Algorithmen zur Visualisierung von Graphen Übung 6: Knickminimierung und orthogonales Zeichnen

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Tamara Mchedlidze · **Benjamin Niedermann** 24.01.2017

Benjamin Niedermann · Algorithmen zur Visualisierung von Graphen

Aufgabe 1 – Fürchterlich viele Knicke

Konstruieren Sie eine Familie von eingebetteten planaren Graphen mit Maximalgrad 4 und mit $\mathcal{O}(n)$ Knoten, für die es in jeder knickminimalen einbettungserhaltenden orthogonalen Zeichnung eine Kante mit $\Omega(n)$ Knicken gibt.

Aufgabe 1 – Fürchterlich viele Knicke

Konstruieren Sie eine Familie von eingebetteten planaren Graphen mit Maximalgrad 4 und mit $\mathcal{O}(n)$ Knoten, für die es in jeder knickminimalen einbettungserhaltenden orthogonalen Zeichnung eine Kante mit $\Omega(n)$ Knicken gibt.

Sei G ein triangulierter planarer Graph. Ein Schnyder Realizer partitioniert die internen Kanten in drei Mengen T_1 , T_2 , T_3 von gerichteten Kanten, so dass

- jeder innere Knoten v hat genau eine Kante in jedem T_i^{out}
- die Ordnung der Kanten um jeden Knoten v im GUZS ist T_1^{in} , T_3^{out} , T_2^{in} , T_1^{out} , T_3^{out} , T_2^{out}

4

Satz: Jede Menge T_i (i = 1, 2, 3) ist ein Spannbaum aller inneren Knoten und eines äußeren Knotens. Jeder triangulierte Graph besitzt einen Schnyder Realizer und dieser kann in O(n) Zeit berechnet werden.

4

4

Die kanonische Ordnung der Knoten eines triangulierten planaren Graphen G mit den drei äußeren Knoten u, v, w im GUZS ist eine Ordnung $v_1 = u, v_2 = v, v_3, \ldots, v_n = w$, so dass für jedes $i \ (4 \le i \le n)$ gilt:

- Graph $G_{i-1} \subseteq G$ induziert durch v_1, \ldots, v_{i-1} ist 2-fach zshgd. und äußere Facette ist begrenzt durch Kreis C_{i-1} , der v_1v_2 enthält
- Knoten v_i liegt in der äußeren Facette von G_{i-1} und seine Nachbarn in G_{i-1} bilden zusammenhängendes Intervall im Pfad $C_{i-1} \setminus v_1 v_2$

- Graph $G_{i-1} \subseteq G$ induziert durch v_1, \ldots, v_{i-1} ist 2-fach zshgd. und äußere Facette ist begrenzt durch Kreis C_{i-1} , der v_1v_2 enthält
- Knoten v_i liegt in der äußeren Facette von G_{i-1} und seine Nachbarn in G_{i-1} bilden zusammenhängendes Intervall im Pfad $C_{i-1} \setminus v_1 v_2$

5

- Graph $G_{i-1} \subseteq G$ induziert durch v_1, \ldots, v_{i-1} ist 2-fach zshgd. und äußere Facette ist begrenzt durch Kreis C_{i-1} , der v_1v_2 enthält
- Knoten v_i liegt in der äußeren Facette von G_{i-1} und seine Nachbarn in G_{i-1} bilden zusammenhängendes Intervall im Pfad $C_{i-1} \setminus v_1 v_2$

5

- Graph $G_{i-1} \subseteq G$ induziert durch v_1, \ldots, v_{i-1} ist 2-fach zshgd. und äußere Facette ist begrenzt durch Kreis C_{i-1} , der v_1v_2 enthält
- Knoten v_i liegt in der äußeren Facette von G_{i-1} und seine Nachbarn in G_{i-1} bilden zusammenhängendes Intervall im Pfad $C_{i-1} \setminus v_1 v_2$

5

- Graph $G_{i-1} \subseteq G$ induziert durch v_1, \ldots, v_{i-1} ist 2-fach zshgd. und äußere Facette ist begrenzt durch Kreis C_{i-1} , der v_1v_2 enthält
- Knoten v_i liegt in der äußeren Facette von G_{i-1} und seine Nachbarn in G_{i-1} bilden zusammenhängendes Intervall im Pfad $C_{i-1} \setminus v_1 v_2$

5

- Graph $G_{i-1} \subseteq G$ induziert durch v_1, \ldots, v_{i-1} ist 2-fach zshgd. und äußere Facette ist begrenzt durch Kreis C_{i-1} , der v_1v_2 enthält
- Knoten v_i liegt in der äußeren Facette von G_{i-1} und seine Nachbarn in G_{i-1} bilden zusammenhängendes Intervall im Pfad $C_{i-1} \setminus v_1 v_2$

5

- Graph $G_{i-1} \subseteq G$ induziert durch v_1, \ldots, v_{i-1} ist 2-fach zshgd. und äußere Facette ist begrenzt durch Kreis C_{i-1} , der v_1v_2 enthält
- Knoten v_i liegt in der äußeren Facette von G_{i-1} und seine Nachbarn in G_{i-1} bilden zusammenhängendes Intervall im Pfad $C_{i-1} \setminus v_1 v_2$

5

- Graph $G_{i-1} \subseteq G$ induziert durch v_1, \ldots, v_{i-1} ist 2-fach zshgd. und äußere Facette ist begrenzt durch Kreis C_{i-1} , der v_1v_2 enthält
- Knoten v_i liegt in der äußeren Facette von G_{i-1} und seine Nachbarn in G_{i-1} bilden zusammenhängendes Intervall im Pfad $C_{i-1} \setminus v_1 v_2$

5

Die kanonische Ordnung der Knoten eines triangulierten planaren Graphen G mit den drei äußeren Knoten u, v, w im GUZS ist eine Ordnung $v_1 = u, v_2 = v, v_3, \ldots, v_n = w$, so dass für jedes $i \ (4 \le i \le n)$ gilt:

- Graph $G_{i-1} \subseteq G$ induziert durch v_1, \ldots, v_{i-1} ist 2-fach zshgd. und äußere Facette ist begrenzt durch Kreis C_{i-1} , der v_1v_2 enthält
- Knoten v_i liegt in der äußeren Facette von G_{i-1} und seine Nachbarn in G_{i-1} bilden zusammenhängendes Intervall im Pfad $C_{i-1} \setminus v_1 v_2$

Satz: Jeder triangulierte Graph Gbesitzt eine kanonische Ordnung; sie kann in O(n)Zeit berechnet werden.

 \rightarrow mehr dazu in der VL Algorithmen zur Visualisierung von Graphen

Kanonische Ordnung & Schnyder Realizer

Eine kanonische Ordnung der Knoten von G definiert einen Schnyder Realizer von G, indem jedem Knoten v_i drei ausgehende Kanten zum ersten und letzten Knoten in C_{i-1} und zum Nachfolger mit höchstem Index zugeordnet werden.

Kanonische Ordnung & Schnyder Realizer

- Eine kanonische Ordnung der Knoten von G definiert einen Schnyder Realizer von G, indem jedem Knoten v_i drei ausgehende Kanten zum ersten und letzten Knoten in C_{i-1} und zum Nachfolger mit höchstem Index zugeordnet werden.
- Ein Schnyder Realizer mit Bäumen T_1, T_2, T_3 definiert eine kanonische Ordnung als topologische Ordnung des azyklischen Graphen $T_1 \cup T_2^{-1} \cup T_3^{-1}$. $(T^{-1}: invertiere Kantenrichtungen von T)$

 T_3

8-seitige rektilineare Kartogramme [Alam et al. '11]

Algorithmus hat drei Phasen:

- erzeuge T-Kontaktrepräsentation
- wandle jedes T in T-förmiges Polygon um
- weise verbleibende Löcher den T-Polygonen zu

8-seitige rektilineare Kartogramme [Alam et al. '11]

Algorithmus hat drei Phasen:

- erzeuge T-Kontaktrepräsentation
- wandle jedes T in T-förmiges Polygon um
- weise verbleibende Löcher den T-Polygonen zu

	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	-	-	_	_	-	-	-	10
		_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_	-	_	_	9
	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	8
	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	7
		_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_		_	_	_	_	6
		_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	5
		_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	4
		_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_	3
	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	2
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1

betrachte Knoten in kanonischer Ordnung und zug. Schnyder Realizer
Φ_i(k) sei Vater in T_i des Knotens v_k

- betrachte Knoten in kanonischer Ordnung und zug. Schnyder Realizer
- $\Phi_i(k)$ sei Vater in T_i des Knotens v_k
- setze T's für v_1 und v_2 auf y = 1 und y = 2

- betrachte Knoten in kanonischer Ordnung und zug. Schnyder Realizer
- $\Phi_i(k)$ sei Vater in T_i des Knotens v_k
- setze T's für v_1 und v_2 auf y = 1 und y = 2
- setze h_i auf y = i mit linker und rechter Position von $\Phi_1(i)$ und $\Phi_2(i)$ und b_i von y = i bis zum Index von $\Phi_3(i)$

- betrachte Knoten in kanonischer Ordnung und zug. Schnyder Realizer
- $\Phi_i(k)$ sei Vater in T_i des Knotens v_k
- setze T's für v_1 und v_2 auf y = 1 und y = 2
- setze h_i auf y = i mit linker und rechter Position von $\Phi_1(i)$ und $\Phi_2(i)$ und b_i von y = i bis zum Index von $\Phi_3(i)$

- betrachte Knoten in kanonischer Ordnung und zug. Schnyder Realizer
- $\Phi_i(k)$ sei Vater in T_i des Knotens v_k
- setze T's für v_1 und v_2 auf y = 1 und y = 2
- setze h_i auf y = i mit linker und rechter Position von $\Phi_1(i)$ und $\Phi_2(i)$ und b_i von y = i bis zum Index von $\Phi_3(i)$

- betrachte Knoten in kanonischer Ordnung und zug. Schnyder Realizer
- $\Phi_i(k)$ sei Vater in T_i des Knotens v_k
- setze T's für v_1 und v_2 auf y = 1 und y = 2
- setze h_i auf y = i mit linker und rechter Position von $\Phi_1(i)$ und $\Phi_2(i)$ und b_i von y = i bis zum Index von $\Phi_3(i)$

- betrachte Knoten in kanonischer Ordnung und zug. Schnyder Realizer
- $\Phi_i(k)$ sei Vater in T_i des Knotens v_k
- setze T's für v_1 und v_2 auf y = 1 und y = 2
- setze h_i auf y = i mit linker und rechter Position von $\Phi_1(i)$ und $\Phi_2(i)$ und b_i von y = i bis zum Index von $\Phi_3(i)$

- betrachte Knoten in kanonischer Ordnung und zug. Schnyder Realizer
- $\Phi_i(k)$ sei Vater in T_i des Knotens v_k
- setze T's für v_1 und v_2 auf y = 1 und y = 2
- setze h_i auf y = i mit linker und rechter Position von $\Phi_1(i)$ und $\Phi_2(i)$ und b_i von y = i bis zum Index von $\Phi_3(i)$

- betrachte Knoten in kanonischer Ordnung und zug. Schnyder Realizer
- $\Phi_i(k)$ sei Vater in T_i des Knotens v_k
- setze T's für v_1 und v_2 auf y = 1 und y = 2
- setze h_i auf y = i mit linker und rechter Position von $\Phi_1(i)$ und $\Phi_2(i)$ und b_i von y = i bis zum Index von $\Phi_3(i)$

Phase 2: λ -Verdickung

Ersetze jedes T durch ein T-förmiges Polygon mit Dicke λ für $0 < \lambda < 1/2$

setze Rahmen um die T-Polygone

- setze Rahmen um die T-Polygone
- jedes (innere) Loch stammt von Dreiecks-Facette
- weise Löcher den eindeutigen konkaven Ecken zu

- setze Rahmen um die T-Polygone
- jedes (innere) Loch stammt von Dreiecks-Facette
- weise Löcher den eindeutigen konkaven Ecken zu
- es entsteht ein rektilineares Dual mit maximal 8-seitigen Polygonen
Benjamin Niedermann · Algorithmen zur Visualisierung von Graphen

2 Benjamin Niedermann · Algorithmen zur Visualisierung von Graphen

Three-step approach: Topology – Shape – Metrics

[Tamassia SIAM J. Comput. 1987]

 $V = \{v_1, v_2, v_3, v_4\}$ $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$

Three-step approach: Topology – Shape – Metrics

[Tamassia SIAM J. Comput. 1987]

Three-step approach: Topology – Shape – Metrics [Tamassia SIAM J. Comput. 1987]

 $V = \{v_1, v_2, v_3, v_4\}$ $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$ combinatorial Reduce Crossings embedding/ planarization 4 Bend Minimization orthogonal representation 2

Three-step approach: *Topology – Shape – Metrics*

[Tamassia SIAM J. Comput. 1987]

Three-step approach: *Topology – Shape – Metrics*

[Tamassia SIAM J. Comput. 1987]

Combinatorial Bend Minimization

Problem Combinatorial Bend Minimization

Given: Graph G = (V, E) with maximum degree 4

• combinatorial embeddubg \mathcal{F} and outer face f_0

Find: **orthogonal representation** H(G) with minimum number of bends

Combinatorial Bend Minimization

Problem Combinatorial Bend Minimization

Given: Graph G = (V, E) with maximum degree 4

• combinatorial embeddubg ${\cal F}$ and outer face f_0

Find: **orthogonal representation** H(G) with minimum number of bends

Idea: formulate as a network flow problem

- a unit of flow represents an angle $\pi/2$
- flow from vertices to faces represents the angles at the vertices
- flow between adjacent faces represent the bends at the edges

Flow Network $N(G) = ((V \cup \mathcal{F}, A); \ell; c; b; cost)$

• $A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to} f\} \cup \{(f, g) \in \mathcal{F} \times \mathcal{F} \mid f, g \text{ adjacent through edge } e\}$

Flow Network $N(G) = ((V \cup \mathcal{F}, A); \ell; c; b; cost)$

• $A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to} f\} \cup \{(f, g) \in \mathcal{F} \times \mathcal{F} \mid f, g \text{ adjacent through edge } e\}$

• $b(v) = 4 \quad \forall v \in V$

Flow Network $N(G) = ((V \cup \mathcal{F}, A); \ell; c; b; \text{cost})$

- $A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to} f\} \cup \{(f, g) \in \mathcal{F} \times \mathcal{F} \mid f, g \text{ adjacent through edge } e\}$
- $b(v) = 4 \quad \forall v \in V$

•
$$b(f) = -2(d_G(f) - 2) \quad \forall f \in \mathcal{F} \setminus \{f_0\}$$

• $b(f_0) = -2(d_G(f_0) + 2)$

Flow Network $N(G) = ((V \cup \mathcal{F}, A); \ell; c; b; cost)$

• $A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to } f\} \cup \{(f, g) \in \mathcal{F} \times \mathcal{F} \mid f, g \text{ adjacent through edge } e\}$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2(d_G(f) - 2) \quad \forall f \in \mathcal{F} \setminus \{f_0\}$$

$$b(f_0) = -2(d_G(f_0) + 2) \quad \forall f \in \mathcal{F} \setminus \{f_0\}$$

Flow Network $N(G) = ((V \cup \mathcal{F}, A); \ell; c; b; cost)$

• $A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to} f\} \cup \{(f, g) \in \mathcal{F} \times \mathcal{F} \mid f, g \text{ adjacent through edge } e\}$

•
$$b(v) = 4 \quad \forall v \in V$$

• $b(f) = -2(d_G(f) - 2) \quad \forall f \in \mathcal{F} \setminus \{f_0\}$
• $b(f_0) = -2(d_G(f_0) + 2) \quad \forall f \in \mathcal{F} \setminus \{f_0\}$
(Euler)

Flow Network $N(G) = ((V \cup \mathcal{F}, A); \ell; c; b; cost)$

• $A = \{(v, f) \in V \times \mathcal{F} \mid v \text{ incident to} f\} \cup \{(f, g) \in \mathcal{F} \times \mathcal{F} \mid f, g \text{ adjacent through edge } e\}$

•
$$b(v) = 4 \quad \forall v \in V$$

• $b(f) = -2(d_G(f) - 2) \quad \forall f \in \mathcal{F} \setminus \{f_0\} \} \Rightarrow \sum_w b(w) = 0$
• $b(f_0) = -2(d_G(f_0) + 2) \quad (Euler)$

$$\begin{split} \forall (f,g) \in A, f,g \in \mathcal{F} & \ell(f,g) := 0 \leq X(f,g) \leq \infty =: c(f,g) \\ & \mathsf{cost}(f,g) = 1 \\ \forall (v,f) \in A, v \in V, f \in \mathcal{F} & \ell(v,f) := 1 \leq X(v,f) \leq 4 =: c(v,f) \\ & \mathsf{cost}(v,f) = 0 \end{split}$$

V **O** \mathcal{F} **O**

