Theoretische Grundlagen der Informatik Übung

1. Übungstermin · 25. Oktober Marcel Radermacher

INSTITUT FÜR THEORETISCHE INFORMATIK · PROF. DR. DOROTHEA WAGNER

Übungsleiter

Guido Brückner

brueckner@kit.edu

Raum 317

Marcel Radermacher

radermacher@kit.edu

Raum 306

Sprechzeiten: Termin nach Vereinbarung

Gliederung

Organisatorisches

- → Übungsbetrieb
- → Tutorien

Inhalt

- → Formale Sprachen und reguläre Ausdrücke
- → Nicht-deterministische endliche Automaten
- → Eigenschaften von endlichen Automaten
- Potenzmengenkonstruktion
- \rightarrow ε -Abschluss
- → Kontextfreie Grammtiken

Übungsblatt (ÜB)

Aus- und Abgabe: Zu jeder Übung

Tag der Abgabe für aktuelles ÜB

=

Tag der Ausgabe für nächstes ÜB.

ÜB	Ausgabe	Abgabe
1.	20.10	08.11
2.	08.11	15.11
3.	15.11	29.11
4.	29.11	08.12
5.	08.12	20.12
6.	20.12	17.01
7.	31.01	09.02

Ab 50% der erreichbaren Punkte gibt es einen Klausurbonus.

(Unter Vorbehalt)

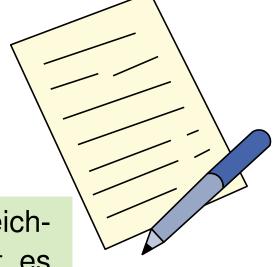
Übungsblatt (ÜB)

Aus- und Abgabe: Zu jeder Übung

Tag der Abgabe für aktuelles ÜB

=

Tag der Ausgabe für nächstes ÜB.

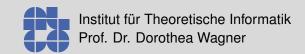


ÜB	Ausgabe	Abgabe
1.	20.10	08.11
2.	08.11	15.11
3.	15.11	29.11
4.	29.11	08.12
5.	08.12	20.12
6.	20.12	17.01
7.	31.01	09.02

Ab 50% der erreichbaren Punkte gibt es einen Klausurbonus.

Achtung, korrigierte Version des aktuellen Übungsblattes online

(Unter Vorbehalt)

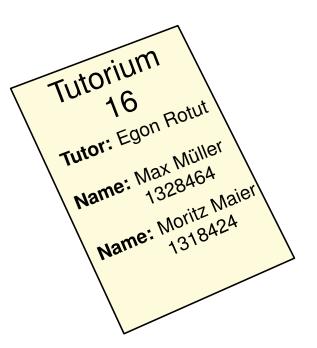


Titelblatt:

- → Nummer des Tutoriums
- → Name des Tutors
- → Eigener Name
- Matrikelnummer

Titelblatt:

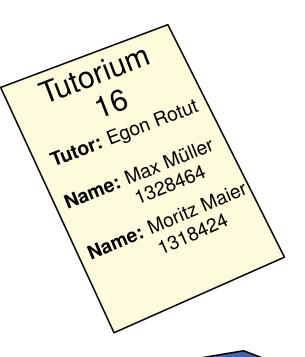
- → Nummer des Tutoriums
- → Name des Tutors
- → Eigener Name
- Matrikelnummer



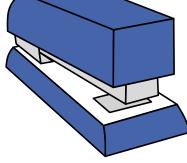
Handschriftliche Abgabe!

Titelblatt:

- → Nummer des Tutoriums
- → Name des Tutors
- Eigener Name
- Matrikelnummer



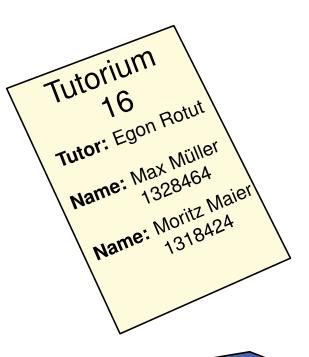
Handschriftliche Abgabe!

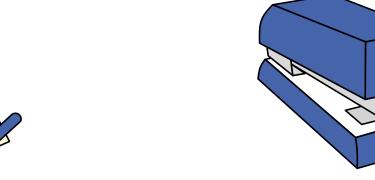


Übungsblatt heften!

Titelblatt:

- → Nummer des Tutoriums
- Name des Tutors
- Eigener Name
- Matrikelnummer



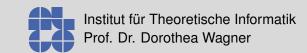


Handschriftliche Abgabe!

Übungsblatt heften!

Doppelabgabe ist erlaubt.

Beide müssen im selben Tutorium angemeldet sein.



Gliederung

Organisatorisches

- → Übungsbetrieb
- → Tutorien

Inhalt

- → Formale Sprachen und reguläre Ausdrücke
- → Nicht-deterministische endliche Automaten
- → Eigenschaften von endlichen Automaten
- Potenzmengenkonstruktion
- \rightarrow ε -Abschluss
- → Kontextfreie Grammtiken

Alphabet: Endliche Menge Σ an Zeichen/Symbolen.

Beispiel: $\Sigma = \{0, 1\}$

Wort:

Ein Wort w über dem Alphabet Σ ist eine Folge von Zeichen

aus Σ .

Beispiel: $\Sigma = \{0, 1\}, w=0101, w=\varepsilon$

Leere Wort: ε

Alle Worte: Σ^*

Beispiel: $\Sigma = \{0, 1\}, \Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$

Sprache:

Menge an Worten über einem Alphabet Σ

Beispiel: $\Sigma = \{0, 1\}$ $L_1 = \{00, 01, 10, 11\}$ $L_2 = \{w \in \Sigma^* \mid w \text{ endet mit } 0\}$

Seien $L, L_1, L_2 \subseteq \Sigma^*$ Sprachen.

Produktsprache
$$L_1 \cdot L_2 := \{ w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2 \}$$

$$k$$
-faches Produkt $L^k := \{w_1 \cdot w_2 \cdot \ldots \cdot w_k \mid w_i \in L \text{ für } 1 \leq i \leq k\}$ $L^0 := \{\varepsilon\}$

Kleene'scher Abschluss
$$L^* := \bigcup_{i>0} L^i$$

Positiver Abschluss
$$L^+ := \bigcup_{i>1} L^i$$

Quotientensprache
$$L_1/L_2 := \{ w \in \Sigma^* \mid \exists z \in L_2 \text{ mit } w \cdot z \in L_1 \}$$

Komplementsprache
$$L^c := \Sigma^* \setminus L$$

Beispiel: Produktsprache

$$L_1 = \{01, 10, 11\}$$

$$L_2 = \{1, 00, 101\}$$

Seien $L, L_1, L_2 \subseteq \Sigma^*$ Sprachen.

Produktsprache
$$L_1 \cdot L_2 := \{ w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2 \}$$

$$k$$
-faches Produkt $L^k := \{w_1 \cdot w_2 \cdot \ldots \cdot w_k \mid w_i \in L \text{ für } 1 \leq i \leq k\}$

$$L^0 := \{\varepsilon\}$$

Kleene'scher Abschluss
$$L^* := \bigcup_{i>0} L^i$$

Positiver Abschluss
$$L^+ := \bigcup_{i>1} L^i$$

Quotientensprache
$$L_1/L_2 := \{ w \in \Sigma^* \mid \exists z \in L_2 \text{ mit } w \cdot z \in L_1 \}$$

Komplementsprache
$$L^c := \Sigma^* \setminus L$$

Beispiel: Produktsprache

Seien $L, L_1, L_2 \subseteq \Sigma^*$ Sprachen.

Produktsprache
$$L_1 \cdot L_2 := \{ w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2 \}$$

k-faches Produkt
$$L^k := \{ w_1 \cdot w_2 \cdot \ldots \cdot w_k \mid w_i \in L \text{ für } 1 \leq i \leq k \}$$

$$L^0 := \{\varepsilon\}$$

Kleene'scher Abschluss
$$L^* := \bigcup_{i>0} L^i$$

Positiver Abschluss
$$L^+ := \bigcup_{i>1} L^i$$

Quotientensprache
$$L_1/L_2 := \{ w \in \Sigma^* \mid \exists z \in L_2 \text{ mit } w \cdot z \in L_1 \}$$

Komplementsprache
$$L^c := \Sigma^* \setminus L$$

Beispiel: Produktsprache

$$L_1 = \{01, 10, 11\}$$
 $L_2 = \{1, 00, 101\}$
 $L_1 \cdot L_2 = \{011, 0100, 01101, 101, 1000, 10101, 101, 1000, 10101, 101,$

Seien $L, L_1, L_2 \subseteq \Sigma^*$ Sprachen.

Produktsprache $L_1 \cdot L_2 := \{ w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2 \}$

k-faches Produkt $L^k := \{ w_1 \cdot w_2 \cdot \ldots \cdot w_k \mid w_i \in L \text{ für } 1 \leq i \leq k \}$

 $L^0 := \{\varepsilon\}$

Kleene'scher Abschluss $L^* := \bigcup_{i>0} L^i$

Positiver Abschluss $L^+ := \bigcup_{i>1} L^i$

Quotientensprache $L_1/L_2 := \{ w \in \Sigma^* \mid \exists z \in L_2 \text{ mit } w \cdot z \in L_1 \}$

Komplementsprache $L^c := \Sigma^* \setminus L$

Beispiel: Produktsprache

 $L_1 = \{01, 10, 11\}$ $L_2 = \{1, 00, 101\}$ $L_1 \cdot L_2 = \{011, 0100, 01101, 101, 1000, 10101, 111, 1000, 11101\}$

Reguläre Sprachen

Eine Sprache $L \subseteq \Sigma^*$ heißt *regulär*, wenn für sie einer der folgenden Punkte gilt: (induktive Definition)

1. Verankerung:

- (a) $L = \{a\}$ mit $a \in \Sigma$ oder
- (b) $L = \emptyset$
- 2. **Induktion**: Seien L_1 , L_2 reguläre Sprachen
 - (a) $L = L_1 \cdot L_2$ oder
 - (b) $L = L_1 \cup L_2$ oder
 - (c) $L = L_1^*$

Reguläre Sprachen

Eine Sprache $L \subseteq \Sigma^*$ heißt *regulär*, wenn für sie einer der folgenden Punkte gilt: (induktive Definition)

1. Verankerung:

- (a) $L = \{a\}$ mit $a \in \Sigma$ oder
- (b) $L = \emptyset$

2. **Induktion**: Seien L_1 , L_2 reguläre Sprachen

- (a) $L = L_1 \cdot L_2$ oder
- (b) $L = L_1 \cup L_2$ oder
- (c) $L = L_1^*$

Reguläre Ausdrücke:

- $a \text{ für } L = \{a\}$
- $(\alpha) \cup (\beta)$ für $L(\alpha) \cup L(\beta)$
- $(\alpha) \cdot (\beta)$ für $L(\alpha) \cdot L(\beta)$
- $(\alpha)^+$ für $L(\alpha)^+$
- $(\alpha)^*$ für $L(\alpha)^*$

Reguläre Sprachen

Eine Sprache $L \subseteq \Sigma^*$ heißt *regulär*, wenn für sie einer der folgenden Punkte gilt: (induktive Definition)

1. Verankerung:

- (a) $L = \{a\}$ mit $a \in \Sigma$ oder
- (b) $L = \emptyset$

2. **Induktion**: Seien L_1 , L_2 reguläre Sprachen

- (a) $L = L_1 \cdot L_2$ oder
- (b) $L = L_1 \cup L_2$ oder
- (c) $L = L_1^*$

Reguläre Ausdrücke:

- $a \text{ für } L = \{a\}$
- $(\alpha) \cup (\beta)$ für $L(\alpha) \cup L(\beta)$
- $(\alpha) \cdot (\beta)$ für $L(\alpha) \cdot L(\beta)$
- $(\alpha)^+$ für $L(\alpha)^+$
- $(\alpha)^*$ für $L(\alpha)^*$

Klammern werden häufig weggelassen.

Sein A,B,C reguläre Ausdrücke. Welche regulären Ausdrücke beschreiben die gleiche Sprache?

(a)
$$(A^*)^* = A^*$$

(b)
$$(A \cup B)^* = (A^*B^*)^*$$

(c)
$$A^* \cup B^* = (A \cup B)^*$$

Sein A,B,C reguläre Ausdrücke. Welche regulären Ausdrücke beschreiben die gleiche Sprache?

(a)
$$(A^*)^* = A^*$$

(b)
$$(A \cup B)^* = (A^*B^*)^*$$

(c)
$$A^* \cup B^* = (A \cup B)^*$$

Sein A,B,C reguläre Ausdrücke. Welche regulären Ausdrücke beschreiben die gleiche Sprache?

(a)
$$(A^*)^* = A^*$$

(b)
$$(A \cup B)^* = (A^*B^*)^*$$

(c)
$$A^* \cup B^* = (A \cup B)^*$$

Definiert über einem Alphabet Σ Bestehend aus:

Definiert über einem Alphabet Σ

Bestehend aus:

→ Q: endliche Menge von Zuständen

Definiert über einem Alphabet Σ

Bestehend aus:

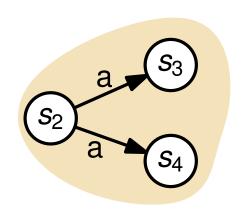
→ Q: endliche Menge von Zuständen

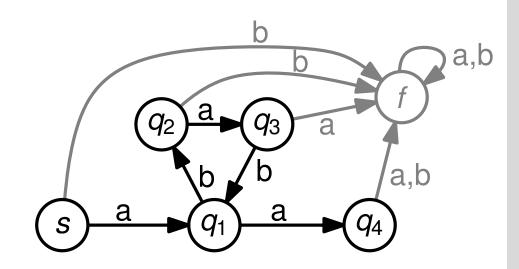
→ Übergänge

eindeutig
$$\blacktriangleright$$
 $\delta: Q \times \Sigma \rightarrow Q$

deterministisch

$$\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$$
 nicht-deterministisch





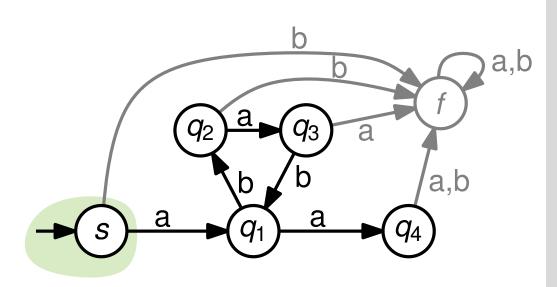
Definiert über einem Alphabet Σ

Bestehend aus:

→ Q: endliche Menge von Zuständen

$$\begin{array}{c} - \hspace{-0.5cm} \bullet \hspace{-0.5cm} \text{ Übergänge } & \begin{array}{c} - \hspace{-0.5cm} \bullet \hspace{-0.5cm} : Q \times \Sigma \to Q \\ \hline \\ \hspace{-0.5cm} Mehr_{deutiq} \\ \hline \\ \hspace{-0.5cm} \bullet \hspace{-0.5cm} : Q \times (\Sigma \cup \{\epsilon\}) \to \mathbf{2}^Q \end{array} \text{ nicht-deterministisch} \\ \\ - \hspace{-0.5cm} \bullet \hspace{-0.5cm} s \in Q \hspace{-0.5cm} : \textit{Startzustand} \\ \end{array}$$

 $s \in Q$: Startzustand



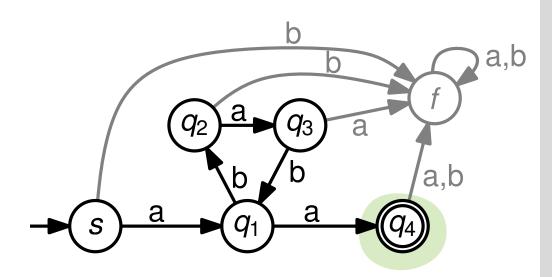
Definiert über einem Alphabet Σ

Bestehend aus:

- → Q: endliche Menge von Zuständen
- <u>eindeutig</u> $\delta: Q \times \Sigma \rightarrow Q$ → Übergänge deterministisch $\delta \colon Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q \text{ nicht-deterministisch}$

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$$
 nicht-deterministisch

- ► s ∈ Q: Startzustand
- $ightharpoonup F \subseteq Q$, Menge Endzustände



Definiert über einem Alphabet Σ

Bestehend aus:

- → Q: endliche Menge von Zuständen
- <u>eindeutig</u> ► $\delta: Q \times \Sigma \rightarrow Q$ → Übergänge deterministisch $\delta \colon Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q \text{ nicht-deterministisch}$

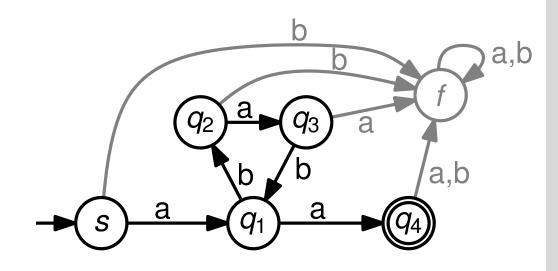
$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$$
 nicht-deterministisch

- ► s ∈ Q: Startzustand
- $ightharpoonup F \subseteq Q$, Menge *Endzustände*

Akzeptanz des Wortes w:

DEA: Abarbeitung von w endet in **Endzustand**

NEA: Es gibt Abarbeitung von w, die in Endzustand endet.



Definiert über einem Alphabet Σ

Bestehend aus:

- → Q: endliche Menge von Zuständen
- <u>eindeutig</u> $\delta: Q \times \Sigma \to Q$ → Übergänge deterministisch $\delta \colon Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q \text{ nicht-deterministisch}$

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$$
 nicht-deterministisch

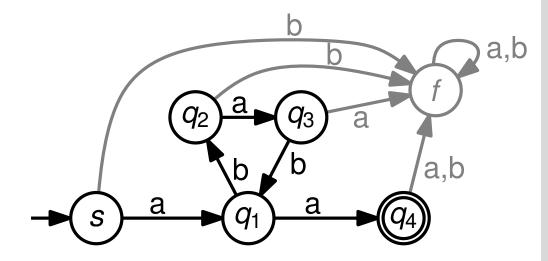
- → s ∈ Q: Startzustand
- $ightharpoonup F \subseteq Q$, Menge *Endzustände*

Akzeptanz des Wortes w:

DEA: Abarbeitung von w endet in **Endzustand**

NEA: Es gibt Abarbeitung von w, die in Endzustand endet.

Welche Sprache erkennt der Automat?



Definiert über einem Alphabet Σ

Bestehend aus:

- → Q: endliche Menge von Zuständen
- <u>eindeutig</u> $\delta: Q \times \Sigma \to Q$ → Übergänge deterministisch $\delta \colon Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q \text{ nicht-deterministisch}$

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$$
 nicht-deterministisch

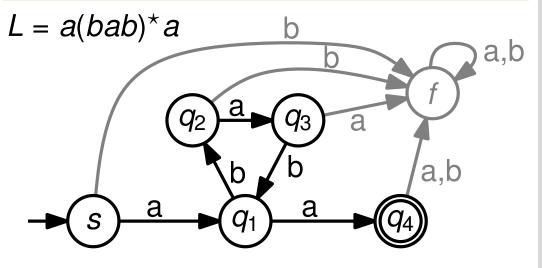
- ► s ∈ Q: Startzustand
- $ightharpoonup F \subseteq Q$, Menge *Endzustände*

Akzeptanz des Wortes w:

DEA: Abarbeitung von w endet in **Endzustand**

NEA: Es gibt Abarbeitung von w, die in Endzustand endet.

Welche Sprache erkennt der Automat?



Konstruieren Sie einen nicht-deterministischen endlichen Automaten, der folgende Sprache erkennt:

$$L = (a \cup (ab(b)^*ba))^*$$

Konstruieren Sie einen nicht-deterministischen endlichen Automaten, der folgende Sprache erkennt:

$$L = (a \cup (ab(b)^*ba))^*$$

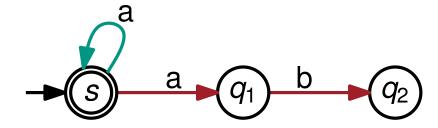
Konstruieren Sie einen nicht-deterministischen endlichen Automaten, der folgende Sprache erkennt:

$$L = (\underline{a} \cup (\underline{ab}(\underline{b})^*\underline{ba}))^*$$



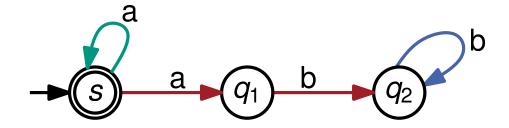
Konstruieren Sie einen nicht-deterministischen endlichen Automaten, der folgende Sprache erkennt:

$$L = (\underline{a} \cup (\underline{ab}(\underline{b})^*\underline{ba}))^*$$



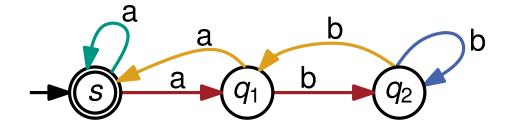
Konstruieren Sie einen nicht-deterministischen endlichen Automaten, der folgende Sprache erkennt:

$$L = (\underline{a} \cup (\underline{ab}(\underline{b})^*\underline{ba}))^*$$



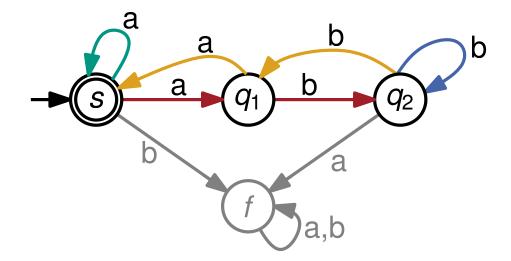
Konstruieren Sie einen nicht-deterministischen endlichen Automaten, der folgende Sprache erkennt:

$$L = (\underline{a} \cup (\underline{ab}(\underline{b})^*\underline{ba}))^*$$



Konstruieren Sie einen nicht-deterministischen endlichen Automaten, der folgende Sprache erkennt:

$$L = (\underline{a} \cup (\underline{ab}(\underline{b})^*\underline{ba}))^*$$

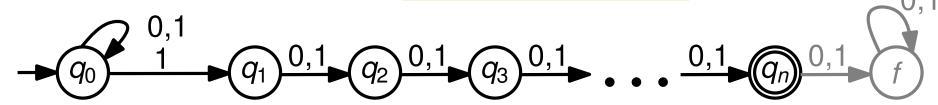


Betrachte: $L_n = \{ w \in \{0, 1\}^* \mid \text{ das } n \text{ letzte Zeichen von } w \text{ ist eine } 1 \}.$

Wie sieht der NEA aus?

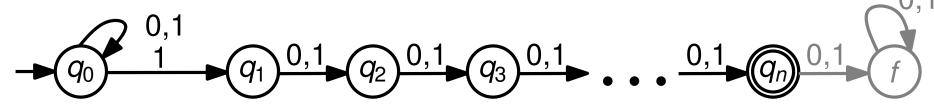
Betrachte: $L_n = \{ w \in \{0, 1\}^* \mid \text{ das } n \text{ letzte Zeichen von } w \text{ ist eine } 1 \}.$

Wie sieht der NEA aus? $\longrightarrow O(n)$ viele Zustände



Betrachte: $L_n = \{ w \in \{0, 1\}^* \mid \text{ das } n \text{ letzte Zeichen von } w \text{ ist eine } 1 \}.$

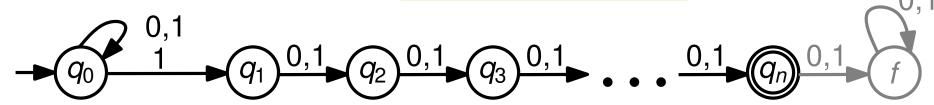
Wie sieht der NEA aus? $\longrightarrow O(n)$ viele Zustände



Zeige: Jeder DEA von L_n hat mindestens 2^n Zustände.

Betrachte: $L_n = \{ w \in \{0, 1\}^* \mid \text{ das } n \text{ letzte Zeichen von } w \text{ ist eine } 1 \}.$

Wie sieht der NEA aus? $\longrightarrow O(n)$ viele Zustände

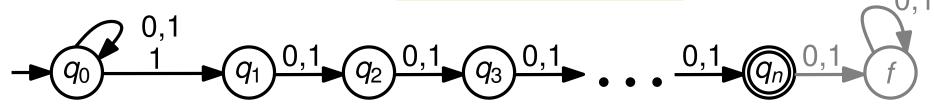


Zeige: Jeder DEA von L_n hat mindestens 2^n Zustände.

Annahme: Sei $\mathcal{D}_n = (\Sigma, Q, \delta, q_0, F)$ DEA, der L_n akzeptiert, mit $|Q| < 2^n$

Betrachte: $L_n = \{ w \in \{0, 1\}^* \mid \text{ das } n \text{ letzte Zeichen von } w \text{ ist eine } 1 \}.$

Wie sieht der NEA aus? $\longrightarrow O(n)$ viele Zustände



Zeige: Jeder DEA von L_n hat mindestens 2^n Zustände.

Annahme: Sei $\mathcal{D}_n = (\Sigma, Q, \delta, q_0, F)$ DEA, der L_n akzeptiert, mit $|Q| < 2^n$

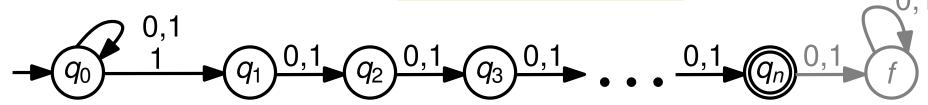
Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass

 $\delta(q_0, \frac{\mathsf{x} \, \mathsf{1} \, \mathsf{u}}) = \delta(q_0, \frac{\mathsf{y} \, \mathsf{0} \, \mathsf{v}})$

Noch zu zeigen.

Betrachte: $L_n = \{ w \in \{0, 1\}^* \mid \text{ das } n \text{ letzte Zeichen von } w \text{ ist eine } 1 \}.$

Wie sieht der NEA aus? $\longrightarrow O(n)$ viele Zustände



Zeige: Jeder DEA von L_n hat mindestens 2^n Zustände.

Annahme: Sei $\mathcal{D}_n = (\Sigma, Q, \delta, q_0, F)$ DEA, der L_n akzeptiert, mit $|Q| < 2^n$

Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass

$$\delta(q_0, \mathbf{x} \mathbf{1} \mathbf{u}) = \delta(q_0, \mathbf{y} \mathbf{0} \mathbf{v})$$

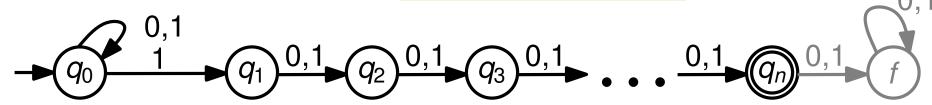
Noch zu zeigen.

Dann gilt: Seien $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$ wie im Lemma gewählt.

$$\longrightarrow$$
 $x \land u \in L_n \text{ und } y \land v \notin L_n$

Betrachte: $L_n = \{ w \in \{0, 1\}^* \mid \text{ das } n \text{ letzte Zeichen von } w \text{ ist eine } 1 \}.$

Wie sieht der NEA aus? → O(n) viele Zustände



Zeige: Jeder DEA von L_n hat mindestens 2^n Zustände.

Annahme: Sei $\mathcal{D}_n = (\Sigma, Q, \delta, q_0, F)$ DEA, der L_n akzeptiert, mit $|Q| < 2^n$

Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass

$$\delta(q_0, \mathbf{x} \mathbf{1} \mathbf{u}) = \delta(q_0, \mathbf{y} \mathbf{0} \mathbf{v})$$

Noch zu zeigen.

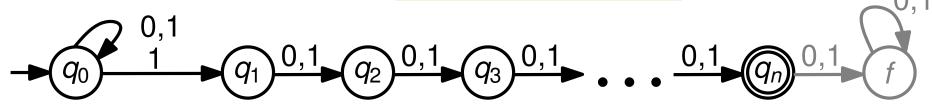
Dann gilt: Seien $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$ wie im Lemma gewählt.

$$\longrightarrow$$
 $x \land u \in L_n \text{ und } y \land v \notin L_n$

$$\rightarrow$$
 $\delta(q_0, x \mid u) \in F \text{ und } \delta(q_0, y \mid 0 \mid v) \notin F$ Lemma

Betrachte: $L_n = \{ w \in \{0, 1\}^* \mid \text{ das } n \text{ letzte Zeichen von } w \text{ ist eine } 1 \}.$

Wie sieht der NEA aus? $\longrightarrow O(n)$ viele Zustände



Zeige: Jeder DEA von L_n hat mindestens 2^n Zustände.

Annahme: Sei $\mathcal{D}_n = (\Sigma, Q, \delta, q_0, F)$ DEA, der L_n akzeptiert, mit $|Q| < 2^n$

Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass

$$\delta(q_0, \frac{\mathsf{x} \, \mathsf{1} \, \mathsf{u}}) = \delta(q_0, \frac{\mathsf{y} \, \mathsf{0} \, \mathsf{v}})$$

Noch zu zeigen.

Dann gilt: Seien $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$ wie im Lemma gewählt.

$$\longrightarrow$$
 $x \land u \in L_n \text{ und } y \land v \not\in L_n$

$$\longrightarrow \delta(q_0, x \mid u) \in F \text{ und } \delta(q_0, y \mid 0 \mid v) \notin F$$

 $\rightarrow \Omega(2^n)$ viele Zustände

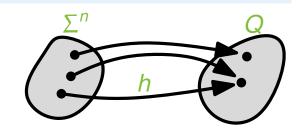
Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass $\delta(q_0, x \mid u) = \delta(q_0, y \mid v)$

Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass

$$\delta(q_0, \mathbf{x} \mathbf{1} \mathbf{u}) = \delta(q_0, \mathbf{y} \mathbf{0} \mathbf{v})$$

Beweis: Sei $h: \Sigma^n \to Q$ sodass $h(z) = \delta(q_0, z)$

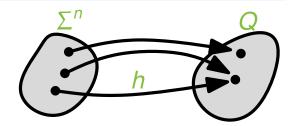
→ h ist nicht injektiv, da $|Q| < 2^n$



Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass $\delta(q_0, x \mid u) = \delta(q_0, y \mid 0 \mid v)$

Beweis: Sei $h: \Sigma^n \to Q$ sodass $h(z) = \delta(q_0, z)$

 \rightarrow h ist nicht injektiv, da $|Q| < 2^n$

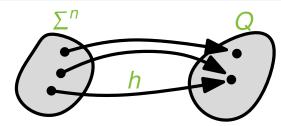


 \exists Sequenzen $\sigma_1 = a_1 \dots a_n$ und $\sigma_2 = b_1 \dots b_n$ mit $\sigma_1 \neq \sigma_2$ und $h(\sigma_1) = h(\sigma_2)$

Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass $\delta(q_0, x \mid u) = \delta(q_0, y \mid 0 \mid v)$

Beweis: Sei $h: \Sigma^n \to Q$ sodass $h(z) = \delta(q_0, z)$

→ h ist nicht injektiv, da $|Q| < 2^n$



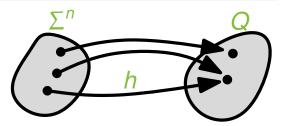
 \exists Sequenzen $\sigma_1 = a_1 \dots a_n$ und $\sigma_2 = b_1 \dots b_n$ mit $\sigma_1 \neq \sigma_2$ und $h(\sigma_1) = h(\sigma_2)$

Sei
$$x=a_1 \ldots a_{i-1}$$
 $u=a_{i+1} \ldots a_n 0^{i-1}$ $y=b_1 \ldots b_{i-1}$ $v=b_{i+1} \ldots b_n 0^{i-1}$

Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass $\delta(q_0, x \mid u) = \delta(q_0, y \mid 0 \mid v)$

Beweis: Sei $h: \Sigma^n \to Q$ sodass $h(z) = \delta(q_0, z)$

→ h ist nicht injektiv, da $|Q| < 2^n$



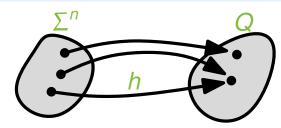
 \exists Sequenzen $\sigma_1 = a_1 \dots a_n$ und $\sigma_2 = b_1 \dots b_n$ mit $\sigma_1 \neq \sigma_2$ und $h(\sigma_1) = h(\sigma_2)$

Sei
$$x=a_1 \dots a_{i-1}$$
 $u=a_{i+1} \dots a_n 0^{i-1}$ $y=b_1 \dots b_{i-1}$ $v=b_{i+1} \dots b_n 0^{i-1}$ $\delta(q_0, x \mid u) = \delta(q_0, a_1 \dots a_{i-1} \mid a_{i+1} \dots a_n 0^{i-1})$

Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass $\delta(q_0, x \mid u) = \delta(q_0, y \mid 0 \mid v)$

Beweis: Sei $h: \Sigma^n \to Q$ sodass $h(z) = \delta(q_0, z)$

→ h ist nicht injektiv, da $|Q| < 2^n$



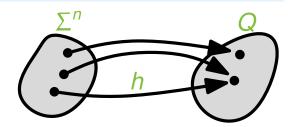
 \exists Sequenzen $\sigma_1 = a_1 \dots a_n$ und $\sigma_2 = b_1 \dots b_n$ mit $\sigma_1 \neq \sigma_2$ und $h(\sigma_1) = h(\sigma_2)$

Sei
$$x=a_1 \dots a_{i-1}$$
 $u=a_{i+1} \dots a_n 0^{i-1}$ $y=b_1 \dots b_{i-1}$ $v=b_{i+1} \dots b_n 0^{i-1}$ $\delta(q_0, x \mid u) = \delta(q_0, a_1 \dots a_{i-1} \mid a_{i+1} \dots a_n 0^{i-1})$ $= \delta(\delta(q_0, a_1 \dots a_{i-1} \mid a_{i+1} \dots a_n), 0^{i-1})$

Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass $\delta(q_0, x \mid u) = \delta(q_0, y \mid 0 \mid v)$

Beweis: Sei $h: \Sigma^n \to Q$ sodass $h(z) = \delta(q_0, z)$

 \rightarrow h ist nicht injektiv, da $|Q| < 2^n$



 \exists Sequenzen $\sigma_1 = a_1 \dots a_n$ und $\sigma_2 = b_1 \dots b_n$ mit $\sigma_1 \neq \sigma_2$ und $h(\sigma_1) = h(\sigma_2)$

Sei
$$x=a_1 a_{i-1} u = a_{i+1} a_n 0^{i-1} y = b_1 b_{i-1} v = b_{i+1} b_n 0^{i-1}$$

$$\delta(q_0, x 1 u) = \delta(q_0, a_1 a_{i-1} 1 a_{i+1} a_n 0^{i-1})$$

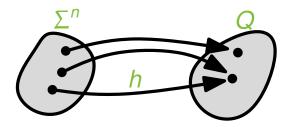
$$= \delta(\delta(q_0, a_1 a_{i-1} 1 a_{i+1} a_n), 0^{i-1})$$

$$= \delta(\delta(q_0, b_1 b_{i-1} 0 b_{i+1} b_n), 0^{i-1})$$

Lemma: Wenn $Q < 2^n$, dann gibt es $x, y \in \Sigma^*$ und $u, v \in \Sigma^{n-1}$, sodass $\delta(q_0, x \mid u) = \delta(q_0, y \mid 0 \mid v)$

Beweis: Sei $h: \Sigma^n \to Q$ sodass $h(z) = \delta(q_0, z)$

 \rightarrow h ist nicht injektiv, da $|Q| < 2^n$



 \exists Sequenzen $\sigma_1 = a_1 \dots a_n$ und $\sigma_2 = b_1 \dots b_n$ mit $\sigma_1 \neq \sigma_2$ und $h(\sigma_1) = h(\sigma_2)$

Sei
$$x=a_1 ... a_{i-1} u = a_{i+1} ... a_n 0^{i-1} y = b_1 ... b_{i-1} v = b_{i+1} ... b_n 0^{i-1}$$

$$\delta(q_0, x 1 u) = \delta(q_0, a_1 ... a_{i-1} 1 a_{i+1} ... a_n 0^{i-1})$$

$$= \delta(\delta(q_0, a_1 ... a_{i-1} 1 a_{i+1} ... a_n), 0^{i-1})$$

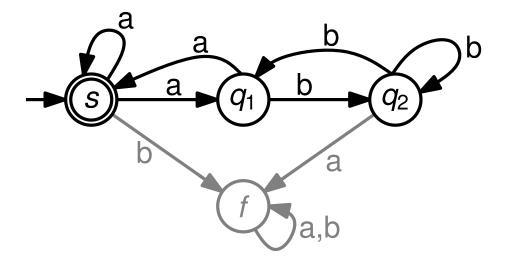
$$= \delta(\delta(q_0, b_1 ... b_{i-1} 0 b_{i+1} ... b_n), 0^{i-1})$$

$$= \delta(q_0, b_1 ... b_{i-1} 0 b_{i+1} ... b_n 0^{i-1}) = \delta(q_0, y 0 v)$$

Jeder NEA kann in einen DEA überführt werden.

Zustand	Übergang	
	а	b

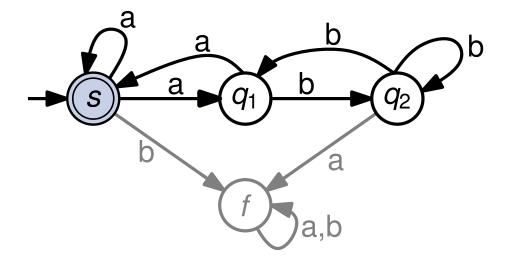
$$L = (a \cup (ab(b)^*ba))^*$$



Jeder NEA kann in einen DEA überführt werden.

Zustand	Übergang	
	а	b
{s}		

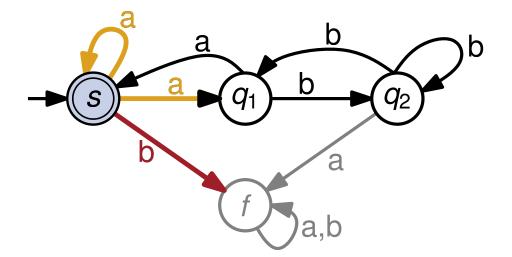
$$L = (a \cup (ab(b)^*ba))^*$$



Jeder NEA kann in einen DEA überführt werden.

Zustand	Übergang	
	a	b
{s}	$\{s,q_1\}$	{ <i>f</i> }
$\{s,q_1\}$		
$\{f\}$		

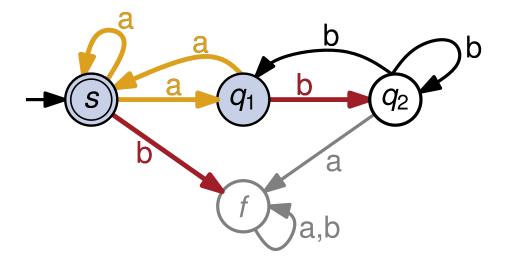
$$L = (a \cup (ab(b)^*ba))^*$$



Jeder NEA kann in einen DEA überführt werden.

Zustand	Übergang	
	а	b
{s }	$\{s,q_1\}$	{ <i>f</i> }
$\{s,q_1\}$	$\{s,q_1\}$	$\{f,q_2\}$
$\{f\}$		
$\{f,q_2\}$		

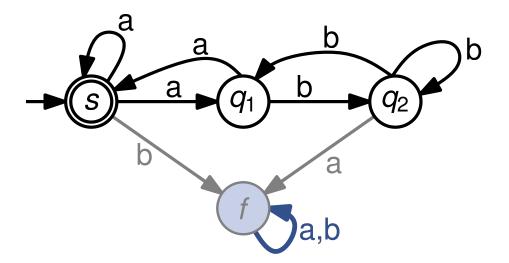
$$L = (a \cup (ab(b)^*ba))^*$$



Jeder NEA kann in einen DEA überführt werden.

Zustand	Übergang	
	a	b
s }	$\{s,q_1\}$	{ <i>f</i> }
$\{s,q_1\}$	$\{s,q_1\}$	$\{f,q_2\}$
{ <i>f</i> }	$\{f\}$	{ <i>f</i> }
$\{f,q_2\}$		

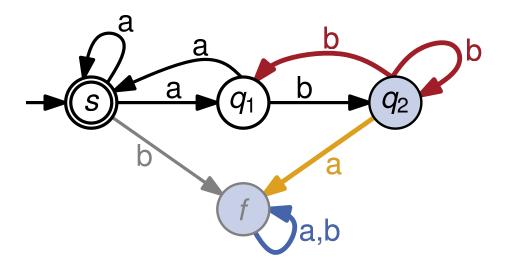
$$L = (a \cup (ab(b)^*ba))^*$$



Jeder NEA kann in einen DEA überführt werden.

Zustand	Übergang	
	a	b
{s}	$\{s,q_1\}$	{ <i>f</i> }
$\{s,q_1\}$	$\{s,q_1\}$	$\{f,q_2\}$
{ <i>f</i> }	$\{f\}$	$\{f\}$
$\{f,q_2\}$	$\{f\}$	$\{f,q_1,q_2\}$
$\{f,q_1,q_2\}$		

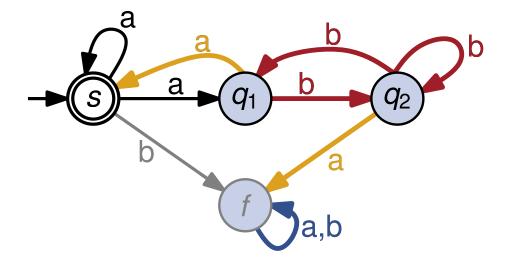
$$L = (a \cup (ab(b)^*ba))^*$$



Jeder NEA kann in einen DEA überführt werden.

Zustand	Übergang		
	a	b	
{s}	$\{s,q_1\}$	{ <i>f</i> }	
$\{s,q_1\}$	$\{s,q_1\}$	$\{f,q_2\}$	
{ <i>f</i> }	$\{f\}$	{ <i>f</i> }	
$\{f,q_2\}$	$\{f\}$	$\{f,q_1,q_2\}$	
$\{f,q_1,q_2\}$	$\{f,s\}$	$\{f,q_1,q_2\}$	
$\{f,s\}$			

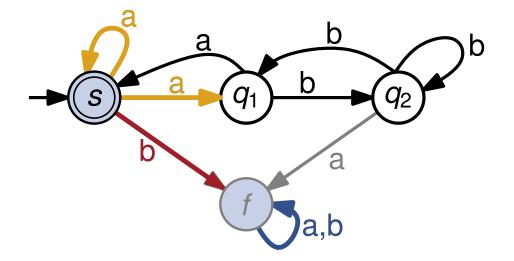
$$L = (a \cup (ab(b)^*ba))^*$$



Jeder NEA kann in einen DEA überführt werden.

Zustand	Übergang	
	a	b
{s}	$\{s,q_1\}$	{ <i>f</i> }
$\{s,q_1\}$	$\{s,q_1\}$	$\{f,q_2\}$
$\{f\}$	$\{f\}$	{ <i>f</i> }
$\{f,q_2\}$	$\{f\}$	$\{f,q_1,q_2\}$
$\{f,q_1,q_2\}$	$\{f,s\}$	$\{f,q_1,q_2\}$
$\{f,s\}$	$\{f,s,q_1\}$	$\{f\}$
$\{f, s, q_1\}$		

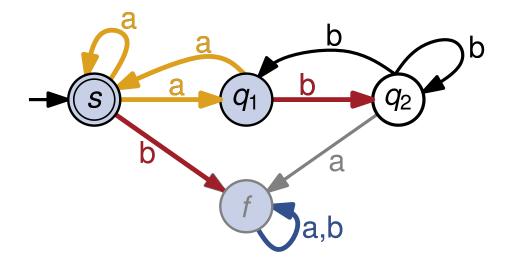
$$L = (a \cup (ab(b)^*ba))^*$$



Jeder NEA kann in einen DEA überführt werden.

Zustand	Überga	ang
	a	b
[s]	$\{s,q_1\}$	{ <i>f</i> }
$\{s,q_1\}$	$\{s,q_1\}$	$\{f,q_2\}$
$\{f\}$	$\{f\}$	{ <i>f</i> }
$\{f,q_2\}$	$\{f\}$	$\left\{f,q_1,q_2\right\}$
$\{f,q_1,q_2\}$	$\{f,s\}$	$\left\{f,q_1,q_2\right\}$
$\{f,s\}$	$\{f,s,q_1\}$	{ <i>f</i> }
$\{f, s, q_1\}$	$\{f,s,q_1\}$	$\{f,q_2\}$

$$L = (a \cup (ab(b)^*ba))^*$$



Jeder NEA kann in einen DEA überführt werden.

Zustand	Überga	ang	$L = (a \cup (ab(b)^*ba))^*$
	а	b	
{ <u>s</u> }	$\{s,q_1\}$	<i>{f}</i>	Endzustände: Alle Zustände, die End-
$\{\underline{s},q_1\}$	$\{s,q_1\}$	$\{f,q_2\}$	zustand aus NEA enthalten.
{ <i>f</i> }	$\{f\}$	{ <i>f</i> }	_a
$\{f,q_2\}$	$\{f\}$	$\left\{f,q_1,q_2\right\}$	<u> </u>
$\{f,q_1,q_2\}$	$\{f,s\}$	$\left\{f,q_1,q_2\right\}$	$ \Rightarrow $
$\{f, \underline{s}\}$ $\{f, \underline{s}, q_1\}$	$\{f,s,q_1\}$	{ <i>f</i> }	b
$\{f, s, q_1\}$	$\{f, s, q_1\}$	$\{f,q_2\}$	f

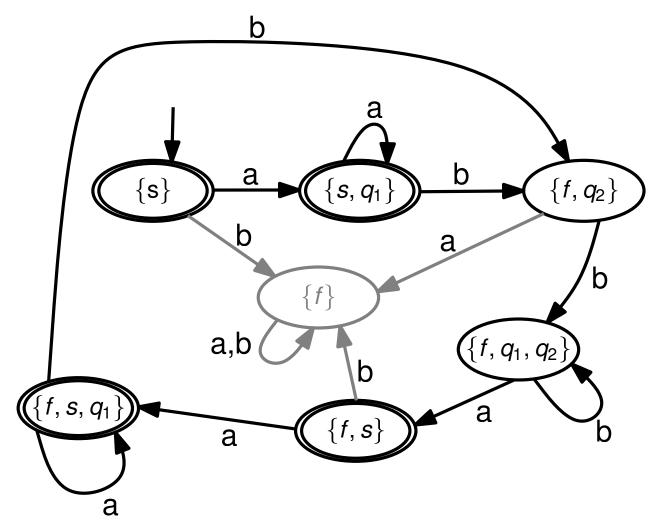
Zustand	Übergang		
	а	b	
{s}	$\{s,q_1\}$	{ <i>f</i> }	
$\{s,q_1\}$	$\{s,q_1\}$	$\{f,q_2\}$	
$\{f\}$	{ <i>f</i> }	{ <i>f</i> }	
$\{f,q_2\}$	{ <i>f</i> }	$\left\{f,q_1,q_2\right\}$	
$\{f,q_1,q_2\}$	$\{f,s\}$	$\left\{f,q_1,q_2\right\}$	
$\{f,s\}$	$\{f,s,q_1\}$	{ <i>f</i> }	
$\{f, s, q_1\}$	$\{f,s,q_1\}$	$\{f,q_2\}$	

$$L = (a \cup (ab(b)^*ba))^*$$

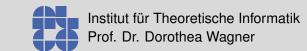
q_2
92)
9 2

$$L = (a \cup (ab(b)^*ba))^*$$

Zustand	Überg	ang
	а	b
{s}	$\{s,q_1\}$	{ <i>f</i> }
$\{s,q_1\}$	$\{s,q_1\}$	$\{f,q_2\}$
$\{f\}$	{ <i>f</i> }	{ <i>f</i> }
$\{f,q_2\}$	{ <i>f</i> }	$\left\{f,q_1,q_2\right\}$
$\{f,q_1,q_2\}$	$\{f,s\}$	$\left\{f,q_1,q_2\right\}$
$\{f,s\}$	$\{f,s,q_1\}$	{ <i>f</i> }
$\{f, s, q_1\}$	$\{f,s,q_1\}$	$\{f,q_2\}$



$$L = (a \cup (ab(b)^*ba))^*$$



ε -Abschluss

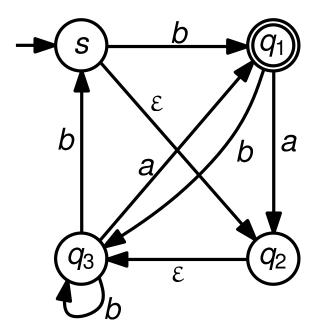
Jeder NEA kann in einen äquivalenten NEA ohne ϵ -Übergänge überführt werden, ohne die Anzahl Zustände zu erhöhen.

Verfahren: ε -Abschlüsse berechnen.

 ε -Abschluss

	a	b
S		
q_1		
9 2 9 3		
q_3		

Idee: Finde via " $\varepsilon^* x \varepsilon^*$ " erreichbare Zustände



Jeder NEA kann in einen äquivalenten NEA ohne ϵ -Übergänge überführt werden, ohne die Anzahl Zustände zu erhöhen.

Verfahren: ε -Abschlüsse berechnen.

ε-Abschluss

	a	b
S	q_1	
q_1		
q 2		
q ₃		

Idee: Finde via " $\varepsilon^* x \varepsilon^*$ " erreichbare Zustände



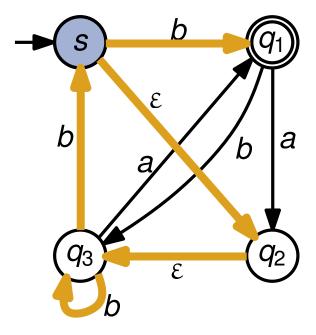
Jeder NEA kann in einen äquivalenten NEA ohne ϵ -Übergänge überführt werden, ohne die Anzahl Zustände zu erhöhen.

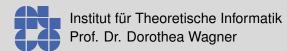
Verfahren: ε -Abschlüsse berechnen.

ε -Abschluss

	a	b
S	q_1	$ s, q_1, q_2, q_3 $
q_1		
q_2		
q_3		

Idee: Finde via " $\varepsilon^* x \varepsilon^*$ " erreichbare Zustände





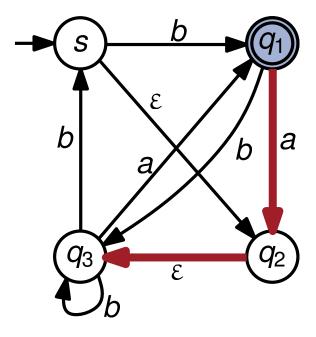
Jeder NEA kann in einen äquivalenten NEA ohne ϵ -Übergänge überführt werden, ohne die Anzahl Zustände zu erhöhen.

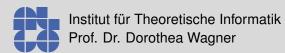
Verfahren: ε -Abschlüsse berechnen.

ε -Abschluss

	a	b
S	q_1	$\left s,q_1,q_2,q_3\right $
q_1	q_2, q_3	
<i>q</i> ₂		
q_3		

Idee: Finde via " $\varepsilon^* x \varepsilon^*$ " erreichbare Zustände





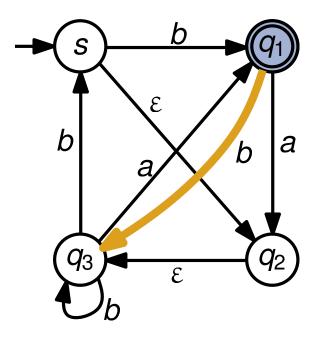
Jeder NEA kann in einen äquivalenten NEA ohne ϵ -Übergänge überführt werden, ohne die Anzahl Zustände zu erhöhen.

Verfahren: ε -Abschlüsse berechnen.

ε -Abschluss

	а	b
S	q_1	$\left s,q_1,q_2,q_3\right $
q_1	q_2, q_3	, q 3
q_2		
q_3		

Idee: Finde via " $\varepsilon^* x \varepsilon^*$ " erreichbare Zustände



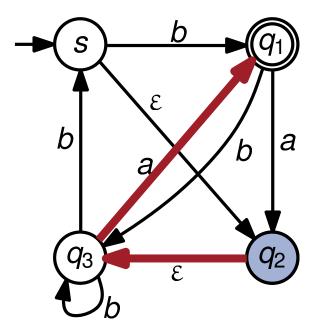
Jeder NEA kann in einen äquivalenten NEA ohne ϵ -Übergänge überführt werden, ohne die Anzahl Zustände zu erhöhen.

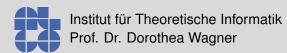
Verfahren: ε -Abschlüsse berechnen.

ε -Abschluss

	a	b
S	q_1	$\left s,q_1,q_2,q_3\right $
q_1	q_2, q_3	, q 3
q_2	q_1	
q ₃		

Idee: Finde via " $\varepsilon^* x \varepsilon^*$ " erreichbare Zustände





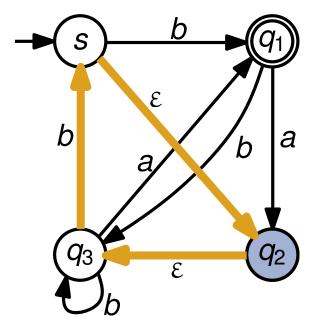
Jeder NEA kann in einen äquivalenten NEA ohne ϵ -Übergänge überführt werden, ohne die Anzahl Zustände zu erhöhen.

Verfahren: ε -Abschlüsse berechnen.

ε -Abschluss

	а	b
S	q_1	s, q_1, q_2, q_3
q_1	q_2, q_3	, q 3
q_2	q_1	$\left s \right , q_2, q_3 \right $
q ₃		

Idee: Finde via " $\varepsilon^* x \varepsilon^*$ " erreichbare Zustände



ε -Abschluss

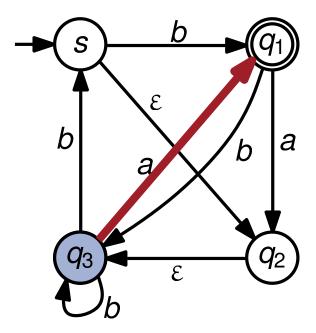
Jeder NEA kann in einen äquivalenten NEA ohne ϵ -Übergänge überführt werden, ohne die Anzahl Zustände zu erhöhen.

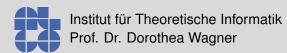
Verfahren: ε -Abschlüsse berechnen.

ε -Abschluss

	а	b
S	q_1	s, q_1, q_2, q_3
q_1	q_2, q_3	, q ₃
q_2	<i>9</i> ₁	s , q_2 , q_3
q_3	q_1	

Idee: Finde via " $\varepsilon^* x \varepsilon^*$ " erreichbare Zustände





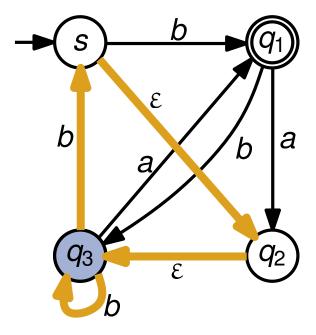
Jeder NEA kann in einen äquivalenten NEA ohne ϵ -Übergänge überführt werden, ohne die Anzahl Zustände zu erhöhen.

Verfahren: ε -Abschlüsse berechnen.

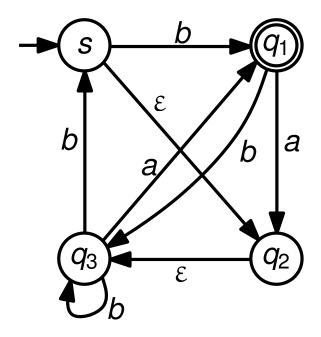
ε -Abschluss

	а	b
S	q_1	s, q_1, q_2, q_3
q_1	q_2, q_3	, q ₃
q_2	<i>9</i> ₁	s , q_2 , q_3
q ₃	q_1	$ s $, q_2 , q_3

Idee: Finde via " $\varepsilon^* x \varepsilon^*$ " erreichbare Zustände



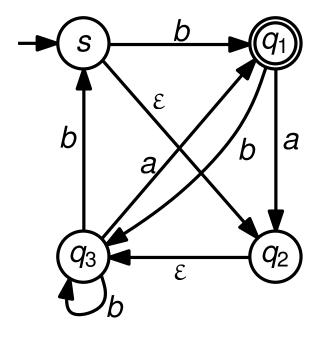
ε -Abschluss



ε -Abschluss

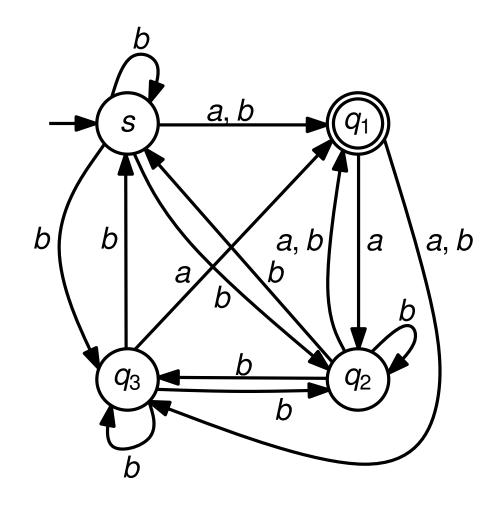
	a	b
S	q_1	s, q_1, q_2, q_3
q_1	q_2, q_3	q ₃
q_2	<i>9</i> ₁	s , q_2 , q_3
q_3	q_1	s , q_2 , q_3

ε -Abschluss



ε -Abschluss

	а	b
S	q_1	s, q_1, q_2, q_3
q_1	q_2, q_3	q_3
q_2	<i>9</i> ₁	s , q_2 , q_3
q_3	q_1	$ s, q_2, q_3 $



Kontextfreie Grammatik: $G = (\Sigma, V, S, R)$

Alphabet: Σ (Terminalalphabet), endlich

 $\Sigma = \{a, b\}$

Variablen: V (Nichtterminale), $V \cap \Sigma = \emptyset$, endlich

 $V = \{A, S\}$

Startsymbol: $S \in V$

Ableitungsregeln: $R \subset V \times (\Sigma \cup V)^*$

 $S \rightarrow aSb \mid A, A \rightarrow aA \mid a$

Kontextfreie Grammatik: $G = (\Sigma, V, S, R)$

Alphabet: Σ (Terminalalphabet), endlich

 $\Sigma = \{a, b\}$

Variablen: V (Nichtterminale), $V \cap \Sigma = \emptyset$, endlich

 $V = \{A, S\}$

Startsymbol: $S \in V$

Ableitungsregeln: $R \subset V \times (\Sigma \cup V)^*$

 $S \rightarrow aSb \mid A, A \rightarrow aA \mid a$

$$G = (\Sigma = \{a, b\}, V = \{S\}, S, R)$$

$$R = S \rightarrow aSb \mid ab$$

$$L(G) = \{a^{i}b^{i} \mid i \in \mathbb{N}\}$$

$$G = (\Sigma = \{a, b\}, V = \{S\}, S, R)$$

$$R = S \rightarrow aSb \mid ab$$

$$L(G) = \{a^{i}b^{i} \mid i \in \mathbb{N}\}$$

Ist L(G) regulär?

$$G = (\Sigma = \{a, b\}, V = \{S\}, S, R)$$

$$R = S \rightarrow aSb \mid ab$$

$$L(G) = \{a^{i}b^{i} \mid i \in \mathbb{N}\}$$

Ist L(G) regulär?

$$G = (\Sigma = \{a, b\}, V = \{S\}, S, R)$$

$$R = S \rightarrow aSb \mid ab$$

$$L(G) = \{a^{i}b^{i} \mid i \in \mathbb{N}\}$$

Ist L(G) regulär?

Problem: Informal: DEA / NEA können nicht zählen

$$G = (\Sigma = \{a, b\}, V = \{S\}, S, R)$$

$$R = S \rightarrow aSb \mid ab$$

$$L(G) = \{a^{i}b^{i} \mid i \in \mathbb{N}\}$$

lst L(G) regulär?

Problem: Informal: DEA / NEA können nicht zählen

Formales Hilfsmittel in der nächsten Vorlesung

