Algorithmen zur Visualisierung von Graphen
Wintersemester 2017/2018

Tamara Mchedlidze, Marcel Radermacher

Exercise Sheet 7

Discussion: 7. February 2018

Exercise 1: Extended Canonical Ordering for 4-Connected Graphs

A planar graph $G=(V, E)$ is called proper triangular planar (PTP, for short) if every interior face of G is a triangle and the exterior face of G is a quadrangle, and G has no separating triangles.

Let $G=(V, E)$ be a PTP graph with vertices a, b, c, d on the outer face. A labeling $v_{1}=a, v_{2}=$ $c, v_{3}, \ldots, v_{n}=d$ of the vertices of G is called an extended canonical ordering of G if for every $4 \leq k \leq n$:
(i) The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and the boundary C_{k-1} of G_{k-1} contains the edge (a, b), and
(ii) the vertex v_{k} is on the boundary of exterior face of G_{k-1}, and its neighbors in G_{k-1} form a subinterval of the path $C_{k-1} \backslash(a, b)$ with at least two elements. If $k \leq n-2$, then v_{k} has at least two neighbors in $G \backslash G_{k-1}$.

Let $G=(V, E)$ be a PTP graph with vertices a, b, c, d on the outer face. Prove the following statements. We denote by G_{C} the graph that is induced by the vertices in the interior and on the boundary of a simple cycle C.
(a) The graph obtained from G by the removal of the vertices c, d and all edges incident to them is biconnected.
(b) Let $C=\left\{a=u_{1}, \ldots, u_{k}=b, a\right\}$ be a simple cycle of G such that $c, d \notin C$. Let $u_{i} \in C$, $2 \leq i \leq k-1$ such that no internal chord of C is incident to u_{i}. Then the graph $G_{C} \backslash\left\{u_{i}\right\}$ is biconnected.
(c) Let C be as above and let $\left(v_{i}, v_{j}\right), 1 \leq i<j \leq k$, be an internal chord of C. Then there exists a vertex $v_{l}, i<l<j$ that is adjacent to at least two vertices of $G \backslash G_{C}$.
Use the previous statements to prove the following lemma.

Lemma 1 Every PTP graph G with four vertices a, b, c, d on the outer face has an extended canonical ordering such that $v_{1}=a, v_{2}=b, v_{n-1}=c, v_{n}=d$.

Exercise 2: Construction of Rectangular Dual

Consider the graph G of the figure below. Check whether G satisfies the necessary conditions to have a rectangular dual. In affirmative, construct a rectangular dual of G.

Exercise 3: Contact Representation of Maximal Planar Graphs

The figure below gives an example of contact representation of a planar graph with T-shapes. Prove the following Lemma.

Lemma 2 Every maximal planar graph admits a contact representation with T-shapes.

Hint: Use canonical ordering in the way similar to the construction of a visibility representation (Exercise Sheet 3).

