

Algorithms for Graph Visualization Layered Layout

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Tamara Mchedlidze

5.12.2016

Example

- Which are the properties?
- Which aesthetic ctireria are usefull?

Layered Layout

Given: directed graph D = (V, A)

Find: drawing of D that emphasized the hierarchy

Layered Layout

Given: directed graph D = (V, A)

Find: drawing of D that emphasized the hierarchy

Criteria:

- many edges pointing to the same direction
- edges preferably straght and short
- position nodes on (few) horizontal lines
- preferably few edge crossings
- nodes distributed evenly

Layered Layout

Given: directed graph D = (V, A)

Find: drawing of D that emphasized the hierarchy

Criteria:

- many edges pointing to the same direction
- edges preferably straght and short
- position nodes on (few) horizontal lines
- preferably few edge crossings
- nodes distributed evenly

Optimization criteria partially overlap

crossing minimization

Step 1: Resolve Cycles

How would you proceed?

Idea: • find maximum acyclic subgraph

inverce the directions of the other edges

Idea: • find maximum acyclic subgraph

inverce the directions of the other edges

Maximum Acyclic Subgraph

Given: directed graph D = (V, A)

Find: acyclic subgraph D' = (V, A') with maximum |A'|

Idea: • find maximum acyclic subgraph

inverce the directions of the other edges

Maximum Acyclic Subgraph

Given: directed graph D = (V, A)

Find: acyclic subgraph D' = (V, A') with maximum |A'|

Minimum Feedback Arc Set (FAS)

Given: directed graph D = (V, A)

Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f)$ acyclic with minimum $|A_f|$

Idea: • find maximum acyclic subgraph

inverce the directions of the other edges

Maximum Acyclic Subgraph

Given: directed graph D = (V, A)

Find: acyclic subgraph D' = (V, A') with maximum |A'|

Minimum Feedback Arc Set (FAS)

Given: directed graph D = (V, A)

Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f)$ acyclic with minimum $|A_f|$

Minimum Feedback Set (FS)

Given: directed graph D = (V, A)

Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f \cup \operatorname{rev}(A_f))$ acyclic with minimum $|A_f|$

Idea: • find maximum acyclic subgraph

inverce the directions of the other edges

Maximum Acyclic Subgraph

Given: directed graph D = (V, A)

Find: acyclic subgraph D' = (V, A') with maximum |A'|

Minimum Feedback Arc Set (FAS)

Given: directed graph D = (V, A)

Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f)$ acyclic with minimum $|A_f|$

Minimum Feedback Set (FS)

Given: directed graph D = (V, A)

Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f \cup \operatorname{rev}(A_f))$ acyclic with minimum $|A_f|$

All three problems are NP-hard!

$$A' := \emptyset;$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|A' := A' \cup N^{\rightarrow}(v);$

else

$$A' := A' \cup N^{\leftarrow}(v);$$

remove v and N(v) from D.

return
$$(V, A')$$

$$N^{\to}(v) := \{(v, u) : (v, u) \in A\}$$
 $N^{\leftarrow}(v) := \{(u, v) : (u, v) \in A\}$
 $N(v) := N^{\to}(v) \cup N^{\leftarrow}(v)$

 $N^{\to}(v) := \{(v, u) : (v, u) \in A\}$ $N^{\leftarrow}(v) := \{(u, v) : (u, v) \in A\}$

 $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

$$A' := \emptyset;$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|A' := A' \cup N^{\rightarrow}(v);$

else

$$A' := A' \cup N^{\leftarrow}(v);$$

remove v and N(v) from D.

return
$$(V, A')$$

- D' = (V, A') is a DAG
- $A \setminus A'$ is a feedback arc set
 - Why D' does not contain cycles?
 - Is $D'' = (V, A' \cup \text{rev}(A \setminus A'))$ acyclic?
 - What is the running time?
 - What one can say about |A'|?

$$A' := \emptyset;$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|A' := A' \cup N^{\rightarrow}(v);$

else

$$A' := A' \cup N^{\leftarrow}(v);$$

remove v and N(v) from D.

return (V, A')

- D' = (V, A') is a DAG
- $A \setminus A'$ is a feedback arc set
- Running time O(|V| + |A|)
- $|A'| \ge |A|/2$

$$N^{\to}(v) := \{(v, u) : (v, u) \in A\}$$
 $N^{\leftarrow}(v) := \{(u, v) : (u, v) \in A\}$
 $N(v) := N^{\to}(v) \cup N^{\leftarrow}(v)$

Lemma 1: Let D = (V, A) be a connected, directed digraph. Heuristic 1 produces an acyclic digraph D' = (V, A').

proof:

For the sake of contradiction assume there is a cycle C. Let u be the first visited vertex of C. Either incomming or outgoing edges of u are not in A', i.e. D' can not contain a cycle.

Lemma 2: The digraph $D'' = (V, A' \cup \text{rev}(A \setminus A'))$, where A' is produced by Heuristic 1, is acyclic.

Lemma 2: The digraph $D'' = (V, A' \cup \text{rev}(A \setminus A'))$, where A' is produced by Heuristic 1, is acyclic.

- For the sake of contr. assume there is a cycle C in D''.
- Let u be the first visited vertex of C. Cycle C contains a reversed edge incident to u, otherwise u can not have both incomming and outgoing edges in C.

Lemma 2: The digraph $D'' = (V, A' \cup \text{rev}(A \setminus A'))$, where A' is produced by Heuristic 1, is acyclic.

- For the sake of contr. assume there is a cycle C in D''.
- Let u be the first visited vertex of C. Cycle C contains a reversed edge incident to u, otherwise u can not have both incomming and outgoing edges in C.
- W.l.o.g. assume (u, v) is the reversed edge. I.e. the original edge was (v, u), i.e. $(v, u) \in A \setminus A'$. Therefore, no other incomming edge to u is in A'. I.e. u has no incomming edges in C that are in A'.

Lemma 2: The digraph $D'' = (V, A' \cup \text{rev}(A \setminus A'))$, where A' is produced by Heuristic 1, is acyclic.

- For the sake of contr. assume there is a cycle C in D''.
- Let u be the first visited vertex of C. Cycle C contains a reversed edge incident to u, otherwise u can not have both incomming and outgoing edges in C.
- W.I.o.g. assume (u, v) is the reversed edge. I.e. the original edge was (v, u), i.e. $(v, u) \in A \setminus A'$. Therefore, no other incomming edge to u is in A'. I.e. u has no incomming edges in C that are in A'.
- Therefore the incomming edge to u in C is also a reversed edge. I.e. both incomming and outgoing edges of u in C are in $A \setminus A'$, which is impossible, as u is the first vertex visited by the algorithm in C.


```
\begin{array}{lll} \mathbf{1} & A' := \emptyset; \\ \mathbf{2} & \mathbf{while} & V \neq \emptyset & \mathbf{do} \\ \mathbf{3} & \mathbf{while} & \mathbf{in} & V & \mathbf{exists} & \mathbf{a} & \mathbf{sink} & v & \mathbf{do} \\ \mathbf{4} & A' \leftarrow A' \cup N^{\leftarrow}(v) \\ \mathbf{5} & \mathbf{remove} & v & \mathbf{and} & N^{\leftarrow}(v) \colon \{V, n, m\}_{\mathsf{sink}} \end{array}
```



```
\begin{array}{lll} \mathbf{1} & A' := \emptyset; \\ \mathbf{2} & \mathbf{while} & V \neq \emptyset & \mathbf{do} \\ \mathbf{3} & \mathbf{while} & \mathbf{in} & V & \mathbf{exists} & \mathbf{a} & \mathbf{sink} & v & \mathbf{do} \\ \mathbf{4} & A' \leftarrow A' \cup N^{\leftarrow}(v) \\ \mathbf{5} & \mathbf{remove} & v & \mathbf{and} & N^{\leftarrow}(v) \colon \{V, n, m\}_{\mathsf{sink}} \end{array}
```



```
\begin{array}{lll} \mathbf{1} & A' := \emptyset; \\ \mathbf{2} & \mathbf{while} & V \neq \emptyset & \mathbf{do} \\ \mathbf{3} & \mathbf{while} & \mathbf{in} & V & \mathbf{exists} & \mathbf{a} & \mathbf{sink} & v & \mathbf{do} \\ \mathbf{4} & A' \leftarrow A' \cup N^{\leftarrow}(v) \\ \mathbf{5} & \mathbf{remove} & v & \mathbf{and} & N^{\leftarrow}(v) \colon \{V, n, m\}_{\mathsf{sink}} \end{array}
```



```
\begin{array}{lll} \mathbf{1} & A' := \emptyset; \\ \mathbf{2} & \mathbf{while} & V \neq \emptyset & \mathbf{do} \\ \mathbf{3} & \mathbf{while} & \mathbf{in} & V & \mathbf{exists} & \mathbf{a} & \mathbf{sink} & v & \mathbf{do} \\ \mathbf{4} & A' \leftarrow A' \cup N^{\leftarrow}(v) \\ \mathbf{5} & \mathbf{remove} & v & \mathbf{and} & N^{\leftarrow}(v) \colon \{V, n, m\}_{\mathsf{sink}} \end{array}
```



```
1 A' := \emptyset;
```

6

- 2 while $V \neq \emptyset$ do
- 3 while in V exists a sink v do
- $\mathbf{4} \quad | \quad A' \leftarrow A' \cup N^{\leftarrow}(v)$
- 5 remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\mathsf{sink}}$
 - Remove all isolated node from $V: \{V, n, m\}_{iso}$


```
\begin{array}{lll} \mathbf{1} & A' := \emptyset; \\ \mathbf{2} & \mathbf{while} & V \neq \emptyset & \mathbf{do} \\ \mathbf{3} & \mathbf{while} & \mathbf{in} & V & \mathbf{exists} & \mathbf{a} & \mathbf{sink} & v & \mathbf{do} \\ \mathbf{4} & A' \leftarrow A' \cup N^{\leftarrow}(v) \\ \mathbf{5} & \mathbf{remove} & v & \mathbf{and} & N^{\leftarrow}(v) \colon \{V, n, m\}_{\mathsf{sink}} \\ \mathbf{6} & \mathsf{Remove} & \mathsf{all} & \mathsf{isolated} & \mathsf{node} & \mathsf{from} & V \colon \{V, n, m\}_{\mathsf{iso}} \\ \mathbf{7} & \mathbf{while} & \mathsf{in} & V & \mathsf{exists} & \mathsf{a} & \mathsf{source} & v & \mathbf{do} \\ \end{array}
```


8

9


```
A' := \emptyset;
```

4

5

6

7

8

10

11

12

13

2 while $V \neq \emptyset$ do

3 while in V exists a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\text{sink}}$

Remove all isolated node from $V: \{V, n, m\}_{iso}$

while in V exists a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let $v \in V$ such that $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$ maximal:

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and N(v): $\{V, n, m\}_{\{=,<\}}$

$$A' := \emptyset;$$

4

5

6

7

8

10

11

12

13

2 while $V \neq \emptyset$ do

3 while in V exists a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\text{sink}}$

Remove all isolated node from $V: \{V, n, m\}_{iso}$

while in V exists a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let $v \in V$ such that $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$ maximal:

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and N(v): $\{V, n, m\}_{\{=,<\}}$


```
A' := \emptyset;
```

4

5

6

7

8

10

11

12

13

2 while $V \neq \emptyset$ do

3 while in V exists a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{sink}$

Remove all isolated node from $V: \{V, n, m\}_{iso}$

while in V exists a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let $v \in V$ such that $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$ maximal;

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$


```
A' := \emptyset;
```

4

5

6

7

8

10

11

12

13

2 while $V \neq \emptyset$ do

3 while in V exists a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\mathsf{sink}}$

Remove all isolated node from $V: \{V, n, m\}_{iso}$

while in V exists a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let $v \in V$ such that $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$ maximal;

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

$$A' := \emptyset;$$

4

5

6

7

8

10

11

12

13

2 while $V \neq \emptyset$ do

3 while in V exists a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{sink}$

Remove all isolated node from $V: \{V, n, m\}_{iso}$

while in V exists a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let $v \in V$ such that $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$ maximal;

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$


```
A' := \emptyset;
```

4

5

6

7

8

10

11

12

13

2 while
$$V \neq \emptyset$$
 do

3 while in V exists a sink v do

$$A' \leftarrow A' \cup N^{\leftarrow}(v)$$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\mathsf{sink}}$

Remove all isolated node from $V: \{V, n, m\}_{iso}$

while in V exists a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let $v \in V$ such that $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$ maximal;

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

Heuristic 2 – Analysis

Theorem 1: Let D=(V,A) be a connected, directed graph without 2-cycles. Heuristic 2 computes a set of edges A' with $|A'| \geq |A|/2 + |V|/6$. The running time is O(|A|).

Heuristic 2 – Analysis

Theorem 1: Let D=(V,A) be a connected, directed graph without 2-cycles. Heuristic 2 computes a set of edges A' with $|A'| \geq |A|/2 + |V|/6$. The running time is O(|A|).

Further methods:

$$\qquad |A'| \geq |A| \left(1/2 + \Omega \left(\frac{1}{\sqrt{\deg_{\max}(D)}} \right) \right) \text{ (Berger, Shor 1990)}$$

 exact solution with integer linear programming, using branch-and-cut technique (Grötschel et al. 1985)

Heuristic 2 – Analysis

Theorem 1: Let D=(V,A) be a connected, directed graph without 2-cycles. Heuristic 2 computes a set of edges A' with $|A'| \geq |A|/2 + |V|/6$. The running time is O(|A|).

Further methods:

$$|A'| \geq |A| \left(1/2 + \Omega \left(\frac{1}{\sqrt{\deg_{\max}(D)}} \right) \right) \text{ (Berger, Shor 1990)}$$

 exact solution with integer linear programming, using branch-and-cut technique (Grötschel et al. 1985)

For $|A| \in O(|V|)$ Heuristic 2 performs similarly.

Example

Example

Step 2: Layer Assignement

How would you proceed?

Step 2: Layer Assignement

Given.: directed acyclic graph (DAG) D = (V, A)

Find: Partition the vertex set V into disjoint subsets (layers)

 L_1, \ldots, L_h s.t. $(u, v) \in A, u \in L_i, v \in L_j \Rightarrow i < j$

Def: y-Coordinate $y(u) = i \Leftrightarrow u \in L_i$

Step 2: Layer Assignement

Given.: directed acyclic graph (DAG) D = (V, A)

Find: Partition the vertex set V into disjoint subsets (layers)

$$L_1, \ldots, L_h$$
 s.t. $(u, v) \in A, u \in L_i, v \in L_j \Rightarrow i < j$

Def: y-Coordinate $y(u) = i \Leftrightarrow u \in L_i$

Criteria

- minimize the number of layers h (= height of the layouts)
- minimize width, e.g. $\max\{|L_i| \mid 1 \le i \le h\}$
- minimize lengs of the longest edge, d.h. $\max\{j-i\mid (u,v)\in A,\ u\in L_i,\ v\in L_j\}$
- minimize the total length of edges (\approx number of dummy nodes)

Height Optimization

Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- lacktriangle all incomming neighbourse lie below v
- the resulting height h is minimized

Height Optimization

Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- lacktriangle all incomming neighbourse lie below v
- the resulting height h is minimized

Algorithm

- $L_1 \leftarrow$ the set of sources in D
- set $y(u) \leftarrow \max_{v \in N^{\leftarrow}(u)} \{y(v)\} + 1$

Height Optimization

Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- lacktriangle all incomming neighbourse lie below v
- lacktriangle the resulting height h is minimized

Algorithm

- $L_1 \leftarrow$ the set of sources in D
- set $y(u) \leftarrow \max_{v \in N^{\leftarrow}(u)} \{y(v)\} + 1$

How can we implement the algorithm in O(|V| + |A|) time?

Example

Example

Total Edge Length

Can be formulated as an integer linear program:

$$\begin{array}{ll} \min & \sum_{(u,v)\in A}(y(v)-y(u)) \\ \text{subject to} & y(v)-y(u)\geq 1 & \forall (u,v)\in A \\ & y(v)\geq 1 & \forall v\in V \\ & y(v)\in \mathbb{Z} & \forall v\in V \end{array}$$

Total Edge Length

Can be formulated as an integer linear program:

$$\begin{array}{ll} \min & \sum_{(u,v)\in A}(y(v)-y(u)) \\ \text{subject to} & y(v)-y(u)\geq 1 & \forall (u,v)\in A \\ & y(v)\geq 1 & \forall v\in V \\ & y(v)\in \mathbb{Z} & \forall v\in V \end{array}$$

One can show that:

- Constraint-Matrix is totally unimodular
- ullet \Rightarrow Solution of the relaxed linear program is integer
- The total edge length can be minimized in a polynomial time

Width of the Layout

Width of the Layout

→ bound the width!

Layer Assignement with Fixed Width

Fixed-Width Layer Assignment

Given: directed acyclic graph D = (V, A), width B

Find: layer assignement $\mathcal L$ of minumum height with at most B nodes per layer

Layer Assignement with Fixed Width

Fixed-Width Layer Assignment

Given: directed acyclic graph D = (V, A), width B

Find: layer assignement $\mathcal L$ of minumum height with at most B nodes per layer

→ equivalent to the following scheduling problem:

Minimum Precedence Constrained Scheduling (MPCS)

Given: n Jobs J_1, \ldots, J_n with identical unit processing time, precedence constraints $J_i < J_k$, and B identical machines

Find: Schedule of minimum length, that satisfies all the precendence constraints

Theorem 2: It is NP-hard to decide, whether for n jobs J_1, \ldots, J_n of identical length, given partial ordering constraints, and number of machinees B, there exists a schedule of height at most T, even if T=3.

Theorem 2: It is NP-hard to decide, whether for n jobs J_1, \ldots, J_n of identical length, given partial ordering constraints, and number of machinees B, there exists a schedule of height at most T, even if T=3.

Corollary: If $\mathcal{P} \neq \mathcal{NP}$, there is no polynomial algorithm for MPCS with approximation factor <4/3.

Theorem 2: It is NP-hard to decide, whether for n jobs J_1, \ldots, J_n of identical length, given partial ordering constraints, and number of machinees B, there exists a schedule of height at most T, even if T=3.

Corollary: If $\mathcal{P} \neq \mathcal{NP}$, there is no polynomial algorithm for MPCS with approximation factor <4/3.

Theorem 3: There exist an approximation algorithm for MPCS with factor $\leq 2 - \frac{1}{B}$.

Theorem 2: It is NP-hard to decide, whether for n jobs J_1, \ldots, J_n of identical length, given partial ordering constraints, and number of machinees B, there exists a schedule of height at most T, even if T=3.

Corollary: If $\mathcal{P} \neq \mathcal{NP}$, there is no polynomial algorithm for MPCS with approximation factor <4/3.

Theorem 3: There exist an approximation algorithm for MPCS with factor $\leq 2 - \frac{1}{B}$.

List-Scheduling-Algorithm:

- lacksquare order jobs arbitrarily as a list ${\cal L}$
- when a machine is free, select an allowed job from \mathcal{L} ; Machine is idle of there is no such job

Summary

