

Algorithms for Graph Visualization Introduction

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Tamara Mchedlidze, Benjamin Niedermann 17.10.2016

Dr. Tamara Mchedlidze · Algorithms for Graph Visualization

Lectures

- Tamara Mchedlidze
- mched@iti.uka.de
- Office 307
- Office hours: request by email

Exercises

2		
F	2	

- Benjamin Niedermann
- benjamin.niedermann@kit.edu
- Office 321
- Office hours: request by email

Lectures

- Tamara Mchedlidze
- mched@iti.uka.de
- Office 307
- Office hours: request by email

Exercises

	6		
	E	5	1.

- Benjamin Niedermann
- benjamin.niedermann@kit.edu
- Office 321
- Office hours: request by email

Meetings

- Monday 09:45 11:15 Uhr, Room 301
- Wednesday 9:45 11:15 Uhr, Room -119
- exact plan on the web-page

Webseite

i11www.iti.kit.edu/teaching/winter2016/graphvis/

- Latest news
- Lecture slides
- Exercise sheets
- Literature & Additional material
- Lecture notes (skript)

Webseite

i11www.iti.kit.edu/teaching/winter2016/graphvis/

- Latest news
- Lecture slides
- Exercise sheets
- Literature & Additional material
- Lecture notes (skript)

Graph Visualization in Master's Studies

Algorithms for Graph Visualization

Learning goals: At the end of the semester you:

- Know terms and problem definitions
- Know the introduced algorithms, understand how they work, can analyse them
- Can select appropriate algorithms and data structures
- Can analyse a new graph drawing problem and construct an efficient algorithm/prove hardness

Algorithms for Graph Visualization

Learning goals: At the end of the semester you:

- Know terms and problem definitions
- Know the introduced algorithms, understand how they work, can analyse them
- Can select appropriate algorithms and data structures
- Can analyse a new graph drawing problem and construct an efficient algorithm/prove hardness

Prerequisites:Algorithms 1 & 2, Theoretical Basics of inf.Helpful:Algorithms for Planar Graphs

Algorithms for Graph Visualization

Learning goals: At the end of the semester you:

- Know terms and problem definitions
- Know the introduced algorithms, understand how they work, can analyse them
- Can select appropriate algorithms and data structures
- Can analyse a new graph drawing problem and construct an efficient algorithm/prove hardness

Prerequisites:Algorithms 1 & 2, Theoretical Basics of inf.Helpful:Algorithms for Planar Graphs

Suggested time requirements:	5LP = 150h			
Attending Lecture and Exercises:	ca. 35h			
 Preparation/post-processing 	ca. 35h			
 Work on the exercises 	ca. 40h			
 Preparation for the exam 	ca. 40h			

Examination

Master Informatics

- Algorithms for Graph Visualization (IN4INALGVG)
- new Module: Graph visualization+ (more about this later)

Examination

Master Informatics

- Algorithms for Graph Visualization (IN4INALGVG)
- new Module: Graph visualization+ (more about this later)

Examination procedure:

- In order to take an exam you need to participate actively in the exercise sessions
 - (e.g. present your own solutions on the board)
- oral exam(app. 20 Minutes)

Background: International Symposium on Graph Drawing (GD) and Graph Drawing Challenge

Background: International Symposium on Graph Drawing (GD) and Graph Drawing Challenge

Task: develop software for a given graph visualization problem

&NETWORK VISIJAI

CONTEST COMMITTE

Background: International Symposium on Graph Drawing (GD) and Graph Drawing Challenge

Task: develop software for a given graph visualization problem

Winner 2014: KIT-Team from the lecture WS. 2013/14

6

INVITED SPEAKERS

Background: International Symposium on Graph Drawing (GD) and Graph Drawing Challenge

Task: develop software for a given graph visualization problem

Winner 2014: KIT-Team from the lecture WS. 2013/14

Second place 2015: the lecture SS 2015!

Best poster award 2016: One of the students who continued working on the 2015's topic!

Karlsruhe Institute of Technology

Background: International Symposium on Graph Drawing (GD) and Graph Drawing Challenge

Task: develop software for a given graph visualization problem

2013/14:

- Software development was part of the lecture
- Lots of fun but time-consuming2015:
 - as a practical course SS 2015
 - combined modul with 10 LP
 - time-wise worked very well
 - evaluation: excelent practical course award

Structure of the Lecture

Media:

- Slides & Blackboard
- Exercise sheets are provided a week before the execise session
- (incomplete) Lecture notes/Books
- Original literature (papers)

Structure of the Lecture

Media:

- Slides & Blackboard
- Exercise sheets are provided a week before the execise session
- (incomplete) Lecture notes/Books
- Original literature (papers)

Content:

- We look at the **algorithmic core** of visualization problems
- not: graphical Rendering
- Modelling, Algorithms, formal Analysis
 - Divide & Conquer / Recursion
 - combinatorial optimization (ILP)
 - incremental algorithms
 - algorithms for special graph classes
 - drawing techniques using physical analogies

Literature (available in the library)

G. di Battista, P. Eades, R. Tamassia, I. Tollis: Graph Drawing Prentice Hall, 1998

M. Kaufmann, D. Wagner: Drawing Graphs: Methods and Models Springer, 2001

T. Nishizeki, Md. S. Rahman: Planar Graph Drawing World Scientific, 2004

8

R. Tamassia: Handbook of Graph Drawing and Visualization CRC Press, 2013 http://cs.brown.edu/~rt/gdhandbook/

Usefull Knowledge

Basic knowledge of Graph Theory:

- Graph, Nodes/Vertices, Edges
- Node degree, Neighbourhood, Adjacent, Incident
- Connectivity, Tree, Cycle, Path

Usefull Knowledge

Basic knowledge of Graph Theory:

- Graph, Nodes/Vertices, Edges
- Node degree, Neighbourhood, Adjacent, Incident
- Connectivity, Tree, Cycle, Path

• . . .

Basic knowledge in Algorithms:

- Asymptotic running time, O-notation
- Complexity, NP-Hardness
- Network flow
- Linear Programming
- Recursion

- Divide & Conquer
- Approximation

Introduction to Graph Visualization

What is a Graph?

What is a Graph?

Tuple
$$G = (V, E)$$

Set of nodes $V = \{v_1, \dots, v_n\}$
Set of edges $E = \{e_1, \dots, e_m\}$,
 $e_i = \{v_j, v_k\}, \ 1 \le i \le m, \ 1 \le j, k \le n$

What is a Graph?

Tuple
$$G = (V, E)$$

Set of nodes $V = \{v_1, \dots, v_n\}$
Set of edges $E = \{e_1, \dots, e_m\}$,
 $e_i = \{v_j, v_k\}, \ 1 \le i \le m, \ 1 \le j, k \le n$

Representations?

What is a Graph?

Tuple
$$G = (V, E)$$

Set of nodes $V = \{v_1, ..., v_n\}$
Set of edges $E = \{e_1, ..., e_m\}$,
 $e_i = \{v_j, v_k\}, \ 1 \le i \le m, \ 1 \le j, k \le n$

Representations?

Set representation:

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}$$

$$E = \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \{v_9, v_{10}\}\}$$

What is a Graph?

Tuple
$$G = (V, E)$$

Set of nodes $V = \{v_1, ..., v_n\}$
Set of edges $E = \{e_1, ..., e_m\}$,
 $e_i = \{v_j, v_k\}, \ 1 \le i \le m, \ 1 \le j, k \le n$

Representations?

Set representation Adjacency list

What is a Graph?

Tuple
$$G = (V, E)$$

Set of nodes $V = \{v_1, ..., v_n\}$
Set of edges $E = \{e_1, ..., e_m\}$,
 $e_i = \{v_j, v_k\}, \ 1 \le i \le m, \ 1 \le j, k \le n$

Representations?

Set representation Adjacency list Adjacency matrix

1	0	1	0	0	0	0	0	1	0	0	
[1	0	1	0	0	0	0	0	0	0	
	0	1	0	0	1	0	0	0	1	1	
	0	0	0	0	1	1	0	0	1	0	
	0	0	1	1	0	0	0	1	0	0	
	0	0	0	1	0	0	0	1	1	0	
	0	0	0	0	0	0	0	1	1	0	
	1	0	0	0	1	1	1	0	1	1	
	0	0	1	1	0	1	1	1	0	1	
	0	0	1	0	0	0	0	1	1	0	

What is a Graph?

Tuple
$$G = (V, E)$$

Set of nodes $V = \{v_1, ..., v_n\}$
Set of edges $E = \{e_1, ..., e_m\}$,
 $e_i = \{v_j, v_k\}, \ 1 \le i \le m, \ 1 \le j, k \le n$

Representations?

Set representation Adjacency list Adjacency matrix Drawing

What is a Graph?

Tuple
$$G = (V, E)$$

Set of nodes $V = \{v_1, \dots, v_n\}$
Set of edges $E = \{e_1, \dots, e_m\}$,
 $e_i = \{v_j, v_k\}, \ 1 \le i \le m, \ 1 \le j, k \le n$

Representations?

Set representation Adjacency list Adjacency matrix Drawing

- $v_1: v_2, v_8$
- $v_2: v_1, v_3$
- $v_3: v_2, v_5, v_9, v_{10}$
- $v_4: v_5, v_6, v_9$
- $v_5: v_3, v_4, v_8$
- $v_6: v_4, v_8, v_9$
- $v_7: v_8, v_9$
- $v_8: v_1, v_5, v_6, v_7, v_9, v_{10}$
- $v_9: v_3, v_4, v_6, v_7, v_8, v_{10}$
- $v_{10}: v_3, v_8, v_9$

Powered by y

Graphs are mathematical models of real physical and abstract networks (social netowrks, metabolical networks, VLSI-network, UML-diagrams, citation networks, ...)

- People think visually without a good visualization, complex graphs are not understandable to us
- A visualization helps to communicate and explore the graphs/networks
- We need algorithms to draw graphs, and make graphs and networks accessible to people

12

How to draw graphs?

Guiding questions

- what makes a drawing good?
- what is a bad drawing?
- are there measures to quantify that?

How to draw graphs?

Karlsruhe Institute of Technology

Guiding questions

- what makes a drawing good?
- what is a bad drawing?
- are there measures to quantify that?

Warm-up WE WILL DRAW COUPLE OF GRAPHS

- Teams of two
- "tasks" in form of adjacency matrix/list
- Given time 15 minutes
- We will shortly discuss the results afterwards
- https://www.yworks.com/downloads#yEd

Network Visualizations

a small Film

Biblical characters and events (1202)

Source: Joachim de Fiore

"Tree of Life" (1516)

Source: Paul Riccius, Portae Lucis

Geometrical Concepts (1587)

Source: Christophe de Savigny

Genealogical Tree (1879)

Source: Ernst Haeckel

Sociogramm (1933)

Source: Moreno, 1933

Social Network – Organization within UBS

CPAN Developer-Graph

last.fm Graph of musics as political map

(Gansner, Hu, Kobourov: GMap, 2009)

last.fm Graph of musics as political map

(Gansner, Hu, Kobourov: GMap, 2009)

Blogosphere 2004 Elections USA

Social Network – World Finance System

Social Networks – State Funds

25

Temporal Graph Layout: Storylines

Source: ABC news, Australia

Traffic network – Highways USA

Traffic network – Highways USA

28

London Tube Map (1933)

29

Co-centric Tube Map

30 Dr. Tamara Mchedlidze · Algorithms for Graph Visualization

Curvilinear S/U-bahn map

31

Flight Connections

Dr. Tamara Mchedlidze · Algorithms for Graph Visualization

32

Flow-Map: Whiskey Export

Telephony Map

Monitoring of Energy Network

35

Wiring plan/ Cable plan

Medicine – Deseases

Medicine – phylogenetic Tree

Software-Network – UML Diagram

Clustered Software-Graph in 3D

40 Dr. Tamara Mchedlidze · Algorithms for Graph Visualization

Software Call-Graph with edge-bundling

Source: Danny Holten, 2011

Web Trend Map

Source: information Architects, 2009

Large Graphs – Object Mesh

Source: Yifan Hu

Alternative Visualizations: Explorer vs Treemap

Alternative Visualizations: Contact map

Tools

Libraries for graph visualization

- JUNG jung.sourceforge.net (Java)
- OGDF www.ogdf.net (C++)

Visualization tools

- visone visone.info
- graphviz www.graphviz.org
- yEd www.yworks.com
- Gephi www.gephi.org

Basic Definitions

Visual Variables according to Bertin (1967)

Visual Variables according to Bertin (1967)

Layout Problem

Restriction in the following: **drawing** is always meant to be in form of a node-link diagram

Graph visualization problem

given : Graph G = (V, E)find: good drawing Γ of G• $\Gamma : V \to \mathbb{R}^2$, nodes $v \mapsto$ point $\Gamma(v)$ • $\Gamma : E \to$ curves in \mathbb{R}^2 , edge $\{u, v\} \mapsto$ simple open curve $c_{uv} : [0, 1] \to \mathbb{R}^2$ where $c_{uv}(0) = \Gamma(u)$ and $c_{uv}(1) = \Gamma(v)$

Layout Problem

Restriction in the following: **drawing** is always meant to be in form of a node-link diagram

Graph visualization problem

given : Graph G = (V, E)find: good drawing Γ of G• $\Gamma: V \to \mathbb{R}^2$, nodes $v \mapsto$ point $\Gamma(v)$ • $\Gamma: E \to$ curves in \mathbb{R}^2 , edge $\{u, v\} \mapsto$ simple open curve $c_{uv}: [0, 1] \to \mathbb{R}^2$ where $c_{uv}(0) = \Gamma(u)$ and $c_{uv}(1) = \Gamma(v)$

But what is a **good** Drawing?

Requirement to the graph layout

- Karlsruhe Institute of Technology
- 1) Drawing conventions, required properties, for example
 - straight-line edges
 - orthogonal edges (with bends 90 degrees)
 - Drawing on a grid
 - crossing-free

Requirement to the graph layout

- 1) Drawing conventions, required properties
- 2) **Aesthetics** (to be optimized), for example:
 - Number of crossing
 - Number of bends
 - Uniform edge length
 - Area/length
 - Angular resolution
 - Symmetry

 \rightarrow often lead to NP-hard optimization problems! \rightarrow often several competing criteria

Requirement to the graph layout

Karlsruhe Institute of Technology

- 1) Drawing conventions, required properties
- 2) Aesthetics (to be optimized)
- 3) Partial/local constraints, for example:
 - Positions of several vertices
 - Relative positions of vertices
 - Group of nodes drawn close to each other

Layout Problem – Second Attempt

Graph visualization problem

given: Graph G = (V, E)find: good drawing Γ of G, that

- complies with drawing conventions
- optimizes aesthetics
- satisfies local/partial constraints

Layout Problem – Second Attempt

Graph visualization problem

given: Graph G = (V, E)find: good drawing Γ of G, that

- complies with drawing conventions
- optimizes aesthetics
- satisfies local/partial constraints

this definition drives to interesting algorithmic problems

Lecture topics

- Drawings of Trees and other recursively defined graph classes
- straight-line drawings of planar graphs
- incremental layouts
- orthogonal drawings
- contact representation of graphs
- hierarchical drawings of layered graphs
- force-based drawing algorithm

Lecture topics

- Drawings of Trees and other recursively defined graph classes
- straight-line drawings of planar graphs
- incremental layouts
- orthogonal drawings
- contact representation of graphs
- hierarchical drawings of layered graphs
- force-based drawing algorithm

Next Meetings Lecture on 24.10 9:45 Execise on 26.10 9:45 \rightarrow please bring your Laptops \rightarrow install the Software yEd (www.yworks.com)