

Algorithms for Graph VisualizationLayered Layout – Part 2

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Tamara Mchedlidze

19.12.2016

Layered Layout

Given: directed graph D = (V, A)

Find: drawing of D that emphasized the hierarchy

Layered Layout

Given: directed graph D = (V, A)

Find: drawing of D that emphasized the hierarchy

Criteria:

- many edges pointing to the same direction
- edges preferably straght and short
- position nodes on (few) horizontal lines
- preferably few edge crossings
- nodes distributed evenly

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Step 3: Crossing Minimization

How would you proceed?

Problem Statement

Given: DAG D = (V, A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of crossing is minimized

Problem Statement

Given: DAG D = (V, A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of crossing is minimized

Properties

- Problem is NP-hard even for two layers (BIPARTITE CROSSING NUMBER [Garey, Johnson '83])
- Hardly any approach over several layers simultaneously
- Usually iterative optimization for two adjacent layers
- For that: insert dummy nodes at the intersection of edges with layers

Given: 2-Layered-Graph $G=(L_1,L_2,E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2 , such that the number of crossings among E is minimum

Given: 2-Layered-Graph $G=(L_1,L_2,E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2 , such that the number of crossings among E is minimum

Observation:

- The number of crossings in 2-layered drawing of G depends only on x_1 and x_2 , not from the exact positions
- for $u,v\in L_2$ the number of crossings among incident to them edges depends on whether $x_2(u)< x_2(v)$ or $x_2(v)< x_2(u)$ and not on the positions of other vertices

Given: 2-Layered-Graph $G=(L_1,L_2,E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2 , such that the number of crossings among E is minimum

Observation:

- The number of crossings in 2-layered drawing of G depends only on x_1 and x_2 , not from the exact positions
- for $u,v\in L_2$ the number of crossings among incident to them edges depends on whether $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$ and not on the positions of other vertices

Def: $c_{uv} := |\{(uw, vz) \mid w \in N(u), z \in N(v), x_1(z) < x_1(w)\}|$ for $x_2(u) < x_2(v)$ $v \in N(u), z \in N(v), x_1(z) < x_1(w)\}|$

Given: 2-Layered-Graph $G=(L_1,L_2,E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2 , such that the number of crossings among E is minimum

Observation:

- The number of crossings in 2-layered drawing of G depends only on x_1 and x_2 , not from the exact positions
- for $u,v\in L_2$ the number of crossings among incident to them edges depends on whether $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$ and not on the positions of other vertices

Def: $c_{uv} := |\{(uw, vz) \mid w \in N(u), z \in N(v), x_1(z) < x_1(w)\}|$ for $x_2(u) < x_2(v)$

Further Properties

Def: Crossing number of G with orders x_1 and x_2 for L_1 and L_2 is denoted by $cr(G, x_1, x_2)$; for fixed x_1 then $opt(G, x_1) = min_{x_2} cr(G, x_1, x_2)$

Lemma 1: The following equalities hold:

- $\operatorname{cr}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv}$
- opt $(G, x_1) \ge \sum_{\{u,v\}} \min\{c_{uv}, c_{vu}\}$

Further Properties

Def: Crossing number of G with orders x_1 and x_2 for L_1 and L_2 is denoted by $cr(G, x_1, x_2)$; for fixed x_1 then $opt(G, x_1) = \min_{x_2} cr(G, x_1, x_2)$

Lemma 1: The following equalities hold:

- $\operatorname{cr}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv}$
- opt $(G, x_1) \ge \sum_{\{u,v\}} \min\{c_{uv}, c_{vu}\}$

Efficient computation of $cr(G, x_1, x_2)$ see Exercise.

Iterative Crossing Minimization

Let G = (V, E) be a DAG with layers L_1, \ldots, L_h .

- (1) compute a random ordering x_1 for layer L_1
- (2) for i = 1, ..., h-1 consider layers L_i and L_{i+1} and minimize $cr(G, x_i, x_{i+1})$ with fixed $x_i (\rightarrow \mathbf{OSCM})$
- (3) for i = h 1, ..., 1 consider layers L_{i+1} and L_i and minimize $cr(G, x_i, x_{i+1})$ with fixed x_{i+1} (\rightarrow **OSCM**)
- (4) repeat (2) and (3) until no further improvement happens
- (5) repeat steps (1)–(4) with another x_1
- (6) return the best found solution

Iterative Crossing Minimization

Let G = (V, E) be a DAG with layers L_1, \ldots, L_h .

- (1) compute a random ordering x_1 for layer L_1
- (2) for i = 1, ..., h-1 consider layers L_i and L_{i+1} and minimize $cr(G, x_i, x_{i+1})$ with fixed $x_i (\rightarrow \mathbf{OSCM})$
- (3) for i = h 1, ..., 1 consider layers L_{i+1} and L_i and minimize $cr(G, x_i, x_{i+1})$ with fixed x_{i+1} (\rightarrow **OSCM**)
- (4) repeat (2) and (3) until no further improvement happens
- (5) repeat steps (1)–(4) with another x_1
- (6) return the best found solution

Theorem 1: The One-Sided Crossing Minimization (OSCM) problem is NP-hard [Eades, Wormald 1994].

Algorithms for OSCM

Heuristics:

- Barycenter
- Median
- . . .

Exact:

ILP Model

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their neighbours

set

$$x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(u)$$

in case of equality introduce tiny gap

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their neighbours

set

$$x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(u)$$

in case of equality introduce tiny gap

Properties:

- trivial implementation
- fast
- usually very good results...
- finds optimum if $opt(G, x_1) = 0$ (see Exercises)
- there are graphs on which it performs $\Omega(\sqrt{n})$ times worse than optimal

Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neighbours

- for a node $v\in L_2$ with neighbours v_1,\ldots,v_k set $x_2(v)=\mathrm{med}(v)=x_1(v_{\lfloor k/2\rfloor})$ and $x_2(v)=0$ if $N(v)=\emptyset$
- if $x_2(u) = x_2(v)$ and u, v have different parity, place the node with odd degree to the left
- if $x_2(u) = x_2(v)$ and u, v have the same parity, place an arbitrary of them to the left
- Runs in time O(|E|)

Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neighbours

- for a node $v\in L_2$ with neighbours v_1,\ldots,v_k set $x_2(v)=\mathrm{med}(v)=x_1(v_{\lfloor k/2\rfloor})$ and $x_2(v)=0$ if $N(v)=\emptyset$
- if $x_2(u)=x_2(v)$ and u,v have different parity, place the node with odd degree to the left
- if $x_2(u) = x_2(v)$ and u, v have the same parity, place an arbitrary of them to the left
- Runs in time O(|E|)

Properties:

- trivial implementation
- fast
- mostly good performance
- finds optimum when $\operatorname{opt}(G, x_1) = 0$
- Factor-3 Approximation

Approximation Factor

Theorem 2: Let $G = (L_1, L_2, E)$ be a 2-layered graph and x_1 an arbitrary ordering of L_1 . Then it holds that $\operatorname{med}(G, x_1) \leq 3 \operatorname{opt}(G, x_1)$.

Approximation Factor

Theorem 2: Let $G = (L_1, L_2, E)$ be a 2-layered graph and x_1 an arbitrary ordering of L_1 . Then it holds that $\operatorname{med}(G, x_1) \leq 3 \operatorname{opt}(G, x_1)$.

Approximation Factor

Theorem 2: Let $G = (L_1, L_2, E)$ be a 2-layered graph and x_1 an arbitrary ordering of L_1 . Then it holds that $\operatorname{med}(G, x_1) \leq 3 \operatorname{opt}(G, x_1)$.

Integer Linear Programming

Properties:

- branch-and-cut technique for DAGS of limited size
- useful for graphs of small to medium size
- finds optimal solution
- solution in polynomial time is not guaranteed

Integer Linear Programming

Properties:

- branch-and-cut technique for DAGS of limited size
- useful for graphs of small to medium size
- finds optimal solution
- solution in polynomial time is not guaranteed

Modell: see Blackboard

Experimental Evaluation (Jünger, Mutzel 1997)

Results for 100 instances on 20 + 20 nodes with increasing density

Time for 100 instances on 20 + 20 nodes with increasing density

Experimental Evaluation (Jünger, Mutzel 1997)

Results for 10 instances of sparse graphs with increasing size

Time for 10 instances of sparse graphs with increasing size

Dr. Tamara Mchedlide · Algorithmen zur Visualisierung von Graphen

CrossingX

There was even an iPad game **CrossingX** for the OSCM Problem!

Winner of Graph Drawing Game Contest 2012

Step 4: Coordinate Computation

Which could be the goals?

Steightening Edges

Goal: minimize deviation from a straight-line for the edges with dummy-nodes

Idea: use quadratic Program

- let $p_{uv} = (u, d_1, \dots, d_k, v)$ path with k dummy nodes betwen u and v
- let $a_i = x(u) + \frac{i}{k+1}(x(v) x(u))$ the x-coordinate of d_i when (u,v) is straight
- minimize $\sum_{i=1}^{k} (x(d_i) a_i)^2$ for all paths
- constraints: $x(w) x(z) \ge \delta$ for consecutive nodes on the same layer, w right from z (δ distance parameter)

Steightening Edges

Goal: minimize deviation from a straight-line for the edges with dummy-nodes

Idea: use quadratic Program

- let $p_{uv} = (u, d_1, \dots, d_k, v)$ path with k dummy nodes betwen u and v
- let $a_i = x(u) + \frac{i}{k+1}(x(v) x(u))$ the x-coordinate of d_i when (u,v) is straight
- minimize $\sum_{i=1}^{k} (x(d_i) a_i)^2$ for all paths
- constraints: $x(w) x(z) \ge \delta$ for consecutive nodes on the same layer, w right from z (δ distance parameter)

Properties:

- quadratic program is time-expensive
- width can be exponential
- optimization function can be adapted to optimize "verticality"

Step 5: Drawing edges

Possibility: Substitute polylines by Bézier curves

Summary

Summary

ent

- flexible Framework to draw directed graphs
- sequential optimization of various criteria
- modelling gives NP-hard problems, which can still can be solved quite well

Applications: UML diagrams

Source: http://betterumldiagrams.blogspot.de

Applications: Storylines

Source: ABC news, Australia

Applications: Text-Variant Graphs

Source: Visualization of Text-Variant Graphs. Jänicke et al.

Graph Drawing Contest holding at Graph Drawing conference each September

- Graph Drawing Contest holding at Graph Drawing conference each September
- This year graph: data of all publications in the Proceedings of Graph Drawing between 1994 and 2015

- Graph Drawing Contest holding at Graph Drawing conference each September
- This year graph: data of all publications in the Proceedings of Graph Drawing between 1994 and 2015
- id, title, authors, institution, cites, citedby, year

7

- Graph Drawing Contest holding at Graph Drawing conference each September
- This year graph: data of all publications in the Proceedings of Graph Drawing between 1994 and 2015
- id, title, authors, institution, cites, citedby, year
- task: nice visualization
- it is not compulsory to make use of the extra data

- Graph Drawing Contest holding at Graph Drawing conference each September
- This year graph: data of all publications in the Proceedings of Graph Drawing between 1994 and 2015
- id, title, authors, institution, cites, citedby, year
- task: nice visualization
- it is not compulsory to make use of the extra data
- Will be provided as XML format on the lecture's web-page during this week

Hiwi

- C++
- JavaScript

We won't be able to deliver our product WHAT??? In time because of THEN USE Some issue with MySBL ... SOMEBOOY

WHAT???

THEN USE

SOMEBOOY ELSE'S

SOL, BUT I

WANT THE

PRODUCT
IN TIME.

Hiwi

- C++
- JavaScript

We won't be able to deliver our product WHAT??? In time because of THEN USE Some issue with MySBL ... SOMEBOOY

WHAT???

THEN USE

SOMEBOOY ELSE'S

SOL, BUT I

WANT THE

PRODUCT
IN TIME.