

Probabilistic Energy Forecasting

Moritz Schmid Seminar Energieinformatik WS 2015/16

Institute for Applied Computer Science



www.kit.edu

Agenda

- Forecasting challenges
- Renewable energy forecasting
- Electricity price forecasting
- Electric load forecasting
- Probabilistic solar power forecasting model based on k-nearest neighbor and kernel density estimator

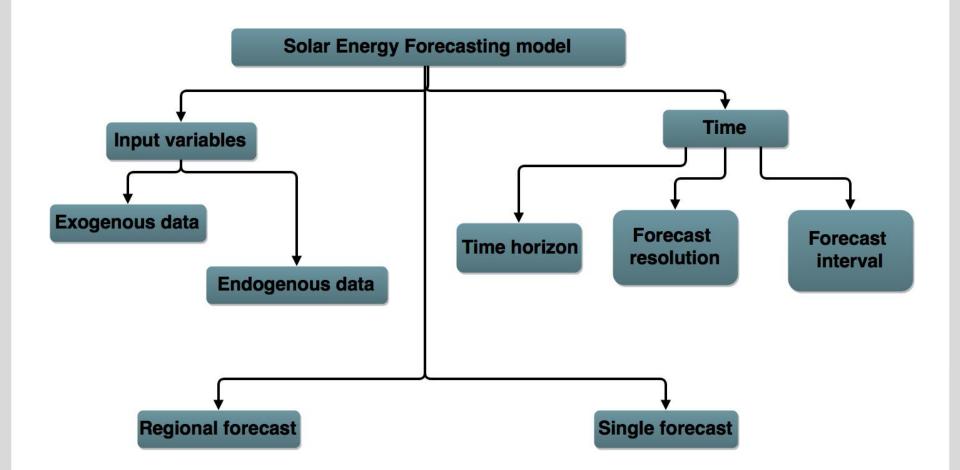
Recap and outlook

Karlsruhe Institute of Technology

Forecasting challenges

- Data cleansing
 - Identifying incomplete and inaccurate data
 - Removing irrelevant data
 - Choosing relevant input variables
- Choosing suitable forecasting techniques
- Integration
 - Scenario generation
 - Modeling
 - Post processing

Renewable energy forecasting



Forecasting techniques

Physical models	Statistical models
White box modelsAlso called parametric	Black box modelsAlso called non parametric
 Use analytical equations E.g. use irradiance forecast 	 Direct prediction of power output Use machine learning methods

Hybrid Models

Statistical forecasting techniques (1)

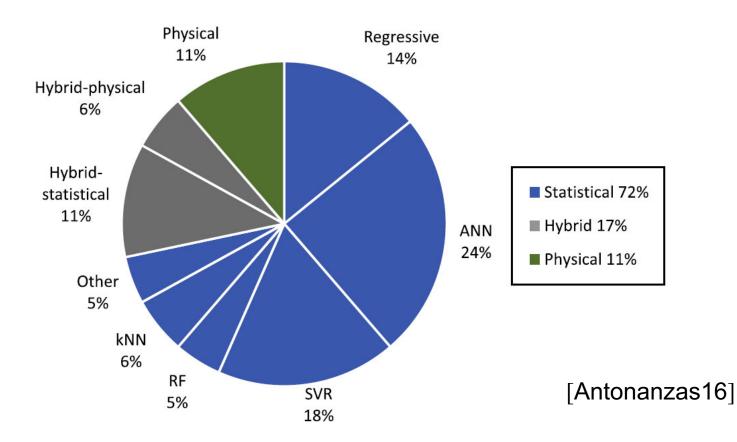
Regression

- Estimate the relationship between a dependent and a independent variable
- Predictor variable: wind speed, …
- Criterion variable: power output
- Artificial neural networks (ANN):
 - Consists of a group of interconnected neurons
 - Connections have numeric weights
 - All connections together produce an output

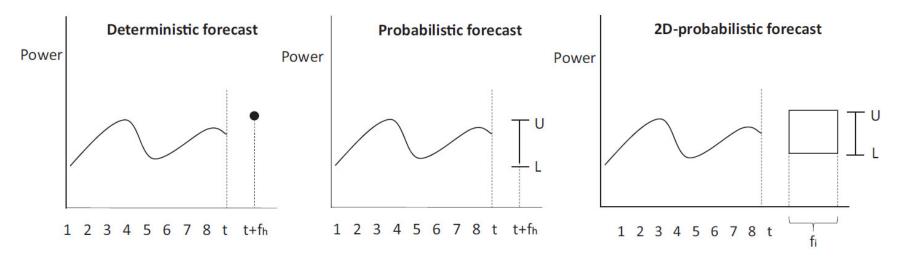
Statistical forecasting techniques (2)

- K-nearest-neighbors (kNN):
 - Compares current values with training samples in a feature space
 - K-nearest neighbors with the smallest distance are selected for the predictions
- Support vector machines (SVM):
 - Perform well with non-linear problems
 - Use transformations to keep the complexity of problems low
 - Known as support vector regression machines (SVR) when solving regression problems

Published techniques in solar energy forecasting based on studies



From deterministic to probabilistic forecasting



[Antonanzas16]

Probabilistic forecasts

- Quantify uncertainty
- Add relevant information about the expected values
- Assign a probability to each outcome

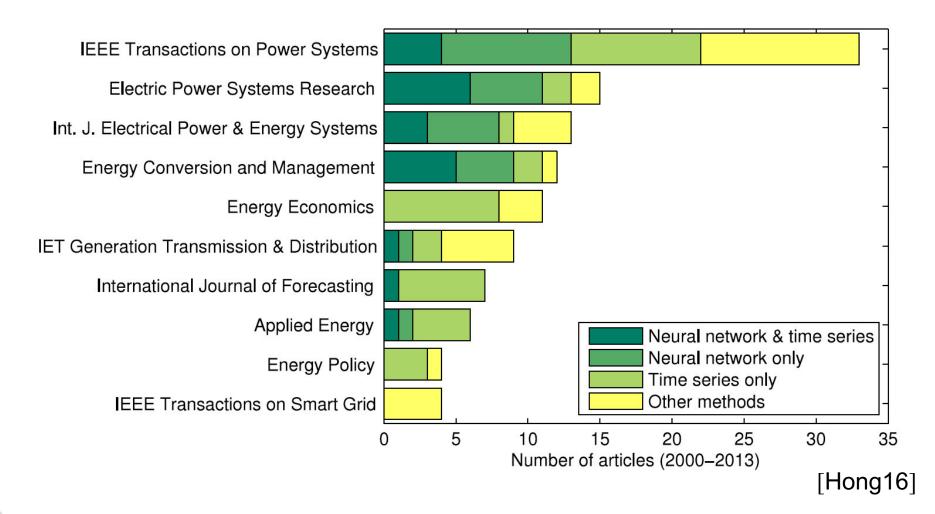
Obtaining probabilistic forecasts

- Parametric approach
 - Forecast values follow a known distribution
 - Goal: determine the parameters describing it
- Non parametric approach
 - Makes no assumption about a distribution
 - Goal: approximate the actual distribution with training data
 - E.g. Combining Quantile regression models, point forecasting models
- Both parametric and nonparametric approaches are feasible and commonly used

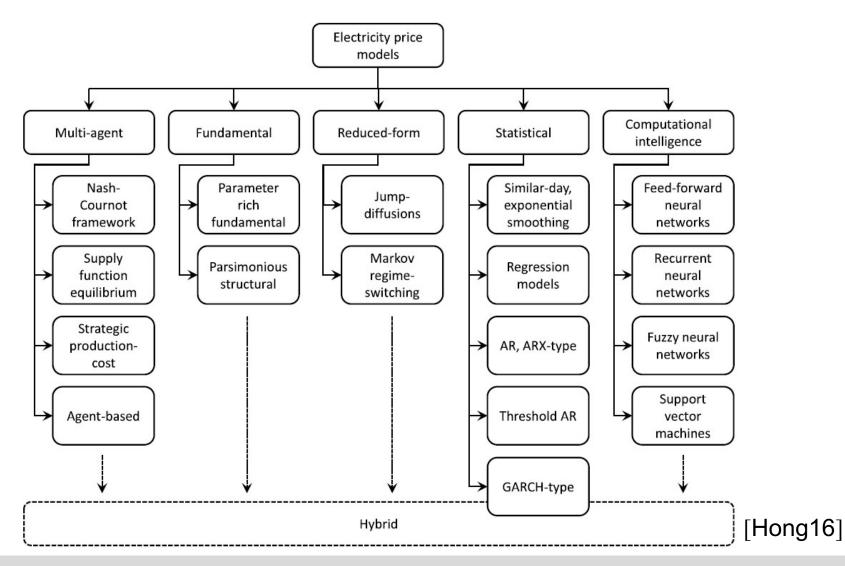
Confidence and prediction interval

Confidence interval	Prediction interval
Contains the parameter of interest with a specific probability	Contains a random variable yet to be observed
Possible sample set: {X ₁ ,, X _n }	Estimates the value of the next sample variable, X _{n+1}
Is smaller than prediction interval	Account for uncertainty of population mean and data scatter

Electricity price forecasting(1)

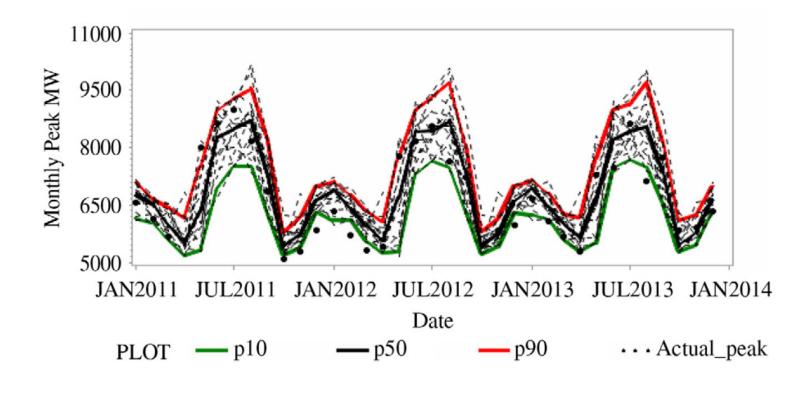


Electricity price forecasting(2)



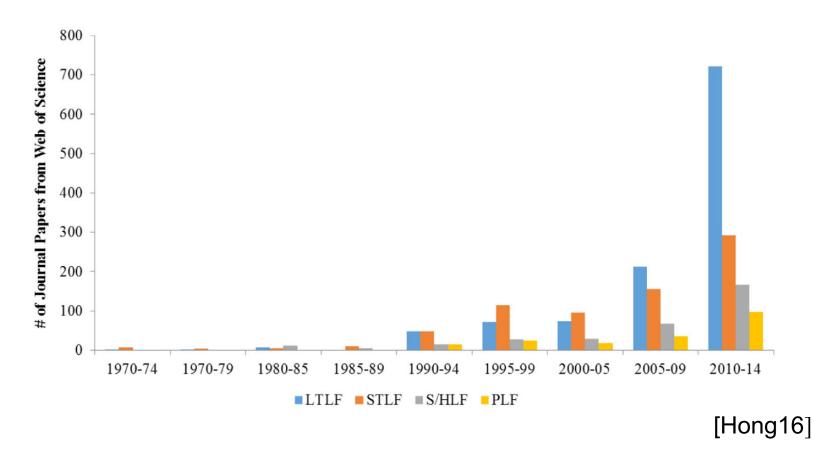
Electric load forecasting

Probabilistic monthly peak load forecast for a US utility



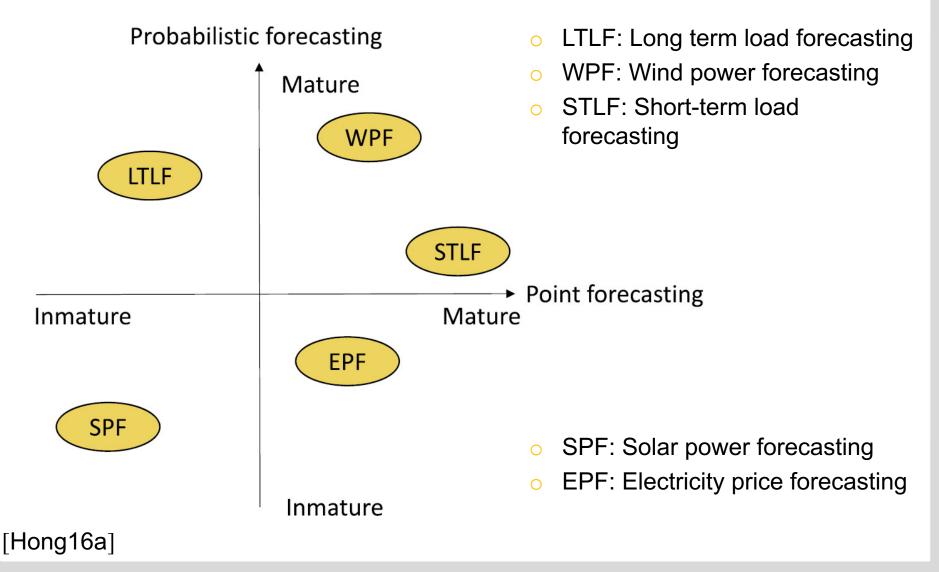
[Hong16]

Number of journal papers in load forecasting



PLF: Probabilistic Load Forecasting

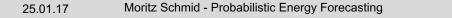
Forecasting maturity in the energy sector



Probabilistic solar power forecasting model based on knearest neighbor and kernel density estimator

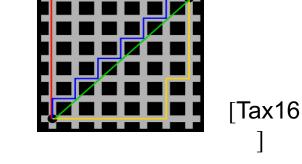
- Developed by Y. Zhang, J. Wang
- Goal: Improve decision making in power system operations
- Model approach:
 - 1. Using k-nearest neighbor algorithm to find days with similar weather conditions in historical dataset
 - 2. Calculating point forecast based on averaged corresponding power values
 - 3. Determining optimal weighting factors
 - 4. Deriving probability density by applying a kernel density estimator method

K-NN algorithm (1)



18

- X,Y: two instances from the training and testing data sets
- x_i, y_i : input variables
- n : number of input variables
- w_i: weight assigned to the i-th input variable

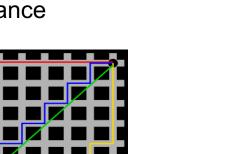


Steps:

Task: Find the k-closest training examples in the feature space

- Calculating the distance between testing and training data
- Choosing k nearest neighbors with the smalles distance
 - Weighted manhattan distance:

$$D[X, Y] = \sum_{i=1}^{n} w_i |x_i - y_i|,$$



K-NN algorithm (2)

- The instances X₁, ..., X_k with the smallest distances are the k nearest neighbors
- Point forecast is made based on the corresponding power observations p₁, ..., p_K
- Calculation by using a weighted exponential function

$$\hat{p} = \sum_{k=1}^{K} \delta_k p_k = \frac{\sum_{k=1}^{K} e^{-d_k} \cdot p_k}{\sum_{k=1}^{K} e^{-d_k}}.$$

- δ_k : Weight associated with the instance X_k
- p_k : Power output associated with the instance X_k
- d_k: Distance associated with the instance X_k

Determining optimal weighting factors

Use sum of square error measure to assess prediction performance

$$SSE = \sum_{i=1}^{m} (p^i - \hat{p}^i)^2$$

pⁱ: observed power output p*ⁱ: predicted power output

- Coordinate decent algorithm determines optimal weighting factors of the manhattan distance
- The algorithm minimizes of the sum of square error

Algorithm 1: Coordinate Descent1Loop until convergence2For
$$n = 1, 2 ..., r$$
3 $\widehat{w}_n = \operatorname{argmin}_{w_n} SSE(w_1, ..., w_{n-1}, w_n, w_{n+1}, ..., w_r)$ 4End For5End Loop

[Zhang14]

Kernel density estimator

Derive probability density

$$\hat{f}(p) = \frac{1}{Kh} \sum_{k=1}^{K} \delta^{k} G\left(\frac{p-p^{k}}{h}\right) = \frac{1}{Kh} \sum_{k=1}^{K} \frac{e^{-d^{k}} G\left(\frac{p-p^{k}}{h}\right)}{\sum_{k=1}^{K} e^{-d^{k}}}$$

G(): kernel function, h: bandwidth

- The predictive density of the power output is converted into 99 quantiles
- for a specific quantile a:

$$q_a = \widehat{F}^{-1}\left(\frac{a}{100}\right)$$

F^{*-1}: inversion of the cumulative distribution function

Application to a real world use case

Data from the European Centre for medium range weather forecasts

Variable	Description	Abbreviate	Unit
VAR78	Total Column Liquid Water	TCLW	kg/m ²
VAR79	Total Column Ice Water	TCIW	kg/m ²
VAR134	Surface Pressure	SP	Pa
VAR157	Relative Humidity at 1000 mbar	R	%
VAR164	Total Cloud Cover	TCC	0-1
VAR165	10 Meter U Wind Component	10U	m/s
VAR166	10 Meter V Wind Component	10V	m/s
VAR167	2 Meter Temperature	2T	K
VAR169	Surface Solar Radiation Down	SSRD	J/m ²
VAR175	Surface Thermal Radiation Down	STRD	J/m ²
VAR178	Top Net Solar Radiation	TSR	J/m ²
VAR228	Total Precipitation	TP	m

Input variables to the model selected via forward feature selection:

Stage	Feature Subset	Feature	Score Q
1	HOUR/VAR169	VAR169	0.013913
2	HOUR/VAR169/VAR79	VAR79	0.013708
3	HOUR/VAR169/VAR79/VAR78	VAR78	0.013410
4	HOUR/VAR169/VAR79/VAR78/VAR157	VAR157	0.013395

Deterministic forecasting results(1)

Evaluation measure for the point forecast:

$$\text{RMSE} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (p^i - \hat{p}^i)^2}$$

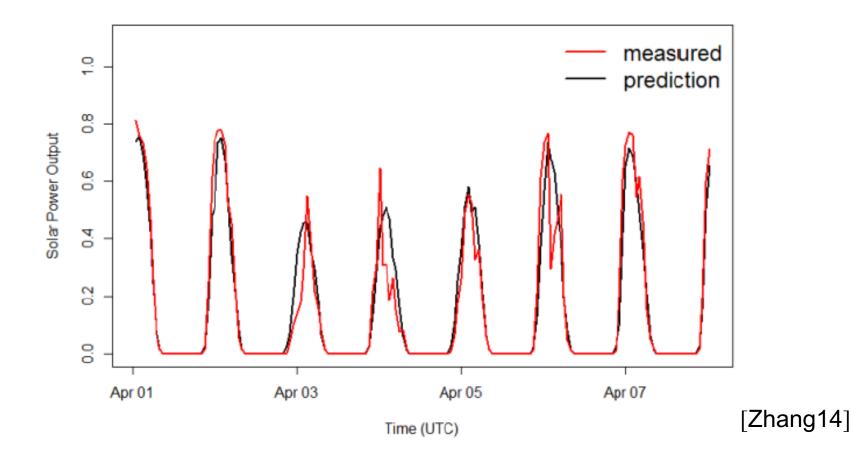
pⁱ: observed power output
p*ⁱ: predicted power output

Evaluation results of point forecast:

Task	Period	RMSE		
Task		Farm #1	Farm #2	Farm #3
1	Apr 2013	0.088132	0.077563	0.075661
2	May 2013	0.071035	0.079000	0.068553
3	May 2013	0.076475	0.079952	0.083946
4	Jul 2013	0.101122	0.098185	0.092904
5	Aug 2013	0.089117	0.104147	0.126994
Average		0.085176	0.087769	0.089611
Standard Variance		0.011770	0.012438	0.022795

Deterministic forecasting results(2)

Point forecasting of solar power output from April 1st to April 7th 2013



Probabilistic forecasting results(1)

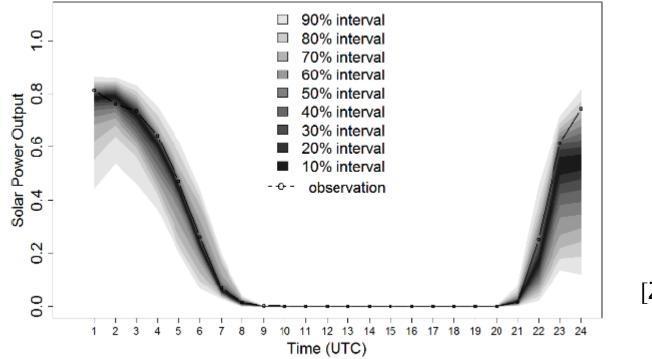
Evaluation measure for probabilistic prediction:

$$Q(q_a, p^i) = \begin{cases} \left(1 - \frac{a}{100}\right)(q_a - p^i) & \text{if } p^i < q_a \\ \frac{a}{100}(p^i - q_a) & \text{if } p^i \ge q_a \end{cases}$$

Evaluation results of probabilistic prediction:

Task	Period	Score Q		
		Farm #1	Farm #2	Farm #3
1	Apr 2013	0.013646	0.013064	0.013299
2	May 2013	0.010751	0.012373	0.010904
3	May 2013	0.011650	0.013272	0.013477
4	Jul 2013	0.015350	0.016171	0.014242
5	Aug 2013	0.013778	0.016880	0.021629
Average		0.013035	0.014352	0.014710
Standard Variance 0.001831 0.002027 0.00		0.004064		

Probabilistic forecasting results(2)



[Zhang14]

Probabilistic forecasting of solar power output on April 1st 2013

Recap and outlook

- Benefits of accurate forecasts
- Benefits of probabilistic forecasting
- Forecasting techniques and input variables
- Probabilstic forecasting is a hot topic but is still in its infancy
- Especially for probabilistic solar energy forecasting there is room for improvements

Literature (1)

[Hong16]	T. Hong, S. Fan: Probabilistic electric load forecasting: A tutorial review, International Journal of Forecasting 32 (2016) 914–938
[Hong16a]	T. Hong, P. Pinson, S. Fan, H. Zareipour, A.Troccoli, R. Hyndman, Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond, International Journal of Forecasting 32 (2016) 896–913
[Antonanzas16]	J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F.J. Martinez-de-Pison, F. Antonanzas-Torres: Review of photovoltaic power forecasting, Solar Energy 136 (2016) 78– 111
[Tax16]	https://en.wikipedia.org/wiki/Taxicab_geometry
[Zhang14]	Y. Zhang, J. Wang: GEFCom2014 Probabilistic Solar Power Forecasting based on k-Nearest Neighbor and Kernel Density Estimator

Literature (2)

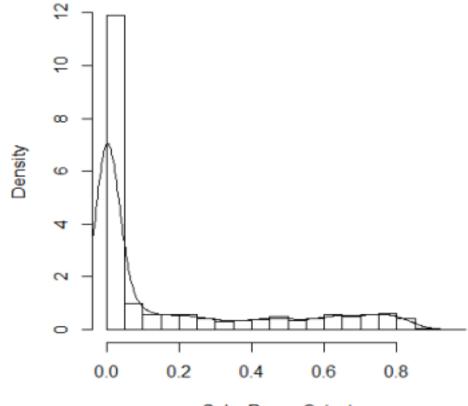
[Wer14]

F. Weron: Electricity price forecasting: A review of the state-of-the-art with a look into the future, International Journal of Forecasting 30 (2014) 1030–1081

Back up: Coordinate decent algorithm

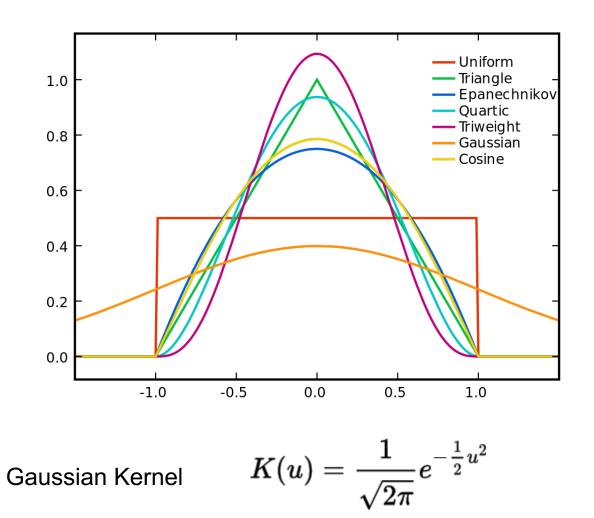
$$\underset{w_1,w_2,\ldots,w_r}{\operatorname{argmin}} \operatorname{SSE} = \underset{w_1,w_2,\ldots,w_r}{\operatorname{argmin}} \sum_{i=1}^m [p^i - \hat{p}^i(w_1,w_2,\ldots,w_r)]^2$$

Histogram of solar power output

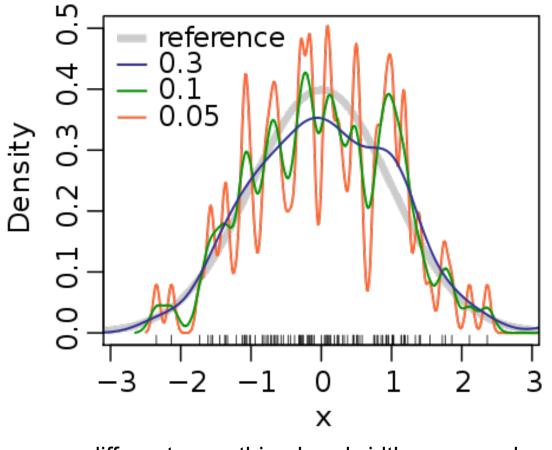


Solar Power Output

Commonly used kernel functions

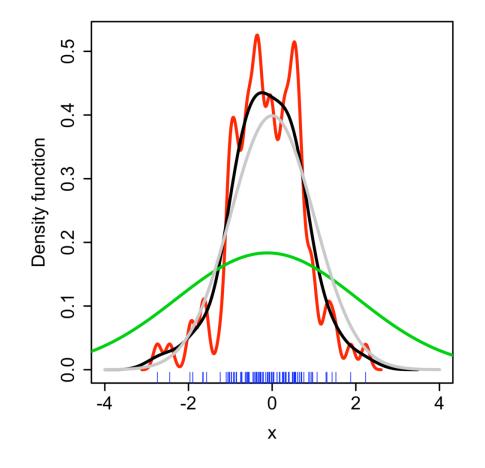


Kernel density estimation of 100 normally distributed random numbers



different smoothing bandwidths are used

Kernel density estimation of 100 normally distributed random numbers



Grey: true density (standard normal)

Red: KDE with h=0.05

Black: KDE with h=0.337

Green: KDE with h=2

Karlsruhe Institute of Technology

Persistence model

- $P_p(t + f_h) = P(t)$
- f_h: forecast horizon
- P: power output
- Applicable if no change of conditions between t and t + f_h