Algorithmen zur Visualisierung von Graphen
Wintersemester 2017/2018

Tamara Mchedlidze, Marcel Radermacher

Exercise Sheet 5

Discussion: 17. January 2018

Exercise 1: Layered Layout

Execute each phase of the Sugiyama-Framework on the following graph. Remove all cycles by reversing a small set of edges and find a layer assignment of maximal width 4 . Order the vertices on each layer such that the number of crossings is minimal.

Hint: Find independently an optimal solution of each subproblem.

Exercise 2: Crossings in Layered Layouts

Prove the following.

Lemma 1 The barycenter heuristic computes an optimal solution of the one-sided crossing minimization problem, if the instances admits a planar drawing.

Exercise 3: Counting Crossings

Prove the following lemmas.
Let $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be a permutation. A pair (i, j) with $1 \leq i<j \leq n$ is an inversion, if $\pi(i)>\pi(j)$.

Lemma 2 The number of inversions of a permutation π can be counted in $O(n \log n)$ time.

Hint: Use an approach similar to merge sort.

Lemma 3 Let Γ be a straight-line drawing of a bipartite graph $G=(A \dot{\cup} B, E)$ where the vertices of A and B are drawn on separate layers. Then the number of crossing in Γ can be counted in $O(|E| \log |V|)$ time.

Can all crossings be reported in the same time?

