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Forecasting challenges 

Data cleansing
Identifying incomplete and inaccurate data  
Removing irrelevant data
Choosing relevant input variables

Choosing suitable forecasting techniques

Integration
Scenario generation
Modeling
Post processing
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Renewable energy forecasting 
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Forecasting techniques

Physical models Statistical models

White box models
Also called parametric 
Use analytical equations
E.g. use irradiance forecast

Black box models
Also called non parametric
Direct prediction of power output
Use machine learning methods

Hybrid Models

Moritz Schmid - Probabilistic Energy Forecasting
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Statistical forecasting techniques (1)

Regression
Estimate the relationship between a dependent and a independent 
variable
Predictor variable: wind speed, …
Criterion variable: power output

Artificial neural networks (ANN):
Consists of a group of interconnected neurons
Connections have numeric weights
All connections together produce an output
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Statistical forecasting techniques (2)

K-nearest-neighbors (kNN):
Compares current values with training samples in a feature space
K-nearest neighbors with the smallest distance are selected for the 
predictions

Support vector machines (SVM):
Perform well with non-linear problems
Use transformations to keep the complexity of problems low
Known as support vector regression machines (SVR) when solving 
regression problems
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Published techniques in solar energy forecasting based 
on studies
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[Antonanzas16]
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From deterministic to probabilistic forecasting
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Probabilistic forecasts
Quantify uncertainty
Add relevant information about the expected values
Assign a probability to each outcome

[Antonanzas16]
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Obtaining probabilistic forecasts

Parametric approach 
Forecast values follow a known distribution
Goal: determine the parameters describing it

Non parametric approach 
Makes no assumption about a distribution
Goal: approximate the actual distribution with training data
E.g. Combining Quantile regression models, point forecasting models

Both parametric and nonparametric approaches are feasible and 
commonly used
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Confidence and prediction interval

Confidence interval Prediction interval

Contains the parameter of interest 
with a specific probability
Possible sample set: {X1, ..., Xn}

Is smaller than prediction interval

Contains a random variable yet to 
be observed
Estimates the value of the next 
sample variable, Xn+1

Account for uncertainty of 
population mean and data scatter
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Electricity price forecasting(1)
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[Hong16]
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Electricity price forecasting(2)
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[Hong16]
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Electric load forecasting

Probabilistic monthly peak load forecast for a US utility
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[Hong16]
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Number of journal papers in load forecasting
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PLF: Probabilistic Load Forecasting 
[Hong16]
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Forecasting maturity in the energy sector
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o LTLF: Long term load forecasting
o WPF: Wind power forecasting
o STLF: Short-term load 

forecasting

o SPF: Solar power forecasting
o EPF: Electricity price forecasting

[Hong16a]
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Developed by Y. Zhang, J. Wang

Goal: Improve decision making in power system operations

Model approach:
1. Using k-nearest neighbor algorithm to find days with similar weather 

conditions in historical dataset 
2. Calculating point forecast based on averaged corresponding power values
3. Determining optimal weighting factors
4. Deriving probability density by applying a kernel density estimator method 
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Probabilistic solar power forecasting model based on k-
nearest neighbor and kernel density estimator
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K-NN algorithm (1)

Task: Find the k-closest training examples in the feature space
Steps:

Calculating the distance between testing and training data
Choosing k nearest neighbors with the smalles distance

Weighted manhattan distance:

X ,Y : two instances from the training and testing data sets
xi, yi : input variables
n : number of input variables
wi : weight assigned to the i-th input variable
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]
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K-NN algorithm (2)

The instances X1, ..., Xk with the smallest distances are the k nearest 
neighbors 
Point forecast is made based on the corresponding power observations 
p1, ..., pK

Calculation by using a weighted exponential function

δk : Weight associated with the instance Xk

pk: Power output associated with the instance Xk

dk: Distance associated with the instance Xk
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Determining optimal weighting factors

Use sum of square error measure to assess prediction performance

Coordinate decent algorithm determines optimal weighting factors of 
the manhattan distance
The algorithm minimizes of the sum of square error 
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[Zhang14]

pi : observed power output
p*i: predicted power output
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Kernel density estimator

Derive probability density

G(): kernel function, h: bandwidth

The predictive density of the power output is converted into 99 
quantiles
for a specific quantile a:

F*-1 : inversion of the cumulative distribution function
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Application to a real world use case
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Data from the European Centre for medium range weather forecasts

Input variables to the model selected via forward feature selection:
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Deterministic forecasting results(1)
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Evaluation measure for the point forecast: 

pi: observed power output
p*i : predicted power output

Evaluation results of point forecast: 
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Deterministic forecasting results(2)

Point forecasting of solar power output from April 1st to April 7th 2013
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[Zhang14]
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Probabilistic forecasting results(1)
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Evaluation measure for probabilistic prediction:

Evaluation results of probabilistic prediction:
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Probabilistic forecasting results(2)
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Probabilistic forecasting of solar power output on April 1st 2013 

[Zhang14]
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Recap and outlook

Benefits of accurate forecasts

Benefits of probabilistic forecasting

Forecasting techniques and input variables

Probabilstic forecasting is a hot topic but is still in its infancy

Especially for probabilistic solar energy forecasting there is room for 
improvements
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Literature (2)
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Back up: Coordinate decent algorithm 
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Histogram of solar power output 
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Commonly used kernel functions
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Gaussian Kernel
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Kernel density estimation of 100 normally distributed 
random numbers
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different smoothing bandwidths are used
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Kernel density estimation of 100 normally distributed 
random numbers
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Grey: true density (standard 
normal)

Red: KDE with h=0.05

Black:  KDE with h=0.337 

Green: KDE with h=2
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Persistence model
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Pp( t + fh ) = P(t)

fh: forecast horizon
P: power output
Applicable if no change of conditions between t and t + fh


