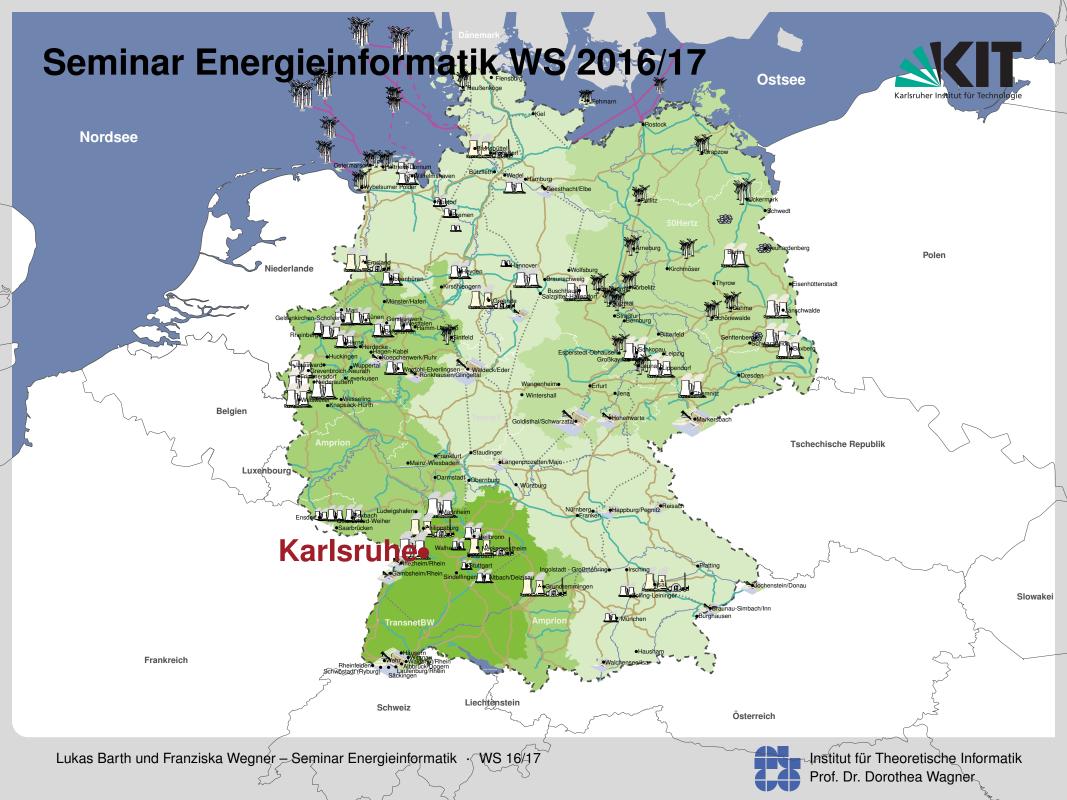
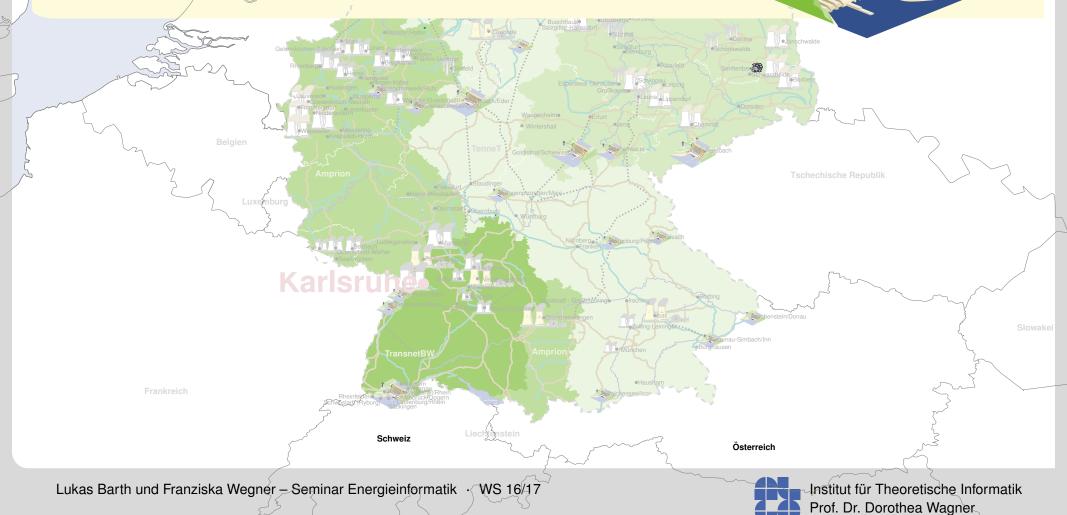


Energieinformatik


Seminar · 18. Oktober 2016

Lukas Barth und Franziska Wegner

LEHRSTÜHLE PROF. FICHTNER, PROF. HAGENMEYER, PROF. SCHMECK UND PROF. WAGNER · FAKULTÄTEN FÜR INFORMATIK UND FÜR WIRTSCHAFTSWISSENSCHAFTEN



Aspekte der Energiewende

- Vermehrté Einspeisung aus erneuerbaren Energieerzeugern
- Dezentrale und volatile Stromerzeugung

Aspekte der Energiewende

- Vermehrté Einspeisung aus erneuerbaren Energieerzeugern
- Dezentrale und volatile Stromerzeugung

Probleme

- Engpässe durch bidirektionalen Stromfluss
- Lastspitzen und Verbrauch können von erneuerbaren Erzeugern nicht beliebig abgefangen werden

Institut für Theoretische Informatik
Prof. Dr. Dorothea Wagner

Aspekte der Energiewende

- Vermehrté Einspeisung aus erneuerbaren Energieerzeugern
- Dezentrale und volatile Stromerzeugung

Probleme

- Engpässe durch bidirektionalen Stromfluss
- Lastspitzen und Verbrauch können von erneuerbaren Erzeugern nicht beliebig abgefangen werden

Kompetenzen

- Informatik
- Wirtschaftswissenschaft
- Elektrotechnik
- Rechtswissenschaft

Aspekte der Energiewende

- Vermehrté Einspeisung aus erneuerbaren Energieerzeugern
- Dezentrale und volatile Stromerzeugung

Probleme

- Engpässe durch bidirektionalen Stromfluss
- Lastspitzen und Verbrauch können von erneuerbaren Erzeugern nicht beliebig abgefangen werden

Kompetenzen

- Informatik
- Wirtschaftswissenschaft
- Elektrotechnik
- Rechtswissenschaft

Intelligente Steuerung der Netzinfrastruktur mithilfe von Algorithmen, Simulationen und Modellierungen

Übersicht

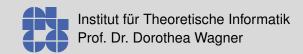
1. Organisatorisches

- Ablauf
- Anforderungen
- Themen

2. ipe Tutorial

Lernziele

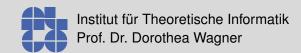
- eigenständiges Einarbeiten in ein aktuelles Forschungsthema aus dem Bereich "Energieinformatik"
- die Highlights des Themas extrahieren
- das Thema anschaulich und gut aufbereitet in einem wissenschaftlichen Vortrag vermitteln
- Themen der anderen Teilnehmer aktiv diskutieren
- das Thema in einer schriftlichen Seminararbeit in eigenen Worten und mit eigenem Schwerpunkt darstellen


- eigenständiges Einarbeiten
- Präsentieren des Themas im Hauptvortrag
- Anwesenheit an allen Terminen und Diskussionsbeteiligung
- schriftliche Ausarbeitung des Themas in eigenen Worten und mit eigenem Schwerpunkt
- Einhalten der gesetzten Fristen

- eigenständiges Einarbeiten
- Präsentieren des Themas im Hauptvortrag
- Anwesenheit an allen Terminen und Diskussionsbeteiligung
- schriftliche Ausarbeitung des Themas in eigenen Worten und mit eigenem Schwerpunkt
- Einhalten der gesetzten Fristen

Benotung für Informatiker

- Qualität des Hauptvortrags (Inhalt und Form) 60%
- Qualität der finalen Seminararbeit 40%
- Nichteinhalten von Fristen führt zur Abwertung!

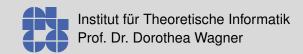


- eigenständiges Einarbeiten
- Präsentieren des Themas im Hauptvortrag
- Anwesenheit an allen Terminen und Diskussionsbeteiligung
- schriftliche Ausarbeitung des Themas in eigenen Worten und mit eigenem Schwerpunkt
- Einhalten der gesetzten Fristen

Benotung für Informatiker-

Erste Version der Seminararbeit ist unbenotet

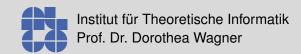
- Qualität des Hauptvortrags (Inhalt und Form) 60%
- Qualität der finalen Seminararbeit 40%
- Nichteinhalten von Fristen führt zur Abwertung!



- eigenständiges Einarbeiten
- Präsentieren des Themas im Hauptvortrag
- Anwesenheit an allen Terminen und Diskussionsbeteiligung
- schriftliche Ausarbeitung des Themas in eigenen Worten und mit eigenem Schwerpunkt
- Einhalten der gesetzten Fristen

Benotung für WiWi

- Qualität des Hauptvortrags (Inhalt und Form) 40%
- Qualität der finalen Seminararbeit 60%
- Nichteinhalten von Fristen führt zur Abwertung!



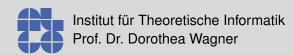
- eigenständiges Einarbeiten
- Präsentieren des Themas im Hauptvortrag
- Anwesenheit an allen Terminen und Diskussionsbeteiligung
- schriftliche Ausarbeitung des Themas in eigenen Worten und mit eigenem Schwerpunkt
- Einhalten der gesetzten Fristen

Benotung für WiWi

Erste Version der Seminararbeit ist unbenotet

- Qualität des Hauptvortrags (Inhalt und Form) 40%
- Qualität der finalen Seminararbeit 60%
- Nichteinhalten von Fristen führt zur Abwertung!

1) die Paper überfliegen, danach gründlich lesen


- 1) die Paper überfliegen, danach gründlich lesen
- 2) Überblick über verwandte ältere Arbeiten machen
 - Welche Arbeiten und Ergebnisse werden zitiert? → Related Work
 - Welche davon sind die wichtigsten Grundlagen?
 - Was war Stand der Forschung vor dem Paper?
 - → Artikelsuche in Google Scholar oder DBLP; Zugang aus dem Uninetz

- 1) die Paper überfliegen, danach gründlich lesen
- 2) Überblick über verwandte ältere Arbeiten machen
 - Welche Arbeiten und Ergebnisse werden zitiert? → Related Work
 - Welche davon sind die wichtigsten Grundlagen?
 - Was war Stand der Forschung vor dem Paper?
 - → Artikelsuche in Google Scholar oder DBLP; Zugang aus dem Uninetz
- 3) Bedeutung der Paper einschätzen
 - Wer verweist auf die Paper?
 - ightarrow in Google Scholar "zitiert durch"-Funktion verwenden

- 1) die Paper überfliegen, danach gründlich lesen
- 2) Überblick über verwandte ältere Arbeiten machen
 - Welche Arbeiten und Ergebnisse werden zitiert? → Related Work
 - Welche davon sind die wichtigsten Grundlagen?
 - Was war Stand der Forschung vor dem Paper?
 - → Artikelsuche in Google Scholar oder DBLP; Zugang aus dem Uninetz
- 3) Bedeutung der Paper einschätzen
 - Wer verweist auf die Paper?
 - → in Google Scholar "zitiert durch"-Funktion verwenden
- 4) Was sollte man bei der Literaturrecherche lesen?
 - Titel und Abstract Inhalt relevant?
 - falls ja Einleitung, Conclusions, Hauptergebnisse
 - nur falls auch Details relevant ganz lesen
 - Notizen machen!

Hauptvortrag

Zeitrahmen: 45 Minuten + 10 Minuten Diskussion

Ziel:

- Zuhörer detailliert über das eigene Thema informieren
- Bedeutung des Themas motivieren
- Neugierde wecken, Zuhörer fesseln

Aufbau:

- Was kann in 45 Minuten sinnvoll und anschaulich erklärt werden? Auswahl treffen, auf das Wesentliche beschränken.
- Wer ist die Zielgruppe?
- klare Struktur, logischer Aufbau, prägnante Beispiele

Folien:

- Stichpunkte, keine ganzen Sätze
- Grafiken nutzen (Strichstärke beachten!)
- nicht zu viele und keine überladenen Folien (ca. 2 Min/Folie)
- klares Design (geeignete Farben, einheitliche Schrift, . . .)

Vortrag:

- vorher (mehrfach) üben, Zeit messen
- Kontakt zum Publikum suchen (Einstieg entscheidend!)
- frei, langsam und deutlich sprechen
- ruhig bleiben, Nervosität kontrollieren

Rahmen: 12-15 Seiten in vorgegebener LaTEX-, MS-Word- oder

OpenOffice-Vorlage

Rahmen: 12–15 Seiten in vorgegebener LaTEX-, MS-Mord- oder

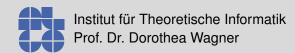
OpenOffice-Vorlage

Für Informatiker Pflicht!

Rahmen: 12–15 Seiten in vorgegebener LateX-, MS-Word- oder OpenOffice-Vorlage

Struktur:

- kurzer prägnanter Abstract
- Einleitung und Stand der Forschung
- ausgewählte Resultate detailliert beschreiben, weitere Resultate nennen
- Zusammenfassung/Fazit vollständige Referenzen (BibTeX)


Rahmen: 12–15 Seiten in vorgegebener LateX-, MS-Word- oder OpenOffice-Vorlage

Struktur:

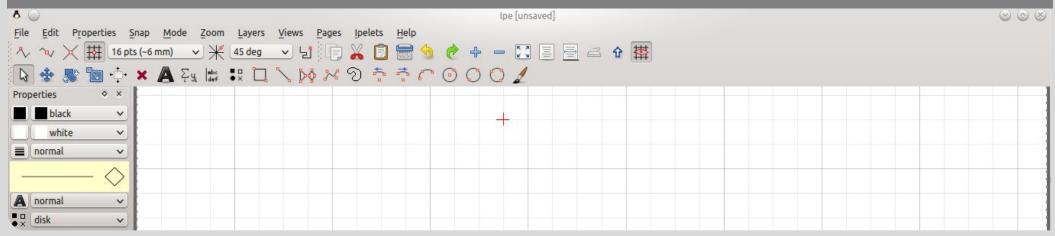
- kurzer prägnanter Abstract
- Einleitung und Stand der Forschung
- ausgewählte Resultate detailliert beschreiben, weitere Resultate nennen
- Zusammenfassung/Fazit vollständige Referenzen (BibTeX)

Schreiben:

- keine Übersetzung, sondern in eigenen Worten
- logischer Aufbau, roter Faden
- keine Bandwurmsätze
- präzise und knapp Formulieren
- überschaubare Absätze, sinnvolle Untergliederung
- Abbildungen verwenden
- korrekt zitieren und alle Quellen angeben
- Grammatik und Rechtschreibung pr
 üfen

Themen

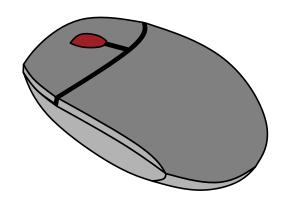
Datum	Themen	Vortragender	Betreuer	Institut
18.10.2016	Einführung in das Seminar und ipe Tutorial	Lukas Barth, Franziska Wegner	Lukas Barth, Franziska Wegner	ITI
	Optimierung im Gebäude-Energiemanagement mittels gemischt-ganzzahliger linearer Programmierung	Sebastian Sigg	Marlon Braun	AIFB
08.11.2016	Multikriterielle Optimierung zur Einbindung von Batteriespeichern	Alexander Dorsch	Christian Hirsch	AIFB
15.11.2016	Ladestrategien für eine Flotte von Elektrofahrzeugen	Mira Pauli	Thomas Dengiz, Patrick Jochem	IIP
22.11.2016	Scheduling von elektrischer Last privater Haushalte mit Real-Time-Pricing	Jürgen Herreiner	Thomas Dengiz, Patrick Jochem	IIP
29.11.2016	Industrial Demand Side Management	Philipp Meyer	Nicole Ludwig	IAI
06.12.2016	Nichtelastische Lasten in AC Netzwerken und ihre Nichtapproximierbarkeit	Lars Gottesbüren	Franziska Wegner	ITI
13.12.2016	Complex-demand Knapsack Problems und deren Anreiz in AC-Netzen	Sebastian Graf	Franziska Wegner	ITI
20.12.2016	Peak shaving	Fotso Sado	Lukas Barth	ITI
10.01.2017	Automatisiertes Alignment von Datenmodellen in der Energieinformatik	Ilona-Dewi Kusardi	Artem Schumilin	IAI
17.01.2017	Probabilistic Energy Forecasting	Moritz Schmid	Jorge Angel Gonzalez Ordiano	IAI
24.01.2017	Energy Hubs und Multi-Energy Systems	Roland Frieß	Ingo Mauser	AIFB
31.01.2017	Volt-Var-Optimierung in Smart Grids mittels Particel-Swarm-Optimization	Oleksandr Averbukh	Thomas Dengiz, Patrick Jochem	IIP
07.02.2017	Mechanismen für AC Power Allocation	Anselm Erdmann	Lukas Barth, Franziska Wegner	ITI

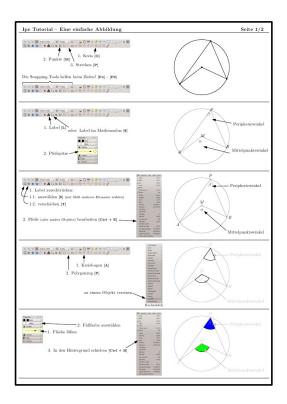

Übersicht

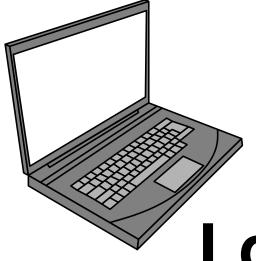
1. Organisatorisches

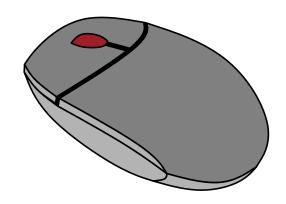
- Ablauf
- Anforderungen
- Themen

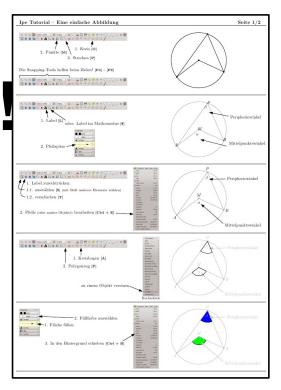
2. ipe Tutorial


Alles vorbereitet?






Alles vorbereitet?



Los gehts!

Präsentationsvorlage/lpelets

 Titel, Name, Sprache und Stichpunktfarbe k\u00f6nnen in den Dokumenteinstellungen [Ctrl + Shift + P] ge\u00e4ndert werden.

Präsentationsvorlage/Ipelets

- Titel, Name, Sprache und Stichpunktfarbe k\u00f6nnen in den Dokumenteinstellungen [Ctrl + Shift + P] ge\u00e4ndert werden.
- Seitenzahlen werden mit dem Pagenumbers-Ipelet erzeugt **Ipelet installieren:** pagenumbers.lua $\rightarrow \sim /$.ipe/ipelets/

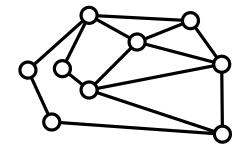
Präsentationsvorlage/Ipelets

- Titel, Name, Sprache und Stichpunktfarbe können in den Dokumenteinstellungen [Ctrl + Shift + P] geändert werden.
- Seitenzahlen werden mit dem Pagenumbers-Ipelet erzeugt Ipelet installieren: pagenumbers.lua $\rightarrow \sim$ /.ipe/ipelets/

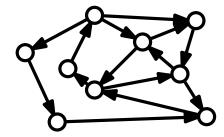
Satz 1

Mit dem Präsentations-Ipelet (presentation.lua) können Boxen im KIT-Stil erstellt werden.

Präsentationsvorlage/Ipelets



- Titel, Name, Sprache und Stichpunktfarbe können in den Dokumenteinstellungen [Ctrl + Shift + P] geändert werden.
- Seitenzahlen werden mit dem Pagenumbers-Ipelet erzeugt **Ipelet installieren:** pagenumbers.lua $\rightarrow \sim$ /.ipe/ipelets/


Satz 1

Mit dem Präsentations-Ipelet (presentation.lua) können Boxen im KIT-Stil erstellt werden.

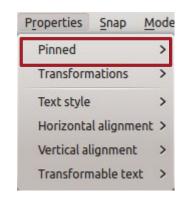
Graph-lpelet (graph.lua) hilft beim Bearbeiten von Graphen

Knoten verschieben

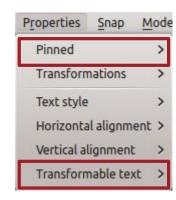
Kanten kürzen

Keine Umlaute bei Ebenennamen! (Datei kann kaputt gehen)

- Keine Umlaute bei Ebenennamen! (Datei kann kaputt gehen)
- lacktriangle ggf. nicht nur als PDF speichern (.ipe Dateien sind XML ightarrow reparierbar)


- Keine Umlaute bei Ebenennamen! (Datei kann kaputt gehen)
- lacktriangle ggf. nicht nur als PDF speichern (.ipe Dateien sind XML ightarrow reparierbar)
- (de)gruppieren verschiebt Objekte auf aktive Ebene

- Keine Umlaute bei Ebenennamen! (Datei kann kaputt gehen)
- **ggf.** nicht nur als PDF speichern (.ipe Dateien sind XML \rightarrow reparierbar)
- (de)gruppieren verschiebt Objekte auf aktive Ebene
- LATEX-Umgebungen nur in Paragraphs (Label mit fester Breite)



- Keine Umlaute bei Ebenennamen! (Datei kann kaputt gehen)
- **ggf.** nicht nur als PDF speichern (.ipe Dateien sind XML \rightarrow reparierbar)
- (de)gruppieren verschiebt Objekte auf aktive Ebene
- LATEX-Umgebungen nur in Paragraphs (Label mit fester Breite)
- gepinnte Objekte k\u00f6nnen nur eingeschr\u00e4nkt bewegt werden

- Keine Umlaute bei Ebenennamen! (Datei kann kaputt gehen)
- ggf. nicht nur als PDF speichern (.ipe Dateien sind XML \rightarrow reparierbar)
- (de)gruppieren verschiebt Objekte auf aktive Ebene
- LATEX-Umgebungen nur in Paragraphs (Label mit fester Breite)
- gepinnte Objekte können nur eingeschränkt
- Labels sind per default nicht transformierbar (skalieren, drehen)

