

Theoretische Grundlagen der Informatik

Vorlesung am 13. Dezember 2016

Verallgemeinerte NP-Schwere

• Wir nennen ein Problem \mathcal{NP} -schwer, wenn es mindestens so schwer ist, wie alle \mathcal{NP} -vollständigen Probleme.

Darunter fallen auch

- \blacksquare Optimierungsprobleme, für die das zugehörige Entscheidungsproblem $\mathcal{NP}\text{--vollst"andig}$ ist.
- Entscheidungsprobleme Π , für die gilt, dass für alle Probleme $\Pi' \in \mathcal{NP}$ gilt $\Pi' \propto \Pi$, aber für die nicht klar ist, ob $\Pi \in \mathcal{NP}$.

Klar ist, dass ein \mathcal{NP} -vollständiges Problem auch \mathcal{NP} -schwer ist.

Das Problem INTEGER PROGRAMMING

Problem INTEGER PROGRAMMING

Gegeben: $a_{ij} \in \mathbb{Z}, b_i, c_j \in \mathbb{Z}, 1 \le i \le m, 1 \le j \le n, B \in \mathbb{Z}.$

Frage: Existieren $x_1, \ldots, x_n \in \mathbb{N}_0$, so dass

$$\sum_{j=1}^{n} c_j \cdot x_j = B \text{ und}$$

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i \text{ für } 1 \le i \le m?$$

$$A \cdot \bar{x} < \bar{b}$$

Das Problem INTEGER PROGRAMMING

Problem INTEGER PROGRAMMING

Gegeben: $a_{ij} \in \mathbb{Z}, b_i, c_j \in \mathbb{Z}, 1 \le i \le m, 1 \le j \le n, B \in \mathbb{Z}.$

Frage: Existieren $x_1, \ldots, x_n \in \mathbb{N}_0$, so dass

$$\sum_{j=1}^{n} c_j \cdot x_j = B \text{ und}$$

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i \text{ für } 1 \le i \le m?$$

$$A \cdot \bar{x} \le \bar{b}$$

Problem INTEGER PROGRAMMING ist \mathcal{NP} -schwer.

Beweis

$$\exists x_1,\ldots,x_n \in \mathbb{N}_0, \text{ dass } \sum_{j=1}^n c_j \cdot x_j = B \text{ und } \underbrace{\sum_{j=1}^n a_{ij} \cdot x_j \leq b_i}_{A \cdot \bar{\lambda} < \bar{b}} \text{ für } 1 \leq i \leq m?$$

Beweis:

Zeigen: SUBSET SUM

INTEGER PROGRAMMING.

Zu M, $w: M \to \mathbb{N}_0$ und $K \in \mathbb{N}_0$ Beispiel für SUBSET SUM wähle m=n:=|M|, o.B.d.A. $M=\{1,\ldots,n\},\ c_j:=w(j),\ B:=K,\ b_i=1$ und $A=(a_{ij})$ Einheitsmatrix. Dann gilt:

$$\exists M' \subseteq M \text{ mit } \sum_{j \in M'} w(j) = K$$

$$\updownarrow$$

$$\exists x_1, \dots, x_n \in \mathbb{N}_0 \text{ mit } \sum_{j \in M} w(j) \cdot x_j = B \text{ und } x_j \leq 1 \text{ für } 1 \leq j \leq n.$$

$$M' = \{j \in M : x_j = 1\}$$

Bemerkungen

- INTEGER PROGRAMMING ∈ NP ist nicht so leicht zu zeigen. Siehe: Papadimitriou "On the complexity of integer programming", J.ACM, 28, 2, pp. 765-769, 1981.
- Wie der vorherige Beweis zeigt, ist INTEGER PROGRAMMING sogar schon \mathcal{NP} -schwer, falls a_{ij} , $b_i \in \{0, 1\}$ und $x_i \in \{0, 1\}$.
- Es kann sogar unter der Zusatzbedingung $c_{ij} \in \{0, 1\}$ \mathcal{NP} –Vollständigkeit gezeigt werden (ZERO-ONE PROGRAMMING).
- Für beliebige lineare Programme $(a_{ij}, c_j, b_i \in \mathbb{Q}; x_i \in \mathbb{R})$ existieren polynomiale Algorithmen.

Kapitel

Pseudopolynomiale Algorithmen

Pseudopolynomielle Algorithmen

- Kodiert man vorkommende Zahlen nicht binär sondern unär, gehen diese nicht logarithmisch, sondern linear in die Inputlänge ein.
- Es gibt \mathcal{NP} -vollständige Probleme, die für solche Kodierungen polynomiale Algorithmen besitzen.
- Solche Algorithmen nennt man pseudopolynomielle Algorithmen

Sei Π ein Optimierungsproblem. Ein Algorithmus, der Problem Π löst, heißt pseudopolynomiell, falls seine Laufzeit durch ein Polynom der beiden Variablen

- Eingabegröße und
- Größe der größten in der Eingabe vorkommenden Zahl beschränkt ist.

Beispiel: Problem KNAPSACK

Problem KNAPSACK

Gegeben: Eine endliche Menge *M*,

eine Gewichtsfunktion $w: M \to \mathbb{N}_0$, eine Kostenfunktion $c: M \to \mathbb{N}_0$

W, $C \in \mathbb{N}_0$.

Frage: Existiert eine Teilmenge $M' \subseteq M$ mit $\sum_{a \in M'} w(a) \leq W$

und $\sum_{a \in M'} c(a) \geq C$?

Satz:

Ein beliebiges Beispiel (M, w, c, W, C) für KNAPSACK kann in $\mathcal{O}(|M| \cdot W)$ entschieden werden.

Beispiel: Problem KNAPSACK

Satz:

Ein beliebiges Beispiel (M, w, c, W, C) für KNAPSACK kann in $\mathcal{O}(|M|)$ W) entschieden werden.

Beweis:

Sei o.B.d.A. $M = \{1, \ldots, n\}$. Für jedes $w \in N_0$, w < W und $i \in M$ definiere

$$c_i^{w} := \max_{M' \subseteq \{1,\ldots,i\}} \left\{ \sum_{j \in M'} c(j) : \sum_{j \in M'} w(j) \le w \right\}.$$

• c_{i+1}^w kann für $0 \le i < n$ leicht berechnet werden als

$$c_{i+1}^{w} = \max \left\{ c_{i}^{w}, c(i+1) + c_{i}^{w-w(i+1)} \right\}.$$

Die Instanz ist genau dann lösbar, wenn $c_n^W > C$.

Beispiel: Problem KNAPSACK

Satz:

Ein beliebiges Beispiel (M, w, c, W, C) für KNAPSACK kann in $\mathcal{O}(|M| \cdot W)$ entschieden werden.

Beweis: Berechne c_n^W wie folgt:

- Für w = 1, ..., W
 - $c_0^w := 0$
- Für i = 1, ..., n
 - Für $w=1,\ldots,W$ setze $c_i^w:=\max\left\{c_{i-1}^w,c(i)+c_{i-1}^{w-w(i)}\right\}$

Starke NP-Vollständigkeit

- Für ein Problem Π und eine Instanz / von Π bezeichne | / | die Länge der Instanz / und max(/) die größte in / vorkommende Zahl.
- Für ein Problem Π und ein Polynom p sei Π_p das Teilproblem von Π , in dem nur die Eingaben I mit $\max(I) \leq p(|I|)$ vorkommen.
- Ein Entscheidungsproblem Π heißt **stark** \mathcal{NP} -vollständig, wenn Π_p für ein Polynom p \mathcal{NP} -vollständig ist.

Satz:

Ist Π stark \mathcal{NP} -vollständig und $\mathcal{NP} \neq \mathcal{P}$, dann gibt es keinen pseudopolynomiellen Algorithmus für Π .

Problem TSP ist stark NP-vollständig.

Kapitel

Approximationsalgorithmen für Optimierungsprobleme

Absolute Approximationsalgorithmen

Absoluter Approximationsalgorithmus

Sei Π ein Optimierungsproblem. Ein polynomialer Algorithmus \mathcal{A} , der für jedes $I \in \mathcal{D}_{\Pi}$ einen Wert $\mathcal{A}(I)$ liefert, mit

$$|\mathsf{OPT}(I) - \mathcal{A}(I)| \leq K$$

und $K \in \mathbb{N}_0$ konstant, heißt Approximationsalgorithmus mit Differenzengarantie oder absoluter Approximationsalgorithmus.

- \blacksquare Es gibt nur wenige $\mathcal{NP}\text{--}schwere Optimierungsprobleme, für die ein absoluter Approximationsalgorithmus existiert$
- Es gibt viele Negativ–Resultate.

Das allgemeine KNAPSACK-Suchproblem

Das allgemeine KNAPSACK-Suchproblem

Gegeben: Menge $M = \{1, \ldots, n\}$,

Kosten $c_1, \ldots, c_n \in \mathbb{N}_0$ Gewichte $w_1, \ldots, w_n \in \mathbb{N}$ Gesamtgewicht $W \in \mathbb{N}$.

Aufgabe: Gib $x_1, \ldots, x_n \in \mathbb{N}_0$ an, so dass $\sum_{i=0}^n x_i w_i \leq W$ und

 $\sum_{i=1}^{n} x_i c_i$ maximal ist.

Das allgemeine KNAPSACK-Suchproblem

Das allgemeine KNAPSACK-Suchproblem

Gegeben: Menge $M = \{1, ..., n\}$,

Kosten $c_1, \ldots, c_n \in \mathbb{N}_0$ Gewichte $w_1, \ldots, w_n \in \mathbb{N}$ Gesamtgewicht $W \in \mathbb{N}$.

Aufgabe: Gib $x_1, \ldots, x_n \in \mathbb{N}_0$ an, so dass $\sum_{i=0}^n x_i w_i \leq W$ und

 $\sum_{i=1}^{n} x_i c_i$ maximal ist.

Das allgemeine KNAPSACK-Suchproblem ist \mathcal{NP} -schwer.

Das allgemeine KNAPSACK-Suchproblem

Das allgemeine KNAPSACK-Suchproblem

Gegeben: Menge $M = \{1, \ldots, n\}$,

Kosten $c_1, \ldots, c_n \in \mathbb{N}_0$ Gewichte $w_1, \ldots, w_n \in \mathbb{N}$ Gesamtgewicht $W \in \mathbb{N}$.

Aufgabe: Gib $x_1, \ldots, x_n \in \mathbb{N}_0$ an, so dass $\sum_{i=0}^n x_i w_i \leq W$ und

 $\sum_{i=1}^{n} x_i c_i$ maximal ist.

Vorsicht: Dies ist nicht exakt das Optimierungsproblem zum KNAPSACK-Entscheidungsproblem aus der Vorlesung!

Satz

Satz:

Falls $\mathcal{P} \neq \mathcal{NP}$, so gibt es keinen absoluten Approximationsalgorithmus \mathcal{A} für das allgemeine KNAPSACK-Suchproblem.

(Widerspruchs-)Beweis

Sei \mathcal{A} ein abs. Approximationsalgo mit $|\operatorname{OPT}(I) - \mathcal{A}(I)| \leq K$ für alle I. Sei $I = (M, w_i, c_i, W)$ eine KNAPSACK-Instanz. Betrachte KNAPSACK-Instanz

$$I' = (M' := M, w'_i := w_i, W' := W, c'_i := c_i \cdot (K+1))$$

Damit ist

$$\mathsf{OPT}(I') = (K+1)\,\mathsf{OPT}(I)$$

Dann liefert A zu I' eine Lösung x_1, \ldots, x_n mit Wert $\sum_{i=1}^n x_i c_i' = A(I')$, für den gilt:

$$|\mathsf{OPT}(I') - \mathcal{A}(I')| \le K.$$

(Widerspruchs-)Beweis

Dann liefert \mathcal{A} zu l' eine Lösung x_1, \ldots, x_n mit Wert $\sum_{i=1}^n x_i c_i' = \mathcal{A}(l')$, für den gilt:

$$|\mathsf{OPT}(I') - \mathcal{A}(I')| \leq K.$$

 $\mathcal{A}(I')$ induziert damit eine Lösung x_1, \ldots, x_n für I mit dem Wert

$$\mathcal{L}(I) := \sum_{i=1}^{n} x_i c_i,$$

für den gilt:

$$|(K+1) \mathsf{OPT}(I) - (K+1)\mathcal{L}(I)| \le K$$

Also ist

$$|\operatorname{\mathsf{OPT}}(\mathit{I}) - \mathcal{L}(\mathit{I})| \leq \frac{\mathit{K}}{\mathit{K}+1} < 1 \; .$$

(Widerspruchs-)Beweis

Also ist

$$|\operatorname{OPT}(I) - \mathcal{L}(I)| \le \frac{K}{K+1} < 1$$
.

Da

$$\mathsf{OPT}(I)$$
 und $\mathcal{L}(I) \in \mathbb{N}_0$ für alle I ,

ist also

$$\mathsf{OPT}(I) = \mathcal{L}(I)$$
.

Der entsprechende Algorithmus ist natürlich polynomial und liefert einen Optimalwert für das KNAPSACK-Problem. Dies steht im Widerspruch zur Annahme, dass $\mathcal{P} \neq \mathcal{NP}$.

Approximation mit relativer Gütegarantie

Sei Π ein Optimierungsproblem. Ein polynomialer Algorithmus \mathcal{A} , der für jedes $I \in \mathcal{D}_{\Pi}$ einen Wert $\mathcal{A}(I)$ liefert mit $R_{\mathcal{A}}(I) \leq K$, wobei $K \geq 1$ eine Konstante, und

$$\mathcal{R}_{\mathcal{A}}(\mathit{I}) := \begin{cases} \frac{\mathcal{A}(\mathit{I})}{\mathsf{OPT}(\mathit{I})} & \text{falls } \Pi \text{ Minimierungsproblem} \\ \\ \frac{\mathsf{OPT}(\mathit{I})}{\mathcal{A}(\mathit{I})} & \text{falls } \Pi \text{ Maximierungsproblem} \end{cases}$$

heißt Approximationsalgorithmus mit relativer Gütegarantie. $\mathcal A$ heißt ε -approximativ, falls $\mathcal R_{\mathcal A}(I) \leq 1 + \varepsilon$ für alle $I \in \mathcal D_\Pi$.

Idee: Es werden der Reihe nach so viele Elemente wie möglich mit absteigender Gewichtsdichte in die Lösung aufgenommen.

- Berechne die Gewichtsdichten $p_i := \frac{c_i}{w_i}$ für i = 1, ..., n
- Sortiere nach Gewichtsdichten und indiziere: $p_1 \ge p_2 \ge ... \ge p_n$
- Dies kann in Zeit $O(n \log n)$ geschehen.
- Für i = 1 bis n setze $x_i := \left\lfloor \frac{W}{w_i} \right\rfloor$ und $W := W \left\lfloor \frac{W}{w_i} \right\rfloor \cdot w_i$.

Die Laufzeit dieses Algorithmus ist in $\mathcal{O}(n \log n)$.

- Berechne die Gewichtsdichten $p_i := \frac{c_i}{w_i}$ für i = 1, ..., n
- Sortiere nach Gewichtsdichten und indiziere: $p_1 \geq p_2 \geq \ldots \geq p_n$
- Dies kann in Zeit $\mathcal{O}(n \log n)$ geschehen.
- Für i=1 bis n setze $x_i:=\left\lfloor \frac{W}{w_i} \right\rfloor$ und $W:=W-\left\lfloor \frac{W}{w_i} \right\rfloor \cdot w_i$.

Satz:

Der Greedy–Algorithmus \mathcal{A} für KNAPSACK erfüllt $\mathcal{R}_{\mathcal{A}}(I) \leq 2$ für alle Instanzen I.

- Berechne die Gewichtsdichten $p_i := \frac{c_i}{w_i}$ für i = 1, ..., n
- Sortiere nach Gewichtsdichten und indiziere: $p_1 \geq p_2 \geq \ldots \geq p_n$
- Dies kann in Zeit $\mathcal{O}(n \log n)$ geschehen.
- Für i = 1 bis n setze $x_i := \left\lfloor \frac{W}{w_i} \right\rfloor$ und $W := W \left\lfloor \frac{W}{w_i} \right\rfloor \cdot w_i$.

Beweis:

O.B.d.A. sei $w_1 \leq W$. Offensichtlich gilt:

$$A(I) \ge c_1 \cdot x_1 = c_1 \cdot \left\lfloor \frac{W}{w_1} \right\rfloor$$
 für alle I

und

$$\mathsf{OPT}(I) \le c_1 \cdot \frac{W}{w_1} \le c_1 \cdot \left(\left\lfloor \frac{W}{w_1} \right\rfloor + 1 \right) \le 2 \cdot c_1 \cdot \left\lfloor \frac{W}{w_1} \right\rfloor \le 2 \cdot \mathcal{A}(I) \ .$$

Also $\mathcal{R}_{\mathcal{A}}(I) \leq 2$.

- Berechne die Gewichtsdichten $p_i := \frac{c_i}{w_i}$ für i = 1, ..., n
- Sortiere nach Gewichtsdichten und indiziere: $p_1 \geq p_2 \geq \ldots \geq p_n$
- Dies kann in Zeit $\mathcal{O}(n \log n)$ geschehen.
- Für i = 1 bis n setze $x_i := \left\lfloor \frac{W}{w_i} \right\rfloor$ und $W := W \left\lfloor \frac{W}{w_i} \right\rfloor \cdot w_i$.

Bemerkung: Die Schranke $\mathcal{R}_{\mathcal{A}}(I)$ ist in gewissem Sinne scharf.

Sei n = 2, $w_2 = w_1 - 1$, $c_1 = 2 \cdot w_1$, $c_2 = 2 \cdot w_2 - 1$, $W = 2 \cdot w_2$. Dann ist

$$\frac{c_1}{w_1} = 2 > \frac{c_2}{w_2} = 2 - \frac{1}{w_2}$$

und $A(I) = 2w_1$ und $OPT(I) = 4w_2 - 2$, also

$$\frac{\mathsf{OPT}(I)}{\mathcal{A}(I)} = \frac{4w_2 - 2}{2w_1} = \frac{2w_1 - 3}{w_1} \longrightarrow 2 \qquad \text{für } w_1 \to \infty$$