Karlsruher Institut für Technologie Fakultät für Informatik ITI Wagner Algorithmen zur Visualisierung von Graphen WS 16/17 Tamara Mchedlidze, Benjamin Niedermann

Exercise Sheet 2

Assignment:November 14, 2016Delivery:None, Discussion on November 23, 2016

1 Canonical Orderings for Triconnected Planar Graphs

Let G = (V, E) be a triconnected plane graph with a vertex v_1 on the exterior face. Further, let $\pi = (V_1, \dots, V_K)$ be an ordered partition of V, that is, $V_1 \cup \dots \cup V_K = V$ and $V_i \cap V_j = 0$ for $i \neq j$.

We define G_k to be the subgraph of G induced by $V_1 \cup \cdots \cup V_K$ and denote by C_k the exterior face of G_k .

The sequence π is a *canonical ordering* of G if:

- V_1 consists of $\{v_1, v_2\}$, where v_2 lies on the outerface and $(v_1, v_2) \in E$.
- $V_K = \{v_n\}$ is a singleton, where v_n lies on the outerface, $\{v_1, v_n\} \in E$, and $v_n \neq v_2$.
- Each C_k (k > 1) is a cycle containing $\{v_1, v_2\}$.
- Each G_k is biconnected and internally triconnected, that is, removing two interior vertices of G_k does not disconnect it.
- For each k with $2 \le k \le K 1$, one of the following conditions holds:
 - 1. $V_k = \{z\}$, where z belongs to C_k and has at least one neighbor in $G G_k$.
 - 2. $V_k = \{z_1, \ldots, z_\ell\}$ is a chain, where each z_i has at least one neighbor in $G G_k$ and where z_1 and z_ℓ each have one neighbor on C_{k-1} , and these are the only two neighbors of V_k in G_{k-1} .

Prove that every triconnected planar graph admits a canonical ordering.

Hint: Use reverse induction. For the induction step, consider the two cases that G_k is triconnected and G_k is not triconnected.

2 Visibility Representation of Maximal Planar Graphs

Recall the definition of *visibility representation* from the previous exersize set. Prove that every maximal planar graph admits a visibility representation.

Hint: Use canonical ordering.

3 Barycentric Coordinates

Let $\Delta_{a,b,c}$ be a triangle on the plane on vertices a, b and c. For each point x laying inside triangle $\Delta_{a,b,c}$ there exists a triple (x_a, x_b, x_c) such that $x_a \cdot a + x_b \cdot b + x_c \cdot c = x$ and $x_a + x_b + x_c = 1$. The triple (x_a, x_b, x_c) is called *barycentric coordinates* of x with respect to $\Delta_{a,b,c}$.

Prove that:

(a) If $A(\Delta)$ denotes the area of the triangle A, then

$$x_a = \frac{A(\Delta_{b,c,x})}{A(\Delta_{a,b,c})}, \ x_b = \frac{A(\Delta_{a,c,x})}{A(\Delta_{a,b,c})}, \ x_c = \frac{A(\Delta_{a,b,x})}{A(\Delta_{a,b,c})}$$

(b) Equations $x_a = 0$, $x_b = 0$, $x_c = 0$ represent lines through bc, ab and ab, respectively.

(c) Let (x_a, x_b, x_c) be barycentric coordinates of point x in triagnle Δ_{abc} . The set of points $\{(x_a, x'_b, x'_c) : x'_b, x'_c \in \mathbb{R}\}$ represents a line parallel to edge bc passing through point x. Similarly, sets of points $\{(x'_a, x_b, x'_c) : x'_a, x'_c \in \mathbb{R}\}$, $\{(x'_a, x'_b, x_c) : x'_a, x'_b \in \mathbb{R}\}$ represent lines parallel to edges ac, ab, respectively, passing through point x.

4 Baricentric representation

A Barycentric Representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G, i.e. it is an *injective* function $v \in V \mapsto (v_a, v_b, v_c) \in \mathbb{R}^3$, such that:

- $v_a + v_b + v_c = 1$ for all $v \in V$
- for each $(x, y) \in E$ and each $z \in V \setminus \{x, y\}$, $\exists k \in \{a, b, c\}$ with $x_k < z_k$ and $y_k < z_k$.

Prove the following lemma.

Lemma 1. A barycentric representation f of a graph G is a planar straight line drawing of G in the plane spanned by three points (1,0,0), (0,1,0), (0,0,1).