton et al. [LNS85], Manning et al. [MA86, MA88, AMS88], and
Lin [Lin92] to handle degeneracies.

Theorem 3.2  Suppose that A is an automorphism group of a graph G. Then:

(a) A can be displayed as a reflection if and only if |A| = 2 and fiza induces a set
of disjoint paths.
(b) A can be displayed as a rotation if and only if all the following conditions hold

i. A has one generator p, and
it. |fiza] <1, and
iti. if A fizes an edge, then |fiza| = 0.
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Figure 3.3 A circular grid.

(c) A can be displayed as a dihedral group if and only if all the following conditions
hold.

i. A is dihedral; that is, it has two generators o and p such that a® =1, pF =1

or some k > 1, and ap = p~La.
, p=p

ii. |fiza] < 1.
1. fize induces a set of disjoint paths.
. If p fizes an edge, then |fixal = 0.

The proof of Theorem 3.2 is an algorithm, stated below, that takes a graph G and an
automorphism group A satisfying the conditions of the theorem, and draws G to display A.
The drawing is on a circular grid as illustrated in Figure 3.3. An m X n circular grid has
n > 2 equally spaced rays Ry, R1,...,R,_1 from the origin, that is, the ray R; makes an
angle of 27i/k to the x axis. There are m > 1 circles Cy,Cs, ..., Cyy, centered at the origin,
in increasing order of radius. However, the circles may not be equally spaced. The drawing
algorithm below chooses a radius for each circle, and places vertices at the grid points, that
is, at the intersection points between the circles and the rays.

To prove part (c) of Theorem 3.2, we need the following technical lemma.

LEMMA 3.1 Suppose that the radius of the circle C; in the m x n circular grid is n’,
and there are three circular grid points that lie on a straight line /. Then ¢ passes through
the origin.

Proof: Suppose that u, v and w are circular grid points on C;, C;, and Cy, respectively,
and that ¢ > j > k.
Note the case i = j = k is not possible.
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Figure 3.4 Three-in-a-line for the circular grid: first case.

First, consider the case that ¢« > 5 > k, as in Figure 3.4. We show that the line segment
between v and v cannot intersect Cj unless it passes through the origin.

Assume that such an intersection occurs. Then let § = ZOuv and ¢ = ZOwvu. Since the
line segment between u and v intersects C with k < j and the radius of ¢ is at least n
times smaller than the radii of C; and Cj, it follows that sin(f) < n~! and sin(¢) < n~'.
One can deduce that for n > 2:

sin(f + ¢) < 2n~'. (3.6)

However, considering the triangle uOv and noting that v and v are at circular grid points,
we can see that 8+¢ is an integer multiple of 27n~'. If both are nonzero, then +¢ > 27n~";
this implies that sin(6 + ¢) > 2n~!, contradicting the inequality above. It follows that both
0 and ¢ are zero, and so the line segment between u and v passes through the origin.

For the case that ¢ > j = k, as in Figure 3.5, a variation of the argument above can be
used to show that ¢ passes through the origin.

O

Next, we prove Theorem 3.2. We prove each of the parts (a), (b), and (c) in turn.

Part (a) Suppose that A is displayed as a reflection. Then every vertex u on the
line of reflection is fixed by the reflection and thus u € fiz,. Any cycle or vertex of degree
more than two on this line violates the non-degeneracy conditions, thus fiz 4 induces a set
of disjoint paths.

Conversely, suppose that A = {1, a} is an automorphism group such that fiz 4 induces
a set of disjoint paths. We use the following algorithm.

First, draw V — fiz 4 on a circle about the origin, so that the  coordinates of u and «(u)
are the same, then draw the edges induced by V — fix 4 as straight lines. Note that, so far,
the drawing is axially symmetric about the y axis and it is non-degenerate.

Next, note that the edges induced by V — fiza cross the y axis at a finite number of
places. Draw fiza on the y axis, one path at a time, in such a way that the vertices of
fix 4 avoid the edges induced by V — fizy4.

Finally, draw the edges between V — fizx 4 and fix 4.
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Figure 3.5 Three-in-a-line for the circular grid: second case.

This drawing displays a as a reflection in the y axis; note that it satisfies the non-
degeneracy conditions.

Part (b) Suppose that A is displayed by a rotation. It is clear that A has one
generator. A rotation fixes only one point of the plane, and thus A can fix at most one
vertex. If A fixes an edge as well as a vertex w, then w must lie at the midpoint of the
edge, and thus the drawing is degenerate.

Conversely, suppose that A = (p) is an automorphism group satisfying the conditions
of the lemma. Assume, for the moment, that fiz4 is empty. Our algorithm places every
vertex u on a circle of radius one about the origin; it must choose the angle ,, that the line
between u and the origin makes with the x axis.

From Corollary 3.1, each orbit has the same size. Thus, there are n/k orbits
01,03, ...,0, ), where n = |[V|. We choose an element u; from O; and, for j =
0,2,...,k — 1, place p’(u;) so that 0,;(,,) = 27(i + jn/k)/n. Effectively, this spaces the
vertices equally around the circle so that the angle between consecutive elements of the
same orbit is 27 /k. Thus the drawing displays A with a rotation by 27 /k. It is clear that
this drawing is non-degenerate.

If fixs is nonempty, then it has one element ¢, which we place at the origin. This
preserves symmetry but introduces a possible degeneracy: the central fixed vertex may
lie on an edge that forms a diameter of the circle. However, such an edge is fixed by a
rotation by 7 and, from the conditions of part (b) of the lemma, cannot occur when fix 4
is nonempty.

Part (c¢) Finally, suppose that A is dihedral. Suppose that A = («a, p), where
a? =1 and pF = 1, with k > 2. If fiz, is nonempty, then it forms a trivial orbit of (p).
Denote the nontrivial orbits of (p) by O1,0a,...,0, i, where n = |V — fiza].

For 0 < i < k—1, the automorphism p’ will be displayed as a rotation by 27i/k about the
origin, and the automorphism p—fap’ will be displayed as a reflection in the line through
the origin at an angle of 27i/k to the x axis.

We will use a circular grid with n rays Ro, R1,..., R,—1 and n/k circles C1,Cs, ..., Cy .

First, we draw fix,—i,,: for each i, starting with ¢ = 0. We assume first that fiz, = 0.
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Since fix, is a set of disjoint paths, we can draw it on the x axis so that each vertex
is at a grid point of the circular grid and no vertex lies on any edge with which it is not
adjacent. If k is even, then we must ensure that a(fiz,—r/2qpk/2) = fiT,-k/2qk/2; this is
easily achieved.

Now consider fix,—iqpi.

Note that if u € fiz,, then pi(u) € Jiw—iqpi; in other words, if u is fixed by a then
every vertex in orbit,(u) is fixed by a conjugate of a. We can draw fiz,-ia,: on R,;/, and
Ry, (k—iy/i by rotating the drawing of fix, by 2mi/k. In this way, we draw orbit,(u) for
every vertex u € fixq.

Every other orbit is drawn on the innermost circle C;. We use a similar method to that
for cyclic groups, except that we display «. To do this, we choose a vertex u; from an orbit,
and draw uy on ray R;. Then draw «(u;) on ray R,_;. Next, we choose a vertex ug from
another orbit and draw us on Rs and «(us) on R, _5. This continues until we have placed
one vertex from each orbit. To place the remaining vertices from these orbits, we just rotate
by 27 /k.

The resulting drawing displays A; we must show that it is not degenerate.

From Lemma 3.1, we can assume that if there is a degeneracy, then there is a vertex w
lying on an edge (u,v) with w # wu,v, and the line through w, w, and v passes through
the origin. If u € fix,, then since v and w are on the line through u and the origin, we
must have v,w € fiz,. This is impossible since the layout method for fiz, precludes
degeneracies. We can deduce that neither u nor v is in fix,-in, for any i. Hence, we
conclude that u and v are on C. The only possible degeneracy is if w is the central vertex,
fixed by all automorphisms; thus, fiz4 # 0. However, {p) fixes the edge (u,v), contradicting
the conditions of the theorem. This completes the proof of Theorem 3.2.

The proof of Theorem 3.2 essentially consists of an algorithm for the following problem.

Geometric Automorphism Drawing Problem (GADP)

Instance: A graph G, and an automorphism group A of GG given as a set of at most
2 generators.

Owutput: If possible, a straight-line drawing of G that displays A.

COROLLARY 3.2 There is a linear-time algorithm that solves the Geometric Automor-
phism Drawing Problem.

Note that the resolution of the drawing obtained by the proof of Theorem 3.2 is poor in the
dihedral case, because the radii of the circles in the circular grid used increase exponentially.

Theorem 3.2 does not solve the main problem in symmetric graph drawing: given a
graph, find its largest geometric automorphism group. The next section shows that it is
NP-complete to find such a group.

3.4 Finding Geometric Automorphisms

In this section, we discuss the complexity of computing geometric automorphisms, and,
since the problem is NP-complete, we briefly mention heuristics.

The relationship between automorphisms of a graph and symmetries of drawings of the
graph suggests that the problem of drawing a graph symmetrically is at least as hard as
graph isomorphism. Manning [Man90] has shown a surprisingly stronger result: the problem
is NP-hard. The intuition behind Manning’s result comes from two directions. First, as
noted in Section 3.3, the major difficulties in drawing graphs symmetrically arise from the
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Figure 3.6 The auxiliary graph H.

fixed points of the automorphisms. Secondly, a result of Lubiw [Lub81] states that finding
a fixed-point free automorphism of a graph is NP-complete.

In fact, Manning shows that a number of problems related to symmetric graph drawing
are NP-hard. Here, we study just one of these problems: detecting whether a graph has an
automorphism that can be displayed as a reflection.

Azial Geometric Automorphism Problem (AGAP)
Instance: A graph G.
Question: Is there an automorphism of G that can be displayed as a reflection?

Theorem 3.3  The axial geometric automorphism problem is NP-complete.

Proof: Lubiw [Lub81] showed that the following problem is NP-hard.

Fized Point Free Automorphism Problem (FPFAP)
Instance: A graph G.
Question: Is there an automorphism of G with no fixed points?

We show that FPFAP reduces to AGAP.

Suppose that G is an instance of FPFAP with n vertices. We assume without loss of
generality that G is connected and every vertex has degree at least 2. Define a graph H as
follows: H has a path P = (uy,ug,...,Upt1). For 1 <i<mn+1, u; is joined to two paths,
each of length n 4 4. This is illustrated in Figure 3.6.

Now consider an automorphism S of H. It is clear that for 1 < <n+1, 8(u;) = u;, and
B either fixes or swaps the two paths joined to u;. If a drawing D of H displays 3, then it
is displayed as a reflection, and P lies on the axis of reflection with the paths attached to
each u; on each side of the axis.

Now form a graph G’ from H and G. The vertex set is the union of the vertex sets of H
and G, plus extra vertices wg, wy, ..., w, for each vertex of v of G.. For 2 < ¢ < n, join u; to
every vertex of G. For each vertex v of G, join w§ to v, and join all vertices wg, wy, ..., wy,
together to make a clique of size n + 1.

Note that G’ can be formed in polynomial time.

We claim that G’ has an axial geometric automorphism if and only if G has a fixed point
free automorphism.
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First, suppose that G has a fixed point free automorphism §. It is clear that one can
extend 8 to G’ to give an automorphism that satisfies part (a) of Theorem 3.2, and so G’
has an axial geometric automorphism group.

Now suppose that G’ has an axial geometric automorphism ~.

We claim that vy cannot map a vertex w of H to a vertex v of GG, or to one of the new
vertices wy. This is because every vertex of G is adjacent to a clique of size n + 1, while
no vertex of H has this property. Further, v cannot map a vertex of G to one of the new
vertices wy, because each w; is in a clique of size n + 1, and none of the original vertices
have this property. Thus, v restricted to H is an automorphism 5 of H; as mentioned
above, the only drawing that displays § has P lying on the axis of reflection.

Also, v restricted to G is an automorphism § of G. Suppose that § has a fixed point v.
Recall that v is joined by an edge to a vertex u; in P; this means that the induced subgraph
fiz, has a vertex of degree at least three. From Theorem 3.2, this is impossible. Thus § is
fixed-point-free.

Finally, note that AGAP is in NP, because one can guess an automorphism group, and,
using Theorem 3.2, check whether it is geometric. a

The NP-completeness results have led to a number of heuristic approaches; see [dF99,
Kam&9, Lin92, LNS85].

The most common are the generic multidimensional scaling, or force directed meth-
ods [dF99, Ead84, Kam88, Lin92]. Roughly speaking, this method projects a high-
dimensional drawing of the graph into low dimensions. The first step is to define a dis-
tance function d between vertices, and then the graph is drawn in a high-dimensional space
in such a way that the Euclidean distance in the high-dimensional space is equal or close
to the distances defined by d. In some cases, this (high-dimensional) drawing is unique
up to isometry; this implies that every automorphism of the graph is a symmetry of the
drawing. In other words, it achieves maximum symmetry in the high dimension. The next
step is to project the high-dimensional drawing into a low-dimensional space (either 2 or 3
dimensions) in such a way that the distances are preserved as much as possible.

As an example of such a method, de Fraysseix [dF99] uses the Czekanovski-Dice semi-
distance for a graph G = (V, E):

d(u,v) = \/1 - 2M (3.7

|Nu| + [Ny|
(A semi-distance d : X — R is a function that is almost a distance function: it satisfies
two of the axioms of a distance function: d(u,v) = d(v,u) and d(u,v) + d(v,w) > d(u,w).
However, it is possible that there are distinct elements u,v € X with d(u,v) = 0.) De

Fraysseix uses projections defined by the principal components of the corresponding inner
product matrix whose entries are defined by a pair s,t of vertices as follows:

1
W = §(d§ + d? - d%/)’ (38)

where for w = s, t,

and
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These projections are remarkably successful in displaying two dimensional symmetry;
see [dF99] for details.

It is common to look at such methods as a system of forces: for example, one can simulate
a system of forces between vertices where the force exerted on u by v is proportional to the
distance d(u,v). A minimum energy configuration defines a drawing, and in many cases
this drawing displays symmetries. For example, one can view the Tutte method [Tut63,
DETT99] in this way. In fact, one of the reasons for the popularity of force directed methods
is the fact that the drawings often display some symmetry. One can give some explanation
(see [ELO0, Lin92]) of why the approach works.

3.5 Symmetric Drawings of Planar Graphs

In this section, we describe a linear-time algorithm to draw planar graphs with no edge
crossings and as much symmetry as possible.

The concept of geometric automorphism in Section 3.2.3 can be extended to planar draw-
ings: an automorphism 3 of a graph G is planar if there is a planar drawing of G that
displays 8, and an automorphism group A is a planar automorphism group if there is a
planar drawing which displays every element of A.

The problem of finding automorphisms of a planar graph can be solved in linear time
(see [HW74, Won75]); however, it is clear that not all automorphisms are geometric. Fur-
ther, not every geometric automorphism is planar. For example, the complete graph K,
with four vertices has a dihedral geometric automorphism group of size eight, but this group
is not planar. The largest planar automorphism group of K4 has size six.

The following theorem summarizes the result.

Theorem 3.4  There is a linear-time algorithm that constructs maximum planar auto-
morphism group of a planar graph.

The remainder of this section is a sketch of a proof of Theorem 3.4. The algorithm
to prove the theorem uses a connectivity decomposition. We decompose the graph into
connected components, then decompose each connected component into biconnected com-
ponents, and finally decompose each biconnected component into triconnected components.
Different algorithms are needed for triconnected, biconnected, one-connected, and discon-
nected graphs. Each uses the algorithms for higher connectivity as subroutines. Details of
the proof can be found in [HE05, HE06, HE03, HMEO06].

In Section 3.5.5, we briefly describe the drawing algorithms.

3.5.1 Triconnected planar graphs

This section describes an algorithm for finding planar automorphism groups of maximum
size for triconnected planar graphs.

The uniqueness of the faces of a triconnected planar graph G = (V, E) means that an
automorphism group A defines a permutation group acting on the set F' of faces of G.
Effectively this means that A defines an automorphism group of the dual G* of G. We can
regard A as acting on G*, and write, for example, “the face §(f)” for some € A, f € F.

It is well known that a triconnected planar graph can be represented as the skeleton of
a polyhedron in three dimensions [SR34]. A more surprising and less well known result,
due to Mani [Bab95, ManT71], states that the automorphism group of a triconnected planar
graph can be completely encapsulated in the symmetries of a polyhedron. The symmetry
finding algorithm relies on this fundamental result.
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Theorem 3.5  (Mani [Bab95, Man71]) Suppose that G is a triconnected planar graph.
Then there is a convex polytope P in R® such that G is the skeleton of P and the full
automorphism group of G is displayed by P.

Figure 3.7 Example of star triangulation.

Mani’s theorem leads to an elegant characterization of planar automorphisms of tricon-
nected planar graphs.

Theorem 3.6 Let G be a triconnected planar graph. An automorphism group of G is
planar if and only if it is the stabilizer of a face of G.

Proof: Every planar automorphism fixes the outside face. Further, if A stabilizes a face
f then, using Theorem 3.5, a projection about f from the polyhedron to the plane gives a
symmetric drawing. O

An outline of the algorithm for the triconnected case of Theorem 3.2 is as follows.

Algorithm Max PAG_tricon
1. Find a face f of G such that the stabilizer staba(f) of f in A is maximized.
2. Find the orbits of staba(f).
3. Find generators of staba(f).

For the first step, note that from Theorem 3.1, we must find an orbit (in the dual G*) of
minimum size. A linear-time algorithm of Fontet [Fon76] takes a triconnected planar graph
G as input and outputs the orbits on vertices of aut(G). Using Fontet’s algorithm, we can
compute the orbits of G*, then choose an orbit of minimum size. Choose a face f in this
minimum orbit; then f can be used as the outside face of an embedding that displays the
maximum number of symmetries.

The next step is to find the orbits of staba(f). This can be done by transformations of
the graph, and then using Fontet’s algorithm again. The first part of the transformation is
star triangulation: we triangulate each internal face by inserting a new vertex in the face
and joining it to each vertex of the face. This process is illustrated in Figure 3.7.

It is not difficult to show that the star triangulation takes linear time, and the new graph
has exactly the same planar automorphism group as the original graph (see [HME06]).

Next, we transform the graph to ensure that the outside face f has more than three ver-
tices. If f has three vertices vy, v1,v3, we draw a hexagon surrounding G in the plane, with
vertices wg, w1, - .., ws in clockwise order. Insert the edges vowg, vows, vows, viws, V1W3,
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Figure 3.8 Adding an outside face.

V1Wy, VoWyq, V2Ws, and vowgy. The transformation is shown in Figure 3.8. The transformation
preserves automorphisms that fix f.

The transformed graph has a new outside face with more than three vertices, and all
other faces are triangles. Now apply Fontet’s algorithm to the transformed graph. The
outside face must be fixed by all automorphisms, since all other faces have size three. Thus,
Fontet’s algorithm gives the orbits of staba (f) in the transformed graph, and we can extract
the orbits of A on the vertices of G.

The third and final step is to find generators of the planar automorphism group. Sup-
pose that the vertices on the outside face f are vg,v1,...,Um_1, in clockwise order. If
V0, V1, . ..,Um—1 are all fixed by A, then A is trivial. Otherwise, let v;,v;, v be three con-
secutive vertices in the same nontrivial orbit of A, where j — i is as small as possible and
vk is the same as v; if the orbit has size 2.

We need to introduce further terminology: a flag of an embedded graph is a triple
(v,w, f), where v and w are adjacent vertices and f is a face that has the edge (v, w)
on its boundary. The action of automorphisms on flags uniquely identifies them, as stated
in the following lemma.

LEMMA 3.2 Let G be a triconnected planar graph. Let F = (v,w, f) and F’' =
(v',w', f’) be flags of G. Then there is at most one automorphism of G that maps F
onto F’. Moreover, there is a linear-time algorithm that finds that automorphism or deter-
mines that it does not exist.

Lemma 3.2 is folklore in graph automorphism theory; a proof is in [HME06].
We can apply Lemma 3.2 to find three possible automorphisms or prove that they do not
exist. First, we compute three possible automorphisms «;, p1, p2, as follows:

e « is the automorphism mapping the flag (v;,viy1, f) onto the flag (v, v;_1, f),
if that automorphism exists. (That is, a reflection that exchanges v; and v;.)

e p; is the automorphism mapping the flag (v;, vi1, f) onto the flag (vj,v;11, f),
if that automorphism exists. (That is, a rotation by j — 4 positions.)

e po does not exist in the case that vy = v;. Otherwise, py is the automorphism
mapping the flag (v;,v;1+1, f) onto the flag (vg,vgy1, f), if that automorphism
exists. (That is, a rotation by k — i positions.)

This allows us to compute generators for A, as follows.
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e If o does not exist, then p; exists and A is a cyclic group of size m/(j — )
generated by the rotation p;.

o If o exists but neither p; nor py exists, then A is the group of size 2 generated
by the reflection «.

e If o and p; exist, then A is the dihedral group of size 2m/(j — i) generated by
the reflection o and the rotation p;.

e Otherwise, a and ps exist, and A is the dihedral group of size 2m/(k—1i) generated
by the reflection o and the rotation pa.

We summarize this section with the following lemma.

LEMMA 3.3 Algorithm Max PAG_tricon computes generators for the largest planar
automorphism group of a triconnected planar graph in linear time.

3.5.2 Biconnected planar graphs

If the input graph G is biconnected, then we break it into triconnected components and
apply the algorithm for triconnected graphs in Section 3.5.1. However, this process is not
as simple as it sounds.

We use a version of the “SPQR-tree” to represent the decomposition of a biconnected
planar graph into triconnected components. Various versions of the SPQR tree appear in the
literature; the version that we use is closely related to the original version of Tutte [Tut66].

It is useful to review the definition of triconnected components [HT73]. If G is tricon-
nected, then G itself is the unique triconnected component of G. Otherwise, let u,v be a
separation pair of G. We split the edges of GG into two disjoint subsets E1 and Fs, such that
|E1| > 1, |E2| > 1, and the subgraphs G and G5 induced by F; and E5 only have vertices
u and v in common. Form the graph G by adding an edge (called a virtual edge) between u
and v; similarly, form G%. We continue the splitting process recursively on G} and G%. The
process stops when each resulting graph reaches one of three forms: a triconnected simple
graph, a set of three multiple edges (a triple bond), or a cycle of length three (a triangle).
The triconnected components of G are obtained from these resulting graphs. They may be
of three types:

1. a triconnected simple graph;
2. a bond, formed by merging the triple bonds into a maximal set of multiple edges;
3. a polygon, formed by merging the triangles into a maximal simple cycle.

The triconnected components of G are unique. See [HT73] for further details.

Now we can describe the SPQR tree. Each node v in the SPQR tree is associated with a
graph skeleton(v), corresponding to a triconnected component. There are several types of
nodes in the SPQR tree, corresponding to the type of triconnected components described
above. The edges of the SPQR tree are defined by the virtual edges, that is, if v and v are
two nodes whose skeletons share a virtual edge, then v and v are connected in the SPQR
tree.

The SPQR tree can be rooted at its center (if the tree has two centers, it can be rooted at
either one). The motivation for using the rooted version is that the SPQR tree is unique for
each biconnected planar graph [Bab95, DT92]. This means that the triconnected component
corresponding to the root of the SPQR-tree is fixed by a planar automorphism group of a
biconnected planar graph. Further, each leaf is mapped to a leaf. These two properties of
the rooted SPQR tree are essential for our algorithm outlined below.
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To state the algorithm, we need some more terminology. We say that a virtual edge e of
skeleton(v) is a parent (child) virtual edge if e corresponds to a virtual edge of u which is
a parent (resp. child) node of v. We define a parent separation pair s = (s1, s2) of v as the
two endpoints of a parent virtual edge e.

The overall algorithm is composed of three steps.

Algorithm MAX PAG bicon

Step 1. Construct the SPQR-tree T of G.
Step 2. Reduction: For each level ¢ of T' (from the lowest level to the root level)

(a) For each leaf node on level 4, compute labels on the parent virtual edge in
the leaf node.

(b) For each leaf node on level i, label the corresponding virtual edge in the
parent node with the labels.

(¢) Remove the leaf nodes on level i.

Step 3. Compute a maximum size planar automorphism group at the labeled center.

We briefly describe each step of the algorithm. The first step is to construct the SPQR-tree
for the input biconnected planar graph. This can be done in linear time using the classical
Hopcroft-Tarjan algorithm [HT73].

The second step, reduction, is the most important. This takes the rooted SPQR-tree of a
biconnected graph, and proceeds up the SPQR-tree from the leaf nodes to the center level
by level, computing labels. The labels consist of integer and boolean values that capture
some information of the planar automorphisms of the leaf nodes. First, it computes the
labels for the leaf nodes. Then, it labels the corresponding virtual edge in the parent node
and delete each leaf node. The reduction process stops when it reaches the root.

The reduction process clearly does not decrease the planar automorphism group of the
original graph. This is not enough; we need to also ensure that the planar automorphism
group is not increased by reduction. This is the role of the labels. As a leaf v is deleted, the
algorithm labels the virtual edge e of v in skeleton(u) where u is a parent of v. Roughly
speaking, the labels encode enough information about the deleted leaf to ensure that planar
automorphisms of the labeled reduced graph can be extended to a planar automorphisms
of the original graph.

We illustrate the basic idea of the algorithm with an example.

Consider the biconnected graph represented in Figure 3.9. Here the graph G has an SPQR
tree with three leaves; these are triconnected components, G1, G2, and G3, illustrated by
shaded blobs. The remainder of the graph, G*, is illustrated by a shaded oval. This is
connected to the leaves by separation pairs {u;,v;}, for i = 1,2,3..

Intuitively, G can be drawn with an axial symmetry (a reflection in a horizontal line) as
long as:

1. L; is isomorphic to Lo with an isomorphism that maps u; to us and vy to vs.
2. L3 has an axial planar automorphism that swaps ug with vs.

3. G* has an axial planar automorphism that swaps w3 with v3, and maps u; to us
and vy to vs.

To decide whether G can be drawn with an axial symmetry, we maintain a number of
labels, including:
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Figure 3.9 A biconnected graph.
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Figure 3.10 Labels on the reduced biconnected graph.

1. An isomorphism code IP that has the property that IP(Ly) = IP(Ls) if and
only if L is isomorphic to Lo with an isomorphism that maps u; to us and vy
to vs.

2. A boolean azial swap label Asyap that has the property that Agpep(Lz) = true
if and only if L3 has an axial planar automorphism that swaps us with vs.

These labels can be computed at Step 2(a) of Algorithm MAX_PAG_bicon, then transferred
to the parent virtual edges in G* at Step 2(b). Then Step 2(c) gives the labeled reduced
graph illustrated in Figure 3.10.

The reduction then continues to the next iteration of Step 2, operating on the labeled
reduced graph in Figure 3.10. This continues to the root of the SPQR tree.

In fact, the reduction step is much more complex than this example suggests. There are
seven different kinds of labels and separate algorithms for computing these labels for each
type of triconnected component. Details of these algorithms are in [HE05].
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Step 3 of Algorithm MAX_PAG_bicon computes a maximum size planar automorphism
group at the center, using the information encoded on the labels. Again this step is quite
complex, with separate algorithms for computing these labels for each type of triconnected
component and each type of center (the center of the SPQR tree can be a node or and
edge). Details of these algorithms are in [HE05].

3.5.3 One-connected planar graphs

The algorithm for computing a maximum size planar automorphism group of one-connected
planar graph uses a reduction process that is similar to the biconnected case. For one-
connected graphs, we take the block-cut vertex tree (the BC-tree). The BC- tree defines the
structure of the biconnected components of a graph. If G is a one-connected graph, then
a maximal biconnected subgraph of G is a block, or a biconnected component. Two blocks
share a cut vertex. The BC-tree has a B-node for each block of G and a C-node for each
cut vertex of G. There is an edge between the B-node B and the C-node c if ¢ is a vertex
of B. The BC-tree can be computed in linear time [AHUS83].

Again we can choose the center of the BC-tree as a root, and the rooted BC-tree is
unique. This property allows a reduction and labeling process similar to that described in
the previous section, although the details are very different; see [HE06]. The algorithm uses
the algorithms for the biconnected case as subroutines.

3.5.4 Disconnected planar graphs

Drawing disconnected graphs is surprisingly challenging (see, for example, [FDKO01]). In this
section, we give an intuitive explanation of an algorithm for finding planar automorphisms
of a disconnected graph G. The algorithm uses the algorithms for the higher-connectivity
cases as subroutines. For the purposes of an intuitive explanation, we consider problems of
arranging objects in the plane to maximize symmetry.

First, suppose that we have a set of colored discs, with n; discs of color j, for j =
1,2,...,m. Each disc is circular and has radius one. We want to arrange the discs in
the plane so that no two discs overlap, and the arrangement is as symmetrical as possible.
We can make a picture something like a flower: one disc in the center, and the others as
“petals.” Such an arrangement is in Figure 3.11; here m = 2, n; = 4 and ny = 6, and the
discs are arranged to have a dihedral group of size 6.

The center of the flower may be empty. In this case, all discs must be arranged as petals;
if there are k petals, then n; must divide k for j = 1,2,...,m. If the center of the flower
has a disc of color 7, n; — 1 divides k, and for j # ¢, n; divides k. We can deduce that the

0 © O

® o
OO OO

Figure 3.11 A symmetrical arrangement of circular discs.
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Figure 3.12 A symmetrical arrangement of polygonal discs.

Figure 3.13 Nesting of discs with holes.
maximum symmetry group is dihedral of size 2k as long as the following equation holds:
k = max{gcd(ny,na, ... ,nm),mngmf(gcd(nl,ng, cey o1, — Lmiga, . nm) e (3.11)
i—

With some clever computation of the geds, we can compute equation (3.11) and a maximally
symmetric layout of the discs in time O(ny + na + -+ + 1y ).

Now consider a problem with a little more complexity. Suppose that we have colored
polygonal discs, with n; discs of color j, for j = 1,2,...,m. Each disc is a regular polygon;
all discs of color ¢ have s; sides, and have radius one. Again, we can make a symmetric
picture something like a flower, as in Figure 3.12; here m = 2, n; =5, s1 =4, no = 4 and
So = 6.

In this case, we can obtain a dihedral symmetry group of size 2k if k satisfies either:

k= gcd(ni,ng,...,ny), (3.12)
(for the case where the center is empty), or for some 4,
k= ged(si,ni,ne, ..y ni—1,ns — 1,01, Mn) b (3.13)

(for the case where a disc with s; sides is in the center).

Again, using some clever computation of the gecds and maximizing over i, we can compute
a maximally symmetric layout of the discs in time O(s1nq + Sana + -+ + SN ).

Now consider a more complex problem: suppose that some of the discs have holes. We
have n; discs of color j, for j = 1,2,...,m. The outside of each disc is a regular polygon;
all discs of color i have s; sides. For some values of i, the all discs of color i have a circular
hole in the middle. Further, each disc is shrinkable or expandable; this means that we can
fit one disc inside another to make a kind of “nest,” as in Figure 3.13.
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Figure 3.14 Symmetric arrangement of polygonal discs with holes.

Again, we can make a symmetric picture something like a flower, as in Figure 3.14; in
this case, we can place a “nest” of discs in the center of the flower, as long as all but one of
them have a hole.

Let H denote the set of colors of discs with holes. We can obtain a dihedral symmetry
group of size 2k if there is a subset H' of H such that k satisfies one of the following:

k= ged (ged{s; : j € H'},ged{n, : ¢ € H— H'}) (3.14)
(for the case where every discs in the center has a hole), or for some i,
k= ged (ged{s;: j € H'},ged{ne: £ € H— H',{ #i},s;,n; — 1), (3.15)

for the case where there is a disc of color ¢, without a hole, in the center.

One can maximize over 7 and H' to compute a maximally symmetric layout of the colored
polygonal discs, with and without holes, in time O(s1n1 + sang + -+ + Synpy).

One can use such disc arrangement algorithms to construct maximally symmetric draw-
ings of disconnected graphs. We can compute the connected components Gy of a discon-
nected graph G and, using planar graph isomorphism algorithms, divide the components
into isomorphism classes N1, Na,..., N,,, where |N;| = n;. We compute maximal planar
automorphism groups for G; using the algorithm for connected graphs; assume for the mo-
ment that these groups are dihedral and the group for isomorphism class IV; has size 2s;.
For the purposes of symmetric layout, the isomorphism class NN; is akin to a color class of
polygonal disc with s; sides. For some j, it is possible that the components in N; has two
faces fixed by their planar automorphism group. This is akin to a disc with a hole, because
one fixed face can be the outside face and the other can be a central inside face.

There are some further complexities. First, some of the components may have no dihedral
planar automorphism group: the group may be purely cyclic, or purely axial, or even trivial.
This requires algorithms that are substantially more complex, but follow the same general
pattern as above.

Secondly, the connected components may have several maximal planar automorphism
groups, and the largest of these may not lead to the maximum planar automorphism group
of the whole graph. An example is in Figure 3.15: the two pictures here show a graph with
two drawings, one displaying 6 symmetries and one displaying 8 symmetries.

We say that a planar automorphism group A of G is mazimal if A is not contained in
another planar automorphism group of G. One must take all maximal groups into account
when this graph is a connected component of a larger disconnected graph. Fortunately, this
pathological case is relatively contained; the next Lemma explains why.

LEMMA 3.4 [HEO03] A planar graph has at most 3 non-conjugate maximal planar au-
tomorphism groups.
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Figure 3.15 Display of two maximal planar automorphism groups.

This means that additional maximal planar automorphism groups only add a constant
to the time complexity of the algorithms.

3.5.5 Drawing algorithms

The algorithms presented in the preceding sections take a planar graph as input and produce
two outputs: a planar automorphism group of maximum size, and an embedding of the
graph. In this section, we show how to use this information to construct a straight-line
symmetric drawing of the graph. The drawing algorithms follow the same connectivity
hierarchy.

For triconnected graphs, one could use the well-known barycenter algorithm of
Tutte [Tut63, DETT99]. This algorithm draws symmetrically but unfortunately takes
super-linear time. A much more complex algorithm, described in [HMEO6], runs in lin-
ear time. Note that the drawing can be “squashed” at a specified vertex on the outer face;
that is, given an angle a and a vertex u on the outer face, we can adjust the drawing so
that the angle at u on the outer face is at most a. The squashing can be done so that any
axial symmetry that fixes a is preserved. This process, illustrated in Figure 3.16, is helpful
for lower connectivity drawings.

For a biconnected planar graph, we use “augmentation”: we increase the connectivity
by adding new edges and new vertices to make it triconnected, while preserving the planar
automorphism group. The easiest way to do this is to use the star triangulation method
described in Section 3.5.1. Then we can apply the algorithm for constructing symmetric
drawings of triconnected planar graphs with straight-line edges to construct a symmetric
drawing.

Given an embedding of a one-connected planar graph, we use “attachment,” as follows.
First, we augment the biconnected component to make them triconnected, as above, and
draw the triconnected components. Then we draw the root of the BC-tree; then we traverse
the BC-tree “attaching” blocks as we go. We can scale blocks to fit inside faces of previously
drawn blocks, using the “squash” operation described above.
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Figure 3.16 Squashing a triconnected component at u.

Figure 3.17 The graph Gs.

The drawing process takes linear time, and we can state the following result.

Theorem 3.7  Given a planar graph G and a planar automorphism group A of G, we
can construct a straight-line drawing of G that displays A in linear time.

The drawings obtained in this way have poor resolution. Unfortunately, in the worst
case, this is unavoidable, as the following example shows. Suppose that Gg is a single
triangle with vertices ag,bg,co. For i > 0, G; is a planar graph with a triangular out-
side face {a;,b;,¢;}. We form G; from G;_; by adding the face {a;,b;,¢;} and the edges
(ai, ai_l), (ai, bi—1)7 (bl, bi—l)y (bz, Ci—1)7 (CZ‘, Ci—1)7 (Ci, ai_l). The graph Gg is shown in Flg—
ure 3.17.

The graph Gj has 3k vertices and has a dihedral planar automorphism group of size 6.
However, one can show that every straight-line drawing of Gy that displays this dihedral
group requires exponential area; that is, if it has a minimum distance of one between
vertices, then the area of the drawing is (2%).

3.6 Conclusion

This chapter describes the symmetric graph drawing problem, and discusses some of its
qualitative and algorithmic aspects. In particular, we characterize those automorphism
groups that can be displayed as symmetries of a graph drawing, we show that the gen-
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Figure 3.18 Almost symmetric drawings.

eral problem of finding such automorphisms is NP-complete, and we describe linear-time
algorithms for finding and displaying such symmetries in the case where the input graph is
planar.

In this section, we briefly mention some important aspects of symmetric graph drawing
that have not been covered in this chapter and conclude with some open problems.

3.6.1 Further topics

Directed graphs. The model of symmetry needs some modification for directed
graphs; for example, perhaps a directed geometric symmetry should either pre-
serve the direction of every directed edge or reverse the direction of every directed
edge. With a variety of modifications of the model, a number of algorithms have
been developed for symmetrically directed graphs. Examples include algorithms
for rooted trees [RT81, SR83], series-parallel digraphs [DETT99, HELO00], upward
planar graphs [DTT92], and hierarchical graphs [ELT96].

Three-dimensional graph drawing is now well established and some attempts have
been made to draw graphs symmetrically in 3D; see [HEQL98, HE00, Hon01].

Exact but exponential time algorithms often work well for small graphs. These
include methods based on integer linear programming [BJO01, BJ03] and group
theory [AHTO07].

Approximation algorithms. The formal definition of the intuitive notion of sym-
metry display given in Section 3.2.3 is fairly strong. For example, it does not
consider the drawings in Figure 3.18 to be symmetric at all. There have been sev-
eral attempts to formalize the intuitive “approximate” symmetry such as shown
in Figure 3.18. For example, Bachl [Bac99] gives a simple approach to approx-
imate axial symmetry: if a graph has two large disjoint isomorphic subgraphs,
then one can draw it so that a large part of the drawing displays axial symmetry.
Finding such subgraphs is, of course, NP-complete; Bachl gives algorithms for
some restricted cases. Other examples include [BJ03, CY02, CLY00].

3.6.2 Open problems

Here we list a couple of open problems in symmetric graph drawing.

Very very symmetric graph drawing. Consider the two drawings in Figure 3.19.
The two drawings, according to the model in Section 3.2.3, have the same degree
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Figure 3.19 A symmetric drawing and a very very symmetric drawing.

of symmetry. However, intuitively the one on the right is more symmetric than
the one on the left. The extra symmetry does not come from isometry of the
plane; it arises in a more subtle way. Modeling this kind of “very very symmetric”
drawing has not been done at this point. Further, algorithms to draw graphs very
very symmetrically have not been designed.

An algorithmic version of Mani’s Theorem. Theorem 3.5 is one of the
most beautiful results in graph drawing. It is not clear how to make Mani’s
proof [Bab95, ManT71] into an algorithm. It would be very interesting to find a
linear-time algorithm that takes a triconnected planar graph as input and draws
it as the skeleton of a convex polyhedron so that every automorphism of the
graph is a symmetry of the polyhedron.
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