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Example AT
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s Which are the
properties’?

s Which aesthetic ctireria
are usefull?

Layered Layout



L ayered Layout AT
Given: directed graph D = (V, A)

Find: drawing of D that emphasized the hierarchy
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L ayered Layout AT
Given: directed graph D = (V, A)

Find: drawing of D that emphasized the hierarchy

Criteria:

many edges pointing to the same direction
edges preferably straght and short

position nodes on (few) horizontal lines
preferably few edge crossings

nodes distributed evenly
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L ayered Layout AT
Given: directed graph D = (V, A)

Find: drawing of D that emphasized the hierarchy

Criteria:

many edges pointing to the same direction
edges preferably straght and short

position nodes on (few) horizontal lines
preferably few edge crossings

nodes distributed evenly

AOptimization criteria partially overlap
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Sugiyama Framework (sugyams, Tagawa, Tods 1081) AUT

Karlsruhe Institute of Technolo
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Sugiyama Framework (sugyams, Tagawa, Tods 1081) AUT
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resolve cycles
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Sugiyama Framework (sugyams, Tagawa, Tods 1081) AUT

Karlsruhe Institute of Technolo

resolve cycles layer
assignement
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Sugiyama Framework (sugyams, Tagawa, Tods 1081) AUT
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layer
assighement

crossing minimization
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Sugiyama Framework (sugyams, Tagawa, Tods 1081) AUT

Karlsruhe Institute of Technolo

layer

crossing minimization node positioning
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Sugiyama Framework (sugyams, Tagawa, Tods 1081) AUT

Karlsruhe Institute of Technolo

—
layer
assighement
e
crossing minimization node positioning edge drawing
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Suglya Ma Fra meWOrk (Sugiyama, Tagawa, Toda 1981)

AT

(200 in the past two years)
= iImplemented in

f — yEd

graphviz/dot

tulip

m paper cited more than 1400 times

crossing minimization node positioning
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Sugiyama Framework (sugyams, Tagawa, Tods 1081) AUT

Karlsruhe Institute of Technolo

—
layer
assighement
e
crossing minimization node positioning edge drawing
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Sugiyama Framework (sugyams, Tagawa, Tods 1081) AUT

Karlsruhe Institute of Technology

S
layer
assiglnement
e
crossing minimization node positioning edge drawing
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Step 1: Resolve Cycles AT
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3 3
4 | 2 p| 5 — 4 | 2 P 5
1 | 6 p 7 1 f— 6 P 7

How would you proceed?
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Feedback Arc Set QAT

stitute of Technology

Idea: = find maximum acyclic subgraph
= inverce the directions of the other edges
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Feedback Arc Set QAT

tttttttttttttttttttttttttttttt

Idea: = find maximum acyclic subgraph
= inverce the directions of the other edges

Maximum Acyclic Subgraph
Given: directed graph D = (V, A)
Find: acyclic subgraph D' = (V, A") with maximum |A’|
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Feedback Arc Set QAT

tttttttttttttttttttttttttttttt

Idea: = find maximum acyclic subgraph
= inverce the directions of the other edges

Maximum Acyclic Subgraph
Given: directed graph D = (V, A)
Find: acyclic subgraph D' = (V, A") with maximum |A’|

Minimum Feedback Arc Set (FAS)

Given: directed graph D = (V, A)

Find: Ay C A, with Dy = (V, A\ Ay) acyclic with minimum
Ayl
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Feedback Arc Set QAT

tttttttttttttttttttttttttttttt

Idea: = find maximum acyclic subgraph
= inverce the directions of the other edges

Maximum Acyclic Subgraph
Given: directed graph D = (V, A)
Find: acyclic subgraph D' = (V, A") with maximum |A’|

Minimum Feedback Arc Set (FAS)

Given: directed graph D = (V, A)

Find: Ay C A, with Dy = (V, A\ Ay) acyclic with minimum
Ayl

Minimum Feedback Set (FS)

Given: directed graph D = (V, A)

Find: A C A, with Dy = (V, A\ A Urev(Ay)) acyclic with
minimum |A ¢
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Feedback Arc Set QAT
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Idea: = find maximum acyclic subgraph
= inverce the directions of the other edges

Maximum Acyclic Subgraph
Given: directed graph D = (V, A)
Find: acyclic subgraph D' = (V, A") with maximum |A’|

Minimum Feedback Arc Set (FAS)

Given: directed graph D = (V, A)

Find: Ay C A, with Dy = (V, A\ Ay) acyclic with minimum
Ay

Minimum Feedback Set (FS)

Given: directed graph D = (V, A)

Find: A C A, with Dy = (V, A\ A Urev(Ay)) acyclic with
minimum |A ¢

All three problems are NP-hard!
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Heuristric 1 (erger. shor 1000) QAT

tttttttttttttttttttttttttttttt

Al =0 N7(w) = {(v,u): (v,u) € A}

foreach v € V do NT(v) = {(u,v): (u,v) € A}
if | N7 (v)|>|N"(v)| then - — —
INOIZIN W then | N = N ) UN(
else

| A=A UN"(v);
~ remove v and N (v) from D.
return (V, A’)
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Heuristric 1 (erger. shor 1000) QAT

tttttttttttttttttttttttttttttt

Al =0 N7(w) = {(v,u): (v,u) € A}

foreach v € V do NT(v) = {(u,v): (u,v) € A}
if N7 (v)| > |N*"(v)| then _ — -
VO I W then | () = N ) UN(
else

| A=A UNT(v);
. remove v and N (v) from D.
return (V, A’)

« D' =(V,A) is a DAG
= A\ A’ is a feedback arc set

Why D’ does not contain cycles?

Is D" = (V, A" Urev(A \ A’)) acyclic?
What is the running time?

What one can say about |A|7
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Heuristric 1 (erger. shor 1000) QAT

tttttttttttttttttttttttttttttt

Al =0 N7(w) = {(v,u): (v,u) € A}

foreach v € V do NT(v) = {(u,v): (u,v) € A}
if | N7 (v)|>|N"(v)| then - — —
INOIZIN W then | N = N ) UN(
else

| A=A UN"(v);
 remove v and N (v) from D.
return (V, A’)

« D' =(V,A) is a DAG
= A\ A’ is a feedback arc set

= Running time O(|V| + |A])
o 4] > [A]/2
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Heuristric 1 (erger. shor 1000) QAT

tttttttttttttttttttttttttttttt

Lemma 1: Let D = (V, A) be a connected, directed digraph.
Heuristic 1 produces an acyclic digraph D" = (V, A).
proof:

For the sake of contradiction assume there is a cycle C'. Let u
be the first visited vertex of C. Either incomming or outgoing
edges of u are not in A’, i.e. D’ can not contain a cycle.
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Heuristric 1 (erger. shor 1000) QAT

e Institute of Technology

Lemma 2:  The digraph D" = (V, A’'U rev(A\ A")), where A’
Is produced by Heuristic 1, is acyclic.
proof:
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Heuristric 1 (erger. shor 1000) QAT

tttttttttttttttttttttttttttttt

Lemma 2:  The digraph D" = (V, A’'U rev(A\ A")), where A’
Is produced by Heuristic 1, is acyclic.

proof:
= For the sake of contr. assume there is a cycle C in D",

» Let u be the first visited vertex of C. Cycle C' contains a
reversed edge incident to u, otherwise u can not have both
iIncomming and outgoing edges in C.
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Heuristric 1 (erger. shor 1000) QAT
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Lemma 2:  The digraph D" = (V, A’'U rev(A\ A")), where A’
Is produced by Heuristic 1, is acyclic.

proof:
= For the sake of contr. assume there is a cycle C in D",

» Let u be the first visited vertex of C. Cycle C' contains a
reversed edge incident to u, otherwise u can not have both
iIncomming and outgoing edges in C'.

= W.lo.g. assume (u,v) is the reversed edge. l.e. the original
edge was (v,u), i.e. (v,u) € A\ A’. Therefore, no other
incomming edge to w is in A’. l.e. u has no incomming
edges in C that are in A’.
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Heuristric 1 (erger. shor 1000) QAT
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Lemma 2:  The digraph D" = (V, A’'U rev(A\ A")), where A’
Is produced by Heuristic 1, is acyclic.

proof:
= For the sake of contr. assume there is a cycle C in D",

» Let u be the first visited vertex of C. Cycle C' contains a
reversed edge incident to u, otherwise u can not have both
iIncomming and outgoing edges in C'.

= W.lo.g. assume (u,v) is the reversed edge. l.e. the original
edge was (v,u), i.e. (v,u) € A\ A’. Therefore, no other
incomming edge to w is in A’. l.e. u has no incomming

edges in C that are in A’.

a Therefore the incomming edge to u in C' is also a reversed

edge. l.e. both incomming and outgoing edges of u in C

are in A\ A’, which is impossible, as u is the first vertex

visited by the algorithm in C.
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HeU FIStIC 2 (Eades, Lin, Smyth 1993)

A=),

while V' # () do
while in V' exists a sink v do
Al AAUN(v)
L remove v and N (v): {V,n,m}sink
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HeU FIStIC 2 (Eades, Lin, Smyth 1993)

A=),

while V' # () do
while in V' exists a sink v do
A"+~ A UNT(v)
L remove v and N (v): {V,n,m}sink
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Heu ristic 2 (Eades, Lin, Smyth 1993) A“(IT

Karlsruhe Institute of Technology
1 A/ . .
« — y

while V' # () do
while in V' exists a sink v do
A"+~ A UNT(v)
L remove v and N (v): {V,n,m}sink

cn A WD

Xim
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Heu ristic 2 (Eades, Lin, Smyth 1993) A“(IT

Karlsruhe Institute of Technology
1 A/ . .
« — y

while V' # () do
while in V' exists a sink v do
A"+~ A UNT(v)
L remove v and N (v): {V,n,m}sink

g s WO N

Xim
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Heu ristic 2 (Eades, Lin, Smyth 1993) A“(IT
1 A = 0;

2 while V +# () do

3 while in V' exists a sink v do

4 A"+ AAUNT(v)

5 remove v and N (v): {V,n,m}sink

6 Remove all isolated node from V: {V.n, m}is

Xim
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Heu ristic 2 (Eades, Lin, Smyth 1993) A“(IT
1 A = 0;

2 while V +# () do

3 while in V' exists a sink v do

4 A"+ AAUNT(v)

5 remove v and N (v): {V,n,m}sink

6 Remove all isolated node from V: {V.n, m}is

while in V' exists a source v do
A+~ AAUN7(v)
remove v and N7 (v): {V,n,m}source

Xim
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HeU FIStIC 2 (Eades, Lin, Smyth 1993)

A=),

while V' # () do
while in V' exists a sink v do
A"+~ A UNT(v)
L remove v and N (v): {V,n,m}sink

Remove all isolated node from V: {V,n, m}

while in V' exists a source v do
L A+~ AAUN7(v)

remove v and N7 (v): {V,n, m }source

if 1V = () then
let v € V such that [N (v)| — |[N“"(v)]| maxim
Al AAUN7(v)

remove v and N(v): {V,n,m}— -

Dr. Tamara Mchedlidze - Algorithmen zur Visualisierung von Graphen

tttttttttttttttttttttttttttttt

Layered Layout



9

g s WO N

10
11
12
13

HeU FIStIC 2 (Eades, Lin, Smyth 1993)

A=),

while V' # () do
while in V' exists a sink v do
A"+~ A UNT(v)
L remove v and N (v): {V,n,m}sink

Remove all isolated node from V: {V,n, m}

while in V' exists a source v do
L A+~ AAUN7(v)

remove v and N7 (v): {V,n, m }source

if 1V = () then
let v € V such that [N (v)| — |[N“"(v)]| maxim
Al AAUN7(v)

remove v and N(v): {V,n,m}— -
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HeU FIStIC 2 (Eades, Lin, Smyth 1993)

A=),

while V () do
while in V' exists a sink v do
A"+~ A UNT(v)
L remove v and N (v): {V,n,m}sink

Remove all isolated node from V: {V,n, m}

while in V' exists a source v do
L A"+ AAUN7 (v)

remove v and N7 (v): {V,n, m }source

if 1V = () then

let v € V such that |[N 7 (v)| — [N (v)| maxi
Al AAUN7(v)

remove v and N(v): {V,n,m}— -
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while V () do
while in V' exists a sink v do
A"+~ A UNT(v)
L remove v and N (v): {V,n,m}sink

Remove all isolated node from V: {V,n, m}

while in V' exists a source v do
L A"+ AAUN7 (v)

remove v and N7 (v): {V,n, m }source

if 1V = () then

let v € V such that |[N 7 (v)| — [N (v)| maxi
Al AAUN7(v)

remove v and N(v): {V,n,m}— -
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A=),

while V () do
while in V' exists a sink v do
A"+ AAUNT(v)
L remove v and N (v): {V,n,m}sink

Remove all isolated node from V: {V,n, m}

while in V' exists a source v do
L A"+ AAUN7 (v)

remove v and N7 (v): {V,n, m }source

if 1V = () then
let v € V such that [N (v)| — |[N“"(v)]| maxim
Al AAUN7(v)
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Heuristic 2 — Analysis QAT

tttttttttttttttttttttttttttttt

Theorem 1: Let D = (V, A) be a connected, direted graph

without 2-cycles. Heuristic 2 computes a set of edges A’
with |A’| > |A]/2 + |V]/6.
The running time is O(|A|).
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Heuristic 2 — Analysis QAT

tttttttttttttttttttttttttttttt

Theorem 1: Let D = (V, A) be a connected, direted graph

without 2-cycles. Heuristic 2 computes a set of edges A’
with |A’| > |A]/2 + |V]/6.
The running time is O(|A|).

Further methods:

| ‘A,’ Z ’A‘ (1/2 —I_ Q <\/deg1 (D)>> (Berger, Shor 1990)

= exact solution with integer linear programming, using
branch-and-cut technique (crstschel et al. 1985)
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Heuristic 2 — Analysis QAT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Theorem 1: Let D = (V, A) be a connected, direted graph

without 2-cycles. Heuristic 2 computes a set of edges A’
with |A’| > |A]/2 + |V]/6.
The running time is O(|A|).

Further methods:

O ‘A" > ’A‘ (1/2 + <\/deg1 (D))) (Berger, Shor 1990)

» exact solutigh with integer linear programming, using
branch-ang/fcut technique (Grotschel et al. 1985)

For |A| € O(|V'|) Heuristic 2 performs similarly.
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Example A\‘(".

Karlsruhe Institute of Technology

11 Dr. Tamara Mchedlidze - Algorithmen zur Visualisierung von Graphen Layered Layout



Example
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Step 2: Layer Assignement

3
4 |« 2 p 5 —
1 P 6 P 7 )

How would you proceed?
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Step 2: Layer Assignement AUT
Given.: directed acyclic graph (DAG) D = (V, A)

Find:  Partition the vertex set V' into disjoint subsets (layers)
Li,...,Lpst (u,v)€e A,uelj,vel;=1<j

Def: y-Coordinate y(u) =1 < u € L;
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Step 2: Layer Assignement AUT
Given.: directed acyclic graph (DAG) D = (V, A)

Find:  Partition the vertex set V' into disjoint subsets (layers)
Li,...,Lpst (u,v)€e A,uelj,vel;=1<j

Def: y-Coordinate y(u) =1 < u € L;

Criteria
= minimize the number of layers h (= height of the layouts)
= minimize width, e.g. max{|L;| | 1 <7 < h}
= minimize lengs of the longest edge, d.h.
max{j — ¢ | (u,v) € A,ue L;,velL,}
= minimize the total length of edges (=~ number of dummy
nodes)
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Height Optimization AUT

tttttttttttttttttttttttttttttt

Idea: assign each node v to the layer L;, where 7 is the length
of the longest simple path from a source to v
a all incomming neighbourse lie below v
= the resulting height A is minimized
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Height Optimization AUT

tttttttttttttttttttttttttttttt

Idea: assign each node v to the layer L;, where 7 is the length
of the longest simple path from a source to v
a all incomming neighbourse lie below v
= the resulting height A is minimized

Algorithm

s [ < the set of sources in D
= set y(U) S MaXye N« (u) {y(v)} + 1
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Height Optimization AUT

tttttttttttttttttttttttttttttt

Idea: assign each node v to the layer L;, where 7 is the length
of the longest simple path from a source to v
a all incomming neighbourse lie below v
= the resulting height A is minimized

Algorithm

s [ < the set of sources in D
= set y(U) S MaXye N« (u) {y(v)} + 1

How can we implement the algorithm in O(|V| 4+ |A]) time?
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Example
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otal Edge Length AT

tttttttttttttttttttttttttttttt

Can be formulated as an integer linear program:

min Y ea () — y(w))

subject to  y(v) —y(u) > 1 V(u,v) € A
y(v) > 1 YoeV
y(v) € Z YoeV
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otal Edge Length AT

tttttttttttttttttttttttttttttt

Can be formulated as an integer linear program:

min Y ea () — y(w))

subject to  y(v) —y(u) > 1 V(u,v) € A
y(v) > 1 YoeV
y(v) € Z YoeV

One can show that:

a Constraint-Matrix is totally unimodular
= = Solution of the relaxed linear program is integer
a The total edge length can be minimized in a polynomial time
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Width of the Layout QAT

Karlsruhe Institute of Technology
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Width of the Layout QAT

Karlsruhe Institute of Technology

— bound the width!
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Layer Assignement with Fixed Width AT

tttttttttttttttttttttttttttttt

Fixed-Width Layer Assignment

Given: directed acyclic graph D = (V, A), width B

Find: layer assignement £ of minumum height with at most B
nodes per layer
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Layer Assignement with Fixed Width AT

tttttttttttttttttttttttttttttt

Fixed-Width Layer Assignment

Given: directed acyclic graph D = (V, A), width B

Find: layer assignement £ of minumum height with at most B
nodes per layer

M >
1 //'

M /\‘
2 //v

M3 —>

M,

B=14
— equivalent to the following scheduling problem:

Minimum Precedence Constrained Scheduling (MPCS)

Given: n Jobs Ji,...,J, with identical unit processing time,
precedence constraints J; < Ji, and B identical machines

Find: Schedule of minimum length, that satisfies all the
precendence constraints
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Complexity AT

tttttttttttttttttttttttttttttt

Theorem 2: It is NP-hard to decide, whether for n jobs
Ji,...,J, of identical length, given partial ordering
constraints, and number of machinces B, there exists
a schedule of height at most 1', even if T' = 3.
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Complexity AT

tttttttttttttttttttttttttttttt

Theorem 2: It is NP-hard to decide, whether for n jobs
Ji,...,J, of identical length, given partial ordering
constraints, and number of machinces B, there exists
a schedule of height at most 1', even if T' = 3.

Corollary: If P #£ NP, there is no polynomial algorithm for
MPCS with approximation factor < 4/3.
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Complexity AT

tttttttttttttttttttttttttttttt

Theorem 2: It is NP-hard to decide, whether for n jobs
Ji,...,J, of identical length, given partial ordering
constraints, and number of machinces B, there exists
a schedule of height at most 1', even if T' = 3.

Corollary: If P #£ NP, there is no polynomial algorithm for
MPCS with approximation factor < 4/3.

Theorem 3: There exist an approximation algorithm for
MPCS with factor < 2 — %.
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Complexity AT

tttttttttttttttttttttttttttttt

Theorem 2: It is NP-hard to decide, whether for n jobs
Ji,...,J, of identical length, given partial ordering
constraints, and number of machinces B, there exists
a schedule of height at most 1', even if T' = 3.

Corollary: If P #£ NP, there is no polynomial algorithm for
MPCS with approximation factor < 4/3.

Theorem 3: There exist an approximation algorithm for
MPCS with factor < 2 — %.

List-Scheduling-Algorithm:

= order jobs arbitrarily as a list £
= when a machine is free, select an allowed job from L;
Machine is idle of there is no such job
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Summary QAT

Karlsruhe Institute of Technology

T

resolve cycles

crossing minimization node positioning edge drawing
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