Exercise Sheet 6

Assignment: January 30, 2017
Discussion: February 8, 2017

1 Edges with Many Bends

Define a family of embedded planar graphs with maximum degree 4 and $O(n)$ vertices, such that for each bend-minimal orthogonal drawing of the given embedding there is an edge that has $\Omega(n)$ bends. Hint: Consider spirals.

2 Extended Canonical Ordering for 4-Connected Graphs

A planar graph $G=(V, E)$ is called proper triangular planar (PTP, for short) if the following coditions hold:

- Every interior face of G is a triangle and the exterior face of G is a quadrangle;
- G has no separating triangles.

Let $G=(V, E)$ be a PTP graph with vertices a, b, c, d on the outer face. A labeling $v_{1}=a, v_{2}=$ $c, v_{3}, \ldots, v_{n}=d$ of the vertices of G is called an extended canonical ordering of G if for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and the boundary C_{k-1} of G_{k-1} contains the edge (a, b);
- v_{k} is in the exterior face of G_{k-1}, and its neighbors in G_{k-1} form (at least 2-element) subinterval of the path $C_{k-1} \backslash(a, b)$. If $k \leq k-2, v_{k}$ has at least 2 neighbors in $G \backslash G_{k-1}$.

Let $G=(V, E)$ be a PTP graph with vertices a, b, c, d on the outer face.
(a) Prove that the graph obtained from G by removal of vertices c, d and all edges incident to them is biconnected.
(b) Let $C=\left\{a=u_{1}, \ldots, u_{k}=b, a\right\}$ be a simple cycle of G such that $c, d \notin C$. Let G_{C} denote the graph induced by the vertices of G laying inside C (including the vertices of C). Let $v_{i} \in C, 2 \leq i \leq k-1$ such that no internal chord of C is incident to v_{i}. Show that $G \backslash\left\{v_{i}\right\}$ is biconnected.
(c) Let C be as above and let $\left(v_{i}, v_{j}\right), 1 \leq i<j \leq k$, be an internal chord of C. Show that there exists a vertex $v_{l}, i<l<j$, which is adjacent to at least two vertices of $G \backslash G_{C}$.
(d) Using (a-c) prove that G has an extended canonical ordering such that $v_{1}=a, v_{2}=b, v_{n-1}=$ $c, v_{n}=d$.

3 Construction of Rectangular Dual

Consider the graph G of the figure. Check whether G satisfies the necessary conditions to have a rectangular dual. In affirmative, construct a rectangular dual of G.

4 Contact Representation of Maximal Planar Graphs

Prove that a maximal planar graph admits a contact representation with T-shapes. An example of such a representation is shown in the figure.
Hint: Use canonical ordering in the way similar to the construction of a visibility representation (Exercise Sheet 1).

