

Theoretische Grundlagen der Informatik

Vorlesung vom 26. Januar 2017

Satz:

Jede durch einen PDA (mit leerem STACK oder durch akzeptierende Endzustände) akzeptierte Sprache ist kontextfrei.

- Sei $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$ PDA, der $L_{\mathcal{A}}$ durch leeren STACK akzeptiert.
- Wir geben eine kontextfreie Grammatik $G = (\Sigma, V, S, R)$ mit $L_{\mathcal{A}} = L(G)$ an.

Die Konstruktion von *G* heißt **Tripelkonstruktion**.

- Setze $V := \{ [q, X, p] | p, q \in Q, X \in \Gamma \} \cup \{ S \}.$
- Sei S Startsymbol.

Ziel: Aus [q, X, p] sollen genau die $w \in \Sigma^*$ ableitbar sein, für die es eine Abarbeitung von \mathcal{A} gibt,

- lacktriangle die im Zustand q mit oberstem STACK-Symbol X beginnt und
- nach Lesen von w im Zustand p mit leerem STACK endet.

- Sei $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$ PDA, der L_A durch leeren STACK akzeptiert.
- Wir geben eine kontextfreie Grammatik $G = (\Sigma, V, S, R)$ mit $L_A = L(G)$ an.

Die Konstruktion von *G* heißt **Tripelkonstruktion**.

- Setze $V := \{ [q, X, p] | p, q \in Q, X \in \Gamma \} \cup \{S\}.$
- Sei S Startsymbol.

Die Regelmenge R ist gegeben durch

- $S \rightarrow [q_0, Z_0, q]$ für alle $q \in Q$
- $[q, X, q_{m+1}] \rightarrow a[q_1, Y_1, q_2] \dots [q_m, Y_m, q_{m+1}]$ für alle Möglichkeiten $q_2, \ldots, q_{m+1} \in Q$. falls $(q_1, Y_1 \dots Y_m) \in \delta(q, a, X)$,
- insbes. $[q, X, p] \rightarrow a$ falls $(p, \varepsilon) \in \delta(q, a, X)$.

Für eine Folge von Konfigurationen (q, w, X) nach (p, w', Y) schreiben wir auch

$$(q, w, X) \stackrel{*}{\vdash} (p, w', Y)$$

beziehungsweise

$$(q, w, X) \stackrel{k}{\vdash} (p, w', Y)$$

für eine Folge von genau k Konfigurationen.

Wir werden per Induktion beweisen, dass für alle $p, q \in Q$, $X \in \Gamma$ und $w \in L$ gilt:

$$[q, X, p] \stackrel{*}{ o} w \text{ in } G \iff (q, w, X) \stackrel{*}{\vdash} (p, \epsilon, \epsilon)$$

Aus dieser Behauptung folgt dann

$$w \in L_{\mathcal{A}} \iff \exists p \in Q \text{ mit } (q_0, w, Z_0) \overset{*}{\vdash} (p, \varepsilon, \varepsilon), \text{ wobei}$$
 $(q_0, w, Z_0) \text{ Anfangskonfiguration von } \mathcal{A} \text{ ist}$
 $\iff \exists p \in Q \text{ mit } [q_0, Z_0, p] \overset{*}{\to} w$
 $\iff \exists p \in Q \text{ mit } S \to [q_0, Z_0, p] \overset{*}{\to} w$
 $\iff w \in L(G)$

Richtung

$$[q, X, p] \stackrel{*}{\to} w \text{ in } G \implies (q, w, X) \stackrel{*}{\vdash} (p, \epsilon, \epsilon)$$

Beschreibung:

■ Induktion über die Länge k einer Ableitung $[q, X, p] \stackrel{k}{\rightarrow} w$ in G

- $V := \{ [q, X, p] | p, q \in Q, X \in \Gamma \} \cup \{S\}.$
- $S \rightarrow [q_0, Z_0, q]$ für alle $q \in Q$
- $\begin{array}{l} \bullet \quad [q,X,q_{m+1}] \rightarrow a[q_1,Y_1,q_2] \ldots [q_m,Y_m,q_{m+1}] \\ \text{ für alle Möglichkeiten } q_2,\ldots,q_{m+1} \in Q, \\ \text{ falls } (q_1,Y_1\ldots Y_m) \in \delta(q,a,X). \end{array}$

Induktionsanfang:

- Für k = 1 gilt, dass $[q, X, p] \rightarrow w$ eine Regel in G ist.
- Also ist $(p, \varepsilon) \in \delta(q, w, X)$ und $|w| \le 1$.
- Also gibt es die Abarbeitung $(q, w, X) \stackrel{1}{\vdash} (p, \varepsilon, \varepsilon)$ in A.

- $V := \{ [q, X, p] | p, q \in Q, X \in \Gamma \} \cup \{S\}.$
- $S \rightarrow [q_0, Z_0, q]$ für alle $q \in Q$
- $\begin{array}{l} \bullet \quad [q,X,q_{m+1}] \rightarrow \mathsf{a}[q_1,Y_1,q_2] \dots [q_m,Y_m,q_{m+1}] \\ \text{für alle Möglichkeiten } q_2,\dots,q_{m+1} \in Q, \\ \text{falls } (q_1,Y_1\dots Y_m) \in \delta(q,\mathsf{a},X). \end{array}$

Induktionsschritt:

- Betrachte eine Ableitung $[q, X, p] \stackrel{k}{\rightarrow} w$.
- Schreibe diese als

$$[q, X, p] \rightarrow a[q_1, Y_1, q_2][q_2, Y_2, q_3] \dots [q_m, Y_m, q_{m+1}] \stackrel{k-1}{\rightarrow} w,$$

wobei $q_{m+1}=p$ und $w=aw_1\dots w_m$, mit $w_i\in \Sigma^*$, $a\in \Sigma$ und $[q_j,Y_j,q_{j+1}]\overset{k'}{\to}w_j$ mit $k'\leq k-1$ für alle $1\leq j\leq m$.

- Betrachte eine Ableitung $[q, X, p] \stackrel{k}{\rightarrow} w$.
- Schreibe diese als $[q,X,p] \rightarrow a[q_1,Y_1,q_2][q_2,Y_2,q_3] \dots [q_m,Y_m,q_{m+1}] \overset{k-1}{\rightarrow} w,$ wobei $q_{m+1}=p$ und $w=aw_1\dots w_m$, mit $w_i\in \Sigma^*$, $a\in \Sigma$ und $[q_i,Y_i,q_{i+1}]\overset{k'}{\rightarrow} w_i \text{ mit } k'\leq k-1 \text{ für alle } 1\leq j\leq m.$

- Betrachte eine Ableitung $[q, X, p] \stackrel{k}{\rightarrow} w$.
- Schreibe diese als $[q,X,p] \rightarrow a[q_1,Y_1,q_2][q_2,Y_2,q_3] \dots [q_m,Y_m,q_{m+1}] \overset{k-1}{\rightarrow} w,$ wobei $q_{m+1}=p$ und $w=aw_1\dots w_m$, mit $w_i \in \Sigma^*$, $a \in \Sigma$ und $[q_j,Y_j,q_{j+1}] \overset{k'}{\rightarrow} w_j \text{ mit } k' \leq k-1 \text{ für alle } 1 \leq j \leq m.$
- Induktionsvoraussetzung: $(q_j, w_j, Y_j) \stackrel{*}{\vdash} (q_{j+1}, \varepsilon, \varepsilon)$ für alle $1 \le j \le m$.
- Also $(q_j, w_j, Y_j \dots Y_m) \stackrel{*}{\vdash} (q_{j+1}, \varepsilon, Y_{j+1} \dots Y_m)$ für alle $1 \le j \le m$.
- Damit $(q, w, X) \vdash (q_1, w_1 \dots w_m, Y_1 \dots Y_m)$ $\downarrow^* (q_2, w_2 \dots w_m, Y_2 \dots Y_m)$ $\downarrow^* (q_3, w_3 \dots w_m, Y_3 \dots Y_m)$ $\downarrow^* \dots \downarrow^* (q_m, w_m, Y_m) \downarrow^* (q_{m+1}, \varepsilon, \varepsilon) = (p, \varepsilon, \varepsilon)$

Richtung

$$[q, X, p] \stackrel{*}{\to} w \text{ in } G \iff (q, w, X) \stackrel{*}{\vdash} (p, \epsilon, \epsilon)$$

Beschreibung:

■ Induktion über die Länge k einer Abarbeitung $(q, w, X) \stackrel{k}{\vdash} (p, \epsilon, \epsilon)$

- $V := \{ [q, X, p] | p, q \in Q, X \in \Gamma \} \cup \{S\}.$
- $S \rightarrow [q_0, Z_0, q]$ für alle $q \in Q$
- $\begin{array}{l} \bullet \quad [q,X,q_{m+1}] \rightarrow a[q_1,Y_1,q_2] \dots [q_m,Y_m,q_{m+1}] \\ \text{für alle Möglichkeiten } q_2,\dots,q_{m+1} \in Q, \\ \text{falls } (q_1,Y_1\dots Y_m) \in \delta(q,a,X). \end{array}$

Induktionsanfang:

- Für k = 1 folgt aus $(q, w, X) \vdash (p, \varepsilon, \varepsilon)$, dass
 - $w \in \Sigma \cup \{\varepsilon\}$ und
 - $(p,\varepsilon) \in \delta(q,w,X).$
- Dann ist $[q, X, p] \rightarrow w$ eine Regel von G.

- $V := \{ [q, X, p] | p, q \in Q, X \in \Gamma \} \cup \{S\}.$
- $S \rightarrow [q_0, Z_0, q]$ für alle $q \in Q$
- $\begin{array}{l} \bullet \quad [q,X,q_{m+1}] \rightarrow a[q_1,Y_1,q_2] \ldots [q_m,Y_m,q_{m+1}] \\ \text{ für alle Möglichkeiten } q_2,\ldots,q_{m+1} \in Q, \\ \text{ falls } (q_1,Y_1\ldots Y_m) \in \delta(q,a,X). \end{array}$

Induktionsschritt:

k

- Betrachte eine Abarbeitung $(q, w, X) \stackrel{\wedge}{\vdash} (p, \varepsilon, \varepsilon)$
- Zerlege w = aw' wobei
 - ullet a=arepsilon, falls der erste Schritt von ${\mathcal A}$ ein arepsilon-Übergang ist
 - $a \in \Sigma$, also der erste Buchstabe von w, sonst.
- Sei $(q_1, w', Y_1 \dots Y_m)$ die Konfiguration von $\mathcal A$ nach dem 1. Schritt.
- Dann gilt

$$(q, \mathit{aw}', X) \vdash (q_1, \mathit{w}', Y_1 \dots Y_m) \overset{\mathit{k}'}{\vdash} (p, \varepsilon, \varepsilon)$$

mit $k' \leq k - 1$.

- $V := \{ [q, X, p] | p, q \in Q, X \in \Gamma \} \cup \{S\}.$
- $S \rightarrow [q_0, Z_0, q]$ für alle $q \in Q$
- $\begin{array}{l} \bullet \quad [q,X,q_{m+1}] \rightarrow a[q_1,Y_1,q_2] \dots [q_m,Y_m,q_{m+1}] \\ \text{für alle Möglichkeiten } q_2,\dots,q_{m+1} \in Q, \\ \text{falls } (q_1,Y_1\dots Y_m) \in \delta(q,a,X). \end{array}$

Sei

$$w'=w_1\dots w_m$$
 Zerlegung von w mit $w_j\in \Sigma^*$

so, dass A startend mit der Konfiguration

$$(q_1, w', Y_1 \dots Y_m)$$

bei der betrachteten Abarbeitung gerade nach dem Lesen von $w_1 \dots w_j$ zum ersten Mal den STACK-Inhalt $Y_{j+1} \dots Y_m$ erzeugt. Sei q_{j+1} der zu diesem Zeitpunkt erreichte Zustand.

- $V := \{ [q, X, p] | p, q \in Q, X \in \Gamma \} \cup \{S\}.$
- $S \rightarrow [q_0, Z_0, q]$ für alle $q \in Q$
- $[q, X, q_{m+1}] \rightarrow a[q_1, Y_1, q_2] \dots [q_m, Y_m, q_{m+1}]$ für alle Möglichkeiten $q_2, \ldots, q_{m+1} \in Q$, falls $(q_1, Y_1 \dots Y_m) \in \delta(q, a, X)$.

Dann gilt: $q_{m+1} = p$ und

$$(q_j, w_j \ldots w_m, Y_j \ldots Y_m) \stackrel{k'}{\vdash} (q_{j+1}, w_{j+1} \ldots w_m, Y_{j+1} \ldots Y_m),$$

 $k' \leq k-1$, und während der gesamten Abarbeitung liegt $Y_{i+1} \dots Y_m$ ungelesen auf dem STACK.

Also gilt auch

$$(q_j, w_j, Y_j) \stackrel{k'}{\vdash} (q_{j+1}, \varepsilon, \varepsilon).$$

- $V := \{ [q, X, p] | p, q \in Q, X \in \Gamma \} \cup \{S\}.$
- $S \rightarrow [q_0, Z_0, q]$ für alle $q \in Q$
- $\begin{array}{l} \bullet \quad [q,X,q_{m+1}] \rightarrow \mathsf{a}[q_1,Y_1,q_2] \dots [q_m,Y_m,q_{m+1}] \\ \text{für alle Möglichkeiten } q_2,\dots,q_{m+1} \in Q, \\ \text{falls } (q_1,Y_1\dots Y_m) \in \delta(q,a,X). \end{array}$

Also gilt auch

$$(q_j, w_j, Y_j) \stackrel{k'}{\vdash} (q_{j+1}, \varepsilon, \varepsilon).$$

Nach Induktionsvoraussetzung folgt daraus, dass $[q_j, Y_j, q_{j+1}] \stackrel{*}{\to} w_j$ in G existiert. Damit erhalten wir, dass auch

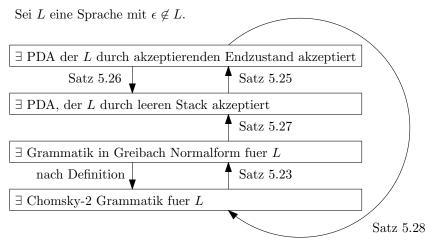
$$[q, X, p] \rightarrow a[q_1, Y_1, q_2][q_2, Y_2, q_3] \dots [q_m, Y_m, q_{m+1}] \stackrel{*}{\rightarrow} aw_1 \dots w_m = w$$

in G existiert.

Korollar

Die Klasse der von nichtdeterministischen Kellerautomaten akzeptierten Sprachen ist gleich der Klasse der kontextfreien Sprachen.

Übersicht Chomsky-2



Exkurs

Wofür braucht man eigentlich Grammatiken und Berechnungsmodelle wie endliche Automaten oder Turingmaschinen?

- Die Chomsky-Hierarchie wurde von dem Linguisten Noam Chomsky entworfen. Ursprünglich war sie als Mittel zur Beschreibung natürlicher Sprachen gedacht (hat sich nicht erfüllt).
- Grammatiken und Automaten sind fundamental für die Beschreibung von Progammiersprachen.
- XML basiert auf sogenannten Dokumenttypdefinitionen (DTD). Diese sind kontextfreie Grammatiken.

Zwischenfazit zu kontextfreien Grammatiken

- **E**s kann in polynomialer Laufzeit entschieden werden, ob zu einer kontextfreien Grammatik G die Sprache L(G) leer bzw. endlich ist.
- Das Wortproblem für kontextfreie Grammatiken ist in polynomialer Laufzeit entscheidbar.
- Für kontextfreie Grammatiken G, G₁ und G₂ sind die Sprachen
 - $L(G)^*$,
 - $L(G_1) \cup L(G_2)$ und
 - $\bullet L(G_1) \cdot L_(G_2)$

kontextfrei.

Satz:

Das Problem für kontextfreie Grammatiken G_1 und G_2 zu entscheiden, ob $L(G_1) \cap L(G_2) = \emptyset$ ist, ist nicht entscheidbar.

Satz:

Das Problem für kontextfreie Grammatiken G_1 und G_2 zu entscheiden, ob $L(G_1) \cap L(G_2) = \emptyset$ ist, ist nicht entscheidbar.

Beweisskizze:

- Wir beweisen, dass aus der Entscheidbarkeit von $L(G_1) \cap L(G_2) = \emptyset$ die Entscheidbarkeit des Post'schen Korrespondenzproblem (PKP) folgt.
- Dies ist ein Widerspruch zur Nichtentscheidbarkeit des PKP.
- Wir geben für jede PKP-Instanz K kontextfreie Grammatiken G_1 und G_2 an, so dass es ein Wort $w \in L(G_1) \cap L(G_2)$ genau dann gibt, wenn es eine Lösung für K gibt.

Das Post'sche Korrespondenzproblem

Post'sches Korrespondenzproblems

Gegeben ist endliche Folge von Wortpaaren

$$K = ((x_1, y_1), \ldots, (x_k, y_k))$$

über einem endlichen Alphabet Σ . Es gilt $x_i \neq \varepsilon$ und $y_i \neq \varepsilon$. Gefragt ist, ob es eine endliche Folge von Indizes $i_1, \ldots, i_\ell \in \{1, \ldots, k\}$ gibt, so dass $x_{i_1} \ldots x_{i_\ell} = y_{i_1} \ldots y_{i_\ell}$ gilt.

- Gegeben sei PKP-Instanz $K = ((x_1, y_1), \dots, (x_k, y_k))$
- Es sei $\Sigma = \{x_1, \dots, x_k, y_1, \dots, y_k, a_1, \dots, a_k\}$ mit neuen Symbolen a_1, \dots, a_k .
- lacksquare Es sei $\mathit{G}_{1}=(\Sigma,\mathit{V}_{1}=\{\mathit{S}_{1}\},\mathit{S}_{1},\mathit{R}_{1})$ mit Regeln

$$S_1 \rightarrow a_i x_i$$
 und $S_1 \rightarrow a_i S_1 x_i$ für alle $1 \leq i \leq k$;

• Es sei $G_2 = (\Sigma, V_2 = \{S_2\}, S_2, R_2)$ mit Regeln

$$S_2
ightarrow a_i y_i \text{ und } S_2
ightarrow a_i S_2 y_i \text{ für alle } 1 \leq i \leq k.$$

Dann gilt

$$L(G_1) = \{a_{i_n} \cdots a_{i_1} x_{i_1} \cdots x_{i_n} \mid n \in \mathbb{N}, \ 1 \le i_j \le k\}$$

$$L(G_2) = \{a_{i_n} \cdots a_{i_1} y_{i_1} \cdots y_{i_n} \mid n \in \mathbb{N}, \ 1 \le i_j \le k\}.$$

$$\begin{array}{rcl} \mathcal{K} & = & \left((x_1, y_1), \ldots, (x_k, y_k) \right) \\ \mathcal{L}(G_1) & = & \left\{ a_{i_n} \cdots a_{i_1} x_{i_1} \cdots x_{i_n} \mid n \in \mathbb{N}, \ 1 \leq i_j \leq k \right\} \\ \mathcal{L}(G_2) & = & \left\{ a_{i_n} \cdots a_{i_1} y_{i_1} \cdots y_{i_n} \mid n \in \mathbb{N}, \ 1 \leq i_j \leq k \right\} . \end{array}$$

Es folgt

$$\begin{array}{lll} \text{K hat L\"osung} & \Leftrightarrow & \exists i_1,\ldots,i_n \text{ mit } x_{i_1}\cdots x_{i_n} = y_{i_1}\cdots y_{i_n} \\ & \Leftrightarrow & \exists i_1,\ldots,i_n \text{ mit } a_{i_n}\cdots a_{i_1}x_{i_1}\cdots x_{i_n} = a_{i_n}\cdots a_{i_1}y_{i_1}\cdots y_{i_n} \\ & \Leftrightarrow & \exists w \in L(G_1)\cap L(G_2) \\ & \Leftrightarrow & L(G_1)\cap L(G_2) \neq \emptyset \end{array}$$

Eine Grammatik G ist eindeutig, wenn es für jedes $w \in L(G)$ genau einen Syntaxbaum gibt.

Satz:

Das Problem, für eine kontextfreie Grammatik G zu entscheiden, ob sie eindeutig ist, ist nicht entscheidbar.

Beweisskizze

- Annahme: Es sei entscheidbar, ob eine kontextfreie Grammatik eindeutig ist.
- Dann könnten wir das PKP entscheiden.
- Dies ist ein Widerspruch.

- Gegeben sei PKP-Instanz $K = ((x_1, y_1), \dots, (x_k, y_k)).$
- Seien $G_1 = (\Sigma, V_1, S_1, R_1)$ und $G_2 = (\Sigma, V_2, S_2, R_2)$ wie im letzten Beweis.
- Wir konstruieren eine neue Grammatik $G = (\Sigma, V, S, R)$, die mehrdeutig ist, gdw, $L(G_1) \cap L(G_2) \neq \emptyset$:

$$V = V_1 \cup V_2 \cup \{S\}$$
 wobei S neues Startsymbol $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 | S_2\}$

■ Da G_1 und G_2 eindeutig sind, existiert $w \in L(G_1) \cap L(G_2)$ genau dann, wenn es in G Ableitungen $S \to S_1 \stackrel{*}{\to} w$ und $S \to S_2 \stackrel{*}{\to} w$ gibt, also G mehrdeutig ist.

Sprache der korrekten Rechenwege

- Sei $\mathcal{M} = (Q, \Sigma, \Gamma, \sqcup, q_0, \delta, F)$ eine TM.
- lacktriangle Eine Berechnung von ${\mathcal M}$ kann durch die Folge der durchlaufenen

 $\mbox{ Konfigurationen } \alpha q\beta \mbox{ mit } \alpha,\beta \in \Gamma^* \mbox{ und } \mbox{ } q \in \mbox{ Q}$

beschrieben werden.

- $\alpha q \beta$ bedeutet, dass
 - lacksquare auf dem Band das Wort lphaeta, umgeben von Blanksymbolen, steht,
 - lacktriangle die Turingmaschine im Zustand q ist
 - \blacksquare und der Lese-/Schreibkopf auf die Stelle des Bandes, an der das erste Symbol von β steht, zeigt.
- Wenn w_1, w_2, \ldots, w_n die Abfolge der Konfigurationen einer Berechnung von \mathcal{M} ist, so kann dieser Rechenweg durch das Wort $w_1 \# w_2 \# \ldots \# w_n \#$, mit $\# \notin \Gamma$ Trennsymbol, kodiert werden.

Sprache der korrekten Rechenwege

- Allerdings lässt sich die Sprache aller Wörter, die in dieser Weise die korrekten Rechenwege einer TM kodieren, nicht unbedingt durch kontextfreie Grammatiken beschreiben.
- Daher wird ein "Trick" angewendet und jede zweite Konfiguration gespiegelt kodiert.

Sprache der korrekten Rechenwege

Die Sprache $\mathbf{B}_{\mathcal{M}}$ der korrekten Rechenwege einer TM \mathcal{M} besteht aus allen Worten

$$w_1 \# w_2^R \# w_3 \# w_4^R \dots w_n^R \#$$
, falls n gerade und

$$w_1 # w_2^R # w_3 # w_4^R \dots w_n #$$
, falls *n* ungerade,

wobei

- die w_i , $1 \le i \le n$, Konfigurationen von \mathcal{M} sind,
- w_1 eine Anfangskonfiguration,
- \mathbf{w}_n eine akzeptierende Konfiguration und
- für alle $1 \le i \le n-1$ die Konfiguration w_{i+1} die direkte Nachfolgekonfiguration von w_i bei einer korrekten Berechnung von \mathcal{M}

ist.

Lemma

Für alle Turingmaschinen $\mathcal M$ ist $\mathcal B_{\mathcal M}$ der Durchschnitt zweier Sprachen

- $L_1 = L(G_1)$
- $L_2 = L(G_2)$,

wobei G_1 und G_2 kontextfreie Grammatiken sind.

Wir konstruieren L_1 und L_2 aus den Sprachen

$$L := \{u \# v^R | v \text{ ist direkte Nachfolgekonfiguration von } u \text{ für } \mathcal{M}\}$$
 $L' := \{v^R \# u | u \text{ ist direkte Nachfolgekonfiguration von } v \text{ für } \mathcal{M}\}$

Falls L und L' kontextfrei sind, so sind auch

$$L_{1} := (L\{\#\})^{*}(\{\varepsilon\} \cup \Gamma^{*}F\Gamma^{*}\{\#\})$$

$$L_{2} := \{q_{0}\}\Sigma^{*}\{\#\}(L'\{\#\})^{*}(\{\varepsilon\} \cup \Gamma^{*}F\Gamma^{*}\{\#\})$$

kontextfrei, wobei

- Γ Bandalphabet,
- lacksquare Σ Eingabealphabet,
- $lack q_0$ Anfangszustand und
- F Endzustandsmenge

von \mathcal{M} .

Offensichtlich haben alle Wörter aus L_1 die Form

$$w_1 \# w_2^R \# \dots w_{2i-1} \# w_{2i}^R \# \text{ oder}$$

$$w_1 \# w_2^R \# \dots w_{2i-1} \# w_{2i}^R \# w_{2i+1} \#$$

mit

- lacksquare w_j Konfiguration von ${\cal M}$
- lacksquare w_{2j} direkte Nachfolgekonfiguration von w_{2j-1}

für alle $1 \le j \le i$ und w_{2i+1} akzeptierende Konfiguration, falls vorhanden.

Analog haben alle Wörter aus L_2 die Form

$$w_1 \# w_2^R \# \dots w_{2i-1} \# w_{2i}^R \# \text{ oder}$$

 $w_1 \# w_2^R \# \dots w_{2i-2}^R \# w_{2i-1} \#$

mit

- w_j Konfiguration von $\mathcal M$
- \mathbf{w}_1 Anfangskonfiguration
- w_{2j+1} direkte Nachfolgekonfiguration von w_{2j}

für alle $1 \le j \le i-1$ und w_{2i} akzeptierende Konfiguration, falls vorhanden.

Dann ist $B_{\mathcal{M}} = L_1 \cap L_2$.

Wir geben nun eine kontextfreie Grammatik G für L an mit Startvariable S und zusätzlicher Variable A

G enthalte folgende Regeln:

- (i) alle Regeln $S \to aSa$, $a \in \Gamma \setminus \{\sqcup\};$
- (ii) für alle Übergänge $\delta(q,a)=(q',b,R)$ von ${\cal M}$ die Regeln S o qaAq'b;
- (iii) für alle Übergänge $\delta(q,a)=(q',b,L)$ von $\mathcal M$ die Regeln $S\to xqaAbxq'$, wobei x Symbol links von a beim Lesen von a im Zustand q;
- (iv) für alle Übergänge $\delta(q,a)=(q',b,N)$ von ${\cal M}$ die Regeln ${\cal S} o qaAbq';$
- (v) für alle $a \in \Gamma$ die Regeln $A \to aAa$;
- (vi) die Regel $A \rightarrow \#$.

- Analog kann eine kontextfreie Grammatik G' für L' angegeben werden.
- **E**s ist leicht zu zeigen, dass L(G) = L und L(G') = L' ist.
- Damit ist die Behauptung bewiesen.

Bemerkung

Falls $\mathcal M$ in jeder Berechnung nur höchstens einen Rechenschritt ausführt, ist $B_{\mathcal M}$ sogar selbst kontextfrei.

Lemma

Sei $\mathcal M$ eine TM, die auf jeder Eingabe mindestens zwei Rechenschritte ausführt. Dann ist die Sprache $B_{\mathcal M}$ genau dann kontextfrei, wenn $L(\mathcal M)$ endlich ist.

 $B_{\mathcal{M}}$ ist kontextfrei $\Leftarrow L(\mathcal{M})$ endlich ist

- Sei $L(\mathcal{M})$ endlich
- lacksquare Zu jeder Eingabe aus $L(\mathcal{M})$ gibt es genau eine akzeptierende Berechnung.
- Damit ist $B_{\mathcal{M}}$ auch endlich,
- Jede endliche Sprache ist regulär, also auch kontextfrei.

$B_{\mathcal{M}}$ ist kontextfrei $\Rightarrow L(\mathcal{M})$ endlich ist

- Angenommen $L(\mathcal{M})$ sei unendlich und $B_{\mathcal{M}}$ wäre kontextfrei.
- Da $L(\mathcal{M})$ unendlich ist, gibt es zu der Konstanten n aus Ogden's Lemma ein $w \in B_{\mathcal{M}}$ mit $w = w_1 \# w_2^R \# \dots$ und $|w_2^R| \ge n$.
- Wenn alle Symbole aus $\#w_2^R\#$ markiert werden, muss es eine Zerlegung uvwxy von w geben, sodass vx mindestens einen und vwx höchstens n markierte Buchstaben enthält und $uv^iwx^iy\in B_{\mathcal{M}}$ für alle $i\geq 0$.
- Da \mathcal{M} mindestens zwei Berechnungsschritte ausführt, existieren die Konfigurationen w_1 , w_2 und w_3 .
- Entsprechend der Zerlegung von w enthalten $\#w_2^R\#$ und vx mindestens einen gemeinsamen Buchstaben, und nur eines der Worte w_1 und w_3 hat ebenfalls gemeinsame Buchstaben mit vx.

$B_{\mathcal{M}}$ ist kontextfrei $\Rightarrow L(\mathcal{M})$ endlich ist

- Da \mathcal{M} mindestens zwei Berechnungsschritte ausführt, existieren die Konfigurationen w_1 , w_2 und w_3 .
- Entsprechend der Zerlegung von w enthalten $\#w_2^R\#$ und vx mindestens einen gemeinsamen Buchstaben, und nur eines der Worte w_1 und w_3 hat ebenfalls gemeinsame Buchstaben mit vx.
- Wenn w_1 keinen gemeinsamen Buchstaben mit vx hat, ist $uv^2wx^2y \notin B_{\mathcal{M}}$, da die Berechnung für die Anfangskonfiguration w_1 eindeutig ist.
- Aus demselben Grund ist $uv^2wx^2y \notin B_M$, falls $w_1\#$ Präfix von uv ist.
- Falls v ein Teilwort von w_1 wäre, müsste x ein Teilwort von w_2^R sein, damit für großes i das Wort $uv^iwx^iy \in B_{\mathcal{M}}$ ist, da zwei aufeinanderfolgende Konfigurationen etwa gleich lang sind.
- Dann wäre aber w_3 als Nachfolgekonfiguration zu kurz, uv^iwx^iy also keine Kodierung eines korrekten Rechenweges von \mathcal{M} .
- Dies ist ein Widerspruch.