Algorithmen zur Visualisierung von Graphen
Wintersemester 2017/2018

Tamara Mchedlidze, Marcel Radermacher

Exercise Sheet 2

Discussion: 23. November 2017

Exercise 1: Outerplanar and Series-Parallel Graphs

A graph G is called outerplanar if it has a planar drawing where all vertices lie on the boundary of the outer face. Prove the following lemma.

Lemma 1 Every biconnected outerplanar graph is series-parallel.

Exercise 2: Visibility Representation

Figure 1: A visibility representation (b) of the graph G (a).

In a visibility representation of a graph $G=(V, E)$ the vertices are represented by horizontal segments (vertex-segments). We say that two vertices u and v see each other, if their vertexsegments can be connected by a vertical rectangle of non-zero width that does not cross any other vertex-segment. Thus, in a visibility representation of G, two vertices u, v see each other if and only if $(u, v) \in E$; see Fig. 1. Prove the following lemma.

Lemma 2 Every series-parallel graph has a visibility representation.

Exercise 3: 2

Let $G=(V, E)$ be a triconnected plane graph with a vertex v_{1} on the outer face. Further, let $\pi=\left(V_{1}, \ldots, V_{K}\right)$ be an ordered partition of V, that is, $V_{1} \cup \cdots \cup V_{K}=V$ and $V_{i} \cap V_{j}=0$ for $i \neq j$. We define G_{k} to be the subgraph of G induced by $V_{1} \cup \cdots \cup V_{K}$ and denote by C_{k} the outer face of G_{k}.

The sequence π is a canonical ordering of G, if

- V_{1} consists of $\left\{v_{1}, v_{2}\right\}$, where v_{2} lies on the outer face and $\left(v_{1}, v_{2}\right) \in E$.
- $V_{K}=\left\{v_{n}\right\}$ is a singleton, where v_{n} lies on the outer face, $\left\{v_{1}, v_{n}\right\} \in E$, and $v_{n} \neq v_{2}$.
- Each $C_{k}(k>1)$ is a cycle containing $\left\{v_{1}, v_{2}\right\}$.
- Each G_{k} is biconnected and internally triconnected, that is, removing two interior vertices of G_{k} does not disconnect it.
- For each k with $2 \leq k \leq K-1$, one of the following conditions holds:

1. $V_{k}=\{z\}$, where z belongs to C_{k} and has at least one neighbor in $G-G_{k}$.
2. $V_{k}=\left\{z_{1}, \ldots, z_{\ell}\right\}$ is a chain, where each z_{i} has at least one neighbor in $G-G_{k}$ and where z_{1} and z_{ℓ} each have one neighbor on C_{k-1}, and these are the only two neighbors of V_{k} in G_{k-1}.
Prove the following lemma.

Lemma 3 Every triconnected planar graph admits a canonical ordering.

Hint: Use reverse induction. For the induction step, consider the two cases that G_{k} is triconnected and G_{k} is not triconnected.

Exercise 4: Barycentric Coordinates

Let $\Delta_{a, b, c}$ be a triangle on the plane on vertices a, b and c. For each point x laying inside triangle $\Delta_{a, b, c}$ there exists a triple $\left(x_{a}, x_{b}, x_{c}\right)$ such that $x_{a} \cdot a+x_{b} \cdot b+x_{c} \cdot c=x$ and $x_{a}+x_{b}+x_{c}=1$. The triple $\left(x_{a}, x_{b}, x_{c}\right)$ is called barycentric coordinates of x with respect to $\Delta_{a, b, c}$.

Prove that:
(a) If $A(\Delta)$ denotes the area of the triangle A, then

$$
x_{a}=\frac{A\left(\Delta_{b, c, x}\right)}{A\left(\Delta_{a, b, c}\right)}, x_{b}=\frac{A\left(\Delta_{a, c, x}\right)}{A\left(\Delta_{a, b, c}\right)}, x_{c}=\frac{A\left(\Delta_{a, b, x}\right)}{A\left(\Delta_{a, b, c}\right)}
$$

(b) Equations $x_{a}=0, x_{b}=0, x_{c}=0$ represent lines through $b c$, $a b$ and $a b$, respectively.
(c) Let $\left(x_{a}, x_{b}, x_{c}\right)$ be barycentric coordinates of point x in triangle $\Delta_{a b c}$. The set of points $\left\{\left(x_{a}, x_{b}^{\prime}, x_{c}^{\prime}\right): x_{b}^{\prime}, x_{c}^{\prime} \in \mathbb{R}\right\}$ represents a line parallel to edge $b c$ passing through point x. Similarly, sets of points $\left\{\left(x_{a}^{\prime}, x_{b}, x_{c}^{\prime}\right): x_{a}^{\prime}, x_{c}^{\prime} \in \mathbb{R}\right\},\left\{\left(x_{a}^{\prime}, x_{b}^{\prime}, x_{c}\right): x_{a}^{\prime}, x_{b}^{\prime} \in \mathbb{R}\right\}$ represent lines parallel to edges $a c, a b$, respectively, passing through point x.

