Exercise Sheet 2

Assignment: November 14, 2016
Delivery: None, Discussion on November 23, 2016

1 Canonical Orderings for Triconnected Planar Graphs

Let $G=(V, E)$ be a triconnected plane graph with a vertex v_{1} on the exterior face. Further, let $\pi=\left(V_{1} \ldots . . V_{K}\right)$ be an ordered partition of V, that is, $V_{1} \cup \cdots \cup V_{K}=V$ and $V_{i} \cap V_{j}=0$ for $i \neq j$.

We define G_{k} to be the subgraph of G induced by $V_{1} \cup \cdots \cup V_{K}$ and denote by C_{k} the exterior face of G_{k}.

The sequence π is a canonical ordering of G if:

- V_{1} consists of $\left\{v_{1}, v_{2}\right\}$, where v_{2} lies on the outerface and $\left(v_{1}, v_{2}\right) \in E$.
- $V_{K}=\left\{v_{n}\right\}$ is a singleton, where v_{n} lies on the outerface, $\left\{v_{1}, v_{n}\right\} \in E$, and $v_{n} \neq v_{2}$.
- Each $C_{k}(k>1)$ is a cycle containing $\left\{v_{1}, v_{2}\right\}$.
- Each G_{k} is biconnected and internally triconnected, that is, removing two interior vertices of G_{k} does not disconnect it.
- For each k with $2 \leq k \leq K-1$, one of the following conditions holds:

1. $V_{k}=\{z\}$, where z belongs to C_{k} and has at least one neighbor in $G-G_{k}$.
2. $V_{k}=\left\{z_{1}, \ldots, z_{\ell}\right\}$ is a chain, where each z_{i} has at least one neighbor in $G-G_{k}$ and where z_{1} and z_{ℓ} each have one neighbor on C_{k-1}, and these are the only two neighbors of V_{k} in G_{k-1}.

Prove that every triconnected planar graph admits a canonical ordering.
Hint: Use reverse induction. For the induction step, consider the two cases that G_{k} is triconnected and G_{k} is not triconnected.

2 Visibility Representation of Maximal Planar Graphs

Recall the definition of visibility representation from the previous exersize set. Prove that every maximal planar graph admits a visibility representation.

Hint: Use canonical ordering.

3 Barycentric Coordinates

Let $\Delta_{a, b, c}$ be a triangle on the plane on vertices a, b and c. For each point x laying inside triangle $\Delta_{a, b, c}$ there exists a triple $\left(x_{a}, x_{b}, x_{c}\right)$ such that $x_{a} \cdot a+x_{b} \cdot b+x_{c} \cdot c=x$ and $x_{a}+x_{b}+x_{c}=1$. The triple $\left(x_{a}, x_{b}, x_{c}\right)$ is called barycentric coordinates of x with respect to $\Delta_{a, b, c}$.

Prove that:
(a) If $A(\Delta)$ denotes the area of the triangle A, then

$$
x_{a}=\frac{A\left(\Delta_{b, c, x}\right)}{A\left(\Delta_{a, b, c}\right)}, x_{b}=\frac{A\left(\Delta_{a, c, x}\right)}{A\left(\Delta_{a, b, c}\right)}, x_{c}=\frac{A\left(\Delta_{a, b, x}\right)}{A\left(\Delta_{a, b, c}\right)}
$$

(b) Equations $x_{a}=0, x_{b}=0, x_{c}=0$ represent lines through $b c$,,$a b$ and $a b$, respectively.
(c) Let $\left(x_{a}, x_{b}, x_{c}\right)$ be barycentric coordinates of point x in triagnle $\Delta_{a b c}$. The set of points $\left\{\left(x_{a}, x_{b}^{\prime}, x_{c}^{\prime}\right): x_{b}^{\prime}, x_{c}^{\prime} \in \mathbb{R}\right\}$ represents a line parallel to edge $b c$ passing through point x. Similarly, sets of points $\left\{\left(x_{a}^{\prime}, x_{b}, x_{c}^{\prime}\right): x_{a}^{\prime}, x_{c}^{\prime} \in \mathbb{R}\right\},\left\{\left(x_{a}^{\prime}, x_{b}^{\prime}, x_{c}\right): x_{a}^{\prime}, x_{b}^{\prime} \in \mathbb{R}\right\}$ represent lines parallel to edges $a c, a b$, respectively, passing through point x.

4 Baricentric representation

A Barycentric Representation of a graph $G=(V, E)$ is an assigment of barycentric coordinates to the vertices of G, i.e. it is an injective function $v \in V \mapsto\left(v_{a}, v_{b}, v_{c}\right) \in \mathbb{R}^{3}$, such that:

- $v_{a}+v_{b}+v_{c}=1$ for all $v \in V$
- for each $(x, y) \in E$ and each $z \in V \backslash\{x, y\}, \exists k \in\{a, b, c\}$ with $x_{k}<z_{k}$ and $y_{k}<z_{k}$.

Prove the following lemma.
Lemma 1. A barycentric representation f of a graph G is a planar straight line drawing of G in the plane spanned by three points $(1,0,0),(0,1,0),(0,0,1)$.

