Computational Geometry – Exercises
Convex Hull & Line Segment Intersection

Benjamin Niedermann
28.10.2015
Outline

Convex Hull

Line Segment Intersection
Definition of Convex Hull

Def: A region \(S \subseteq \mathbb{R}^2 \) is called **convex**, when for two points \(p, q \in S \) then line \(\overline{pq} \in S \). The **convex hull** \(CH(S) \) of \(S \) is the smallest convex region containing \(S \).
Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^2$ is called **convex**, when for two points $p, q \in S$ then line $\overline{pq} \in S$.

The **convex hull** $CH(S)$ of S is the smallest convex region containing S.
Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^2$ is called **convex**, when for two points $p, q \in S$ then line $\overline{pq} \in S$.

The **convex hull** $CH(S)$ of S is the smallest convex region containing S.

In physics:
Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^2$ is called convex, when for two points $p, q \in S$ then line $\overline{pq} \subseteq S$.

The convex hull $CH(S)$ of S is the smallest convex region containing S.

In physics:
- put a large rubber band around all points
Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^2$ is called convex, when for two points $p, q \in S$ then line $\overline{pq} \in S$.

The convex hull $CH(S)$ of S is the smallest convex region containing S.

In physics:
- put a large rubber band around all points
- and let it go!
Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^2$ is called **convex**, when for two points $p, q \in S$ then line $\overline{pq} \in S$.

The **convex hull** $CH(S)$ of S is the smallest convex region containing S.

In physics:
- put a large rubber band around all points
- and let it go!
- unfortunately, does not help algorithmically
Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^2$ is called **convex**, when for two points $p, q \in S$ then line $\overline{pq} \in S$.

The **convex hull** $CH(S)$ of S is the smallest convex region containing S.

In physics:
- put a large rubber band around all points
- and let it go!
- unfortunately, does not help algorithmically

In mathematics:
- define $CH(S) = \bigcap_{C \supseteq S : C \text{ convex}} C$
- does not help :-(

Benjamin Niedermann · Übung Algorithmische Geometrie
Lemma:
For a set of points $P \subseteq \mathbb{R}^2$, $CH(P)$ is a convex polygon that contains P and whose vertices are in P.
Lemma:
For a set of points $P \subseteq \mathbb{R}^2$, $CH(P)$ is a convex polygon that contains P and whose vertices are in P.

Input: A set of points $P = \{p_1, \ldots, p_n\}$
Output: List of nodes of $CH(P)$ in clockwise order
Algorithmic Approach

Lemma:
For a set of points $P \subseteq \mathbb{R}^2$, $CH(P)$ is a convex polygon that contains P and whose vertices are in P.

Input: A set of points $P = \{p_1, \ldots, p_n\}$
Output: List of nodes of $CH(P)$ in clockwise order

Observation:
(p, q) is an edge of $CH(P) \iff$ each point $r \in P \setminus \{p, q\}$
- strictly right of the oriented line \overrightarrow{pq} or
- on the line segment \overline{pq}
Running Time Analysis

FirstConvexHull(P)

\[
E \leftarrow \emptyset
\]

\[
\textbf{foreach } (p, q) \in P \times P \text{ with } p \neq q \text{ do}
\]

\[
\text{valid} \leftarrow \text{true}
\]

\[
\textbf{foreach } r \in P \text{ do}
\]

\[
\text{if not } (r \text{ is strictly right of } \overrightarrow{pq} \text{ or } r \in \overrightarrow{pq}) \text{ then}
\]

\[
\text{valid} \leftarrow \text{false}
\]

\[
\text{if valid then}
\]

\[
E \leftarrow E \cup \{(p, q)\}
\]

construct the sorted node list L from $CH(P)$ out of E

return L

\[
\Theta(1) \cdot \Theta(n^2 - n) \cdot \Theta(n^3) = \Theta(n^3)
\]

\textbf{Question:} How do we implement this?
Solution

Set of edges.
Solution

Set of edges.

Sort from right to left* w.r.t. source vertex

Edges that point to the right or to the top.

Sort from right to left* w.r.t. source vertex

Edges that point to the left or to the bottom.
Set of edges.

Sort from right to left* w.r.t. source vertex

Sort from right to left* w.r.t. source vertex

Edges that point to the right or to the top.

*if not unique:
 from bottom to top.
 from top to bottom.

Edges that point to the left or to the bottom.
Solution

Set of edges.

Sort from right to left* w.r.t. source vertex

Edges that point to the right or to the top.

*if not unique:
 from bottom to top.
 from top to bottom.

Sort from right to left* w.r.t. source vertex

Edges that point to the left or to the bottom.
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

$p_1 = (x_1, y_1) \leftarrow$ rightmost point in P; $p_0 \leftarrow (x_1, \infty)$; $j \leftarrow 1$

while true do

$p_{j+1} \leftarrow \arg \max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\} \}$

if $p_{j+1} = p_1$ then break else $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWring(P)

$p_1 = (x_1, y_1) \leftarrow$ rightmost point in P; $p_0 \leftarrow (x_1, \infty)$; $j \leftarrow 1$

while true do

\[
p_{j+1} \leftarrow \arg \max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\} \}
\]

if $p_{j+1} = p_1$ then break else $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})
Alternative: Gift Wrapping

Idea: Begin with a point \(p_1 \) of \(CH(P) \), then find the next edge of \(CH(P) \) in clockwise order.

GiftWrapping\((P)\)

\[
p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \quad p_0 \leftarrow (x_1, \infty); \quad j \leftarrow 1
\]

while true **do**

\[
p_{j+1} \leftarrow \arg \max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\} \}
\]

if \(p_{j+1} = p_1 \) **then** break **else** \(j \leftarrow j + 1 \)

return \((p_1, \ldots, p_{j+1})\)
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

$$p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \quad p_0 \leftarrow (x_1, \infty); \quad j \leftarrow 1$$

while true do

$$p_{j+1} \leftarrow \arg \max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\} \}$$

if $p_{j+1} = p_1$ then break else $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})
Alternative: Gift Wrapping

Idea: Begin with a point \(p_1 \) of \(CH(P) \), then find the next edge of \(CH(P) \) in clockwise order.

\[
\text{GiftWrapping}(P)
\]

\[
p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \quad p_0 \leftarrow (x_1, \infty); \quad j \leftarrow 1
\]

\[
\text{while true do}
\]

\[
p_{j+1} \leftarrow \arg \max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}
\]

\[
\text{if } p_{j+1} = p_1 \text{ then break else } j \leftarrow j + 1
\]

\[
\text{return } (p_1, \ldots, p_{j+1})
\]
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

$$p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; p_0 \leftarrow (x_1, \infty); j \leftarrow 1$$

while true **do**

$$p_{j+1} \leftarrow \text{arg max}\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$

if $p_{j+1} = p_1$ **then** break **else** $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

$p_1 = (x_1, y_1) \leftarrow$ rightmost point in P; $p_0 \leftarrow (x_1, \infty)$; $j \leftarrow 1$

while true do

$p_{j+1} \leftarrow \arg \max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\} \}$

if $p_{j+1} = p_1$ then break else $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

\[
p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1
\]

while true do

\[
p_{j+1} \leftarrow \text{arg max}\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}
\]

if $p_{j+1} = p_1$ then break else $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})
Alternative: Gift Wrapping

Idea: Begin with a point \(p_1 \) of \(CH(P) \), then find the next edge of \(CH(P) \) in clockwise order.

GiftWrapping(\(P \))

\[
p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1
\]

while true **do**

\[
p_{j+1} \leftarrow \arg \max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\} \}
\]

if \(p_{j+1} = p_1 \) **then** break **else** \(j \leftarrow j + 1 \)

return \((p_1, \ldots, p_{j+1})\)
Alternative: Gift Wrapping

Idea: Begin with a point \(p_1 \) of \(CH(P) \), then find the next edge of \(CH(P) \) in clockwise order.

GiftWrapping(\(P \))

\[
p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \quad p_0 \leftarrow (x_1, \infty); \quad j \leftarrow 1
\]

while true do

\[
p_{j+1} \leftarrow \arg \max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\} \}
\]

if \(p_{j+1} = p_1 \) then break
else \(j \leftarrow j + 1 \)

return \((p_1, \ldots, p_{j+1})\)
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

`GiftWrapping(P)`

\[
p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1
\]

while true do

\[
p_{j+1} \leftarrow \arg \max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}
\]

if $p_{j+1} = p_1$ then break else $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})
Alternative: Gift Wrapping

Idea: Begin with a point \(p_1 \) of \(CH(P) \), then find the next edge of \(CH(P) \) in clockwise order.

GiftWrapping(\(P \))

\[
p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1
\]

while true **do**

\[
p_{j+1} \leftarrow \text{arg max}\{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\} \}
\]

if \(p_{j+1} = p_1 \) **then** break **else** \(j \leftarrow j + 1 \)

return \((p_1, \ldots, p_{j+1}) \)
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

$p_1 = (x_1, y_1) \leftarrow$ rightmost point in P; $p_0 \leftarrow (x_1, \infty)$; $j \leftarrow 1$

while true do

\[p_{j+1} \leftarrow \text{arg max}\{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\} \]

if $p_{j+1} = p_1$ then break else $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

\[
p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \quad p_0 \leftarrow (x_1, \infty); \quad j \leftarrow 1
\]

while true **do**

\[
p_{j+1} \leftarrow \arg\max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}
\]

if $p_{j+1} = p_1$ **then** break **else** $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})

Correctness (ideas):
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

$p_1 = (x_1, y_1) \leftarrow$ rightmost point in P; $p_0 \leftarrow (x_1, \infty)$; $j \leftarrow 1$

while true do

\[
\begin{align*}
p_{j+1} & \leftarrow \arg \max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\} \} \\
\text{if } p_{j+1} = p_1 \text{ then break } \text{ else } j & \leftarrow j + 1
\end{align*}
\]

return (p_1, \ldots, p_{j+1})

Correctness (ideas):

- **Base Case:** p_1 lies on convex hull.
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

\[
p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \quad p_0 \leftarrow (x_1, \infty); \quad j \leftarrow 1
\]

while true **do**

\[
p_{j+1} \leftarrow \text{arg max}\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}
\]

if $p_{j+1} = p_1$ **then** break **else** $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})

Correctness (ideas):

- **Base Case:** p_1 lies on convex hull.
- **Assumption:** First i points belong to convex hull $CH(P)$
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

$$p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; p_0 \leftarrow (x_1, \infty); j \leftarrow 1$$

while true **do**

$$p_{j+1} \leftarrow \text{arg max}\{ \angle p_{j-1}, p_j, q | q \in P \setminus \{p_{j-1}, p_j\} \}$$

if $p_{j+1} = p_1$ **then** break **else** $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})

Correctness (ideas):

- **Base Case:** p_1 lies on convex hull.
- **Assumption:** First i points belong to convex hull $CH(P)$
- **Step:** By assump. p_{i+1} lies to the right of line $\overrightarrow{p_{i-1}p_i} \Rightarrow \text{’right bend’}$

 By the chosen angle: all points lie to the right of line $\overrightarrow{p_ip_{i+1}}$
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

$p_1 = (x_1, y_1) \leftarrow$ rightmost point in P; $p_0 \leftarrow (x_1, \infty)$; $j \leftarrow 1$

while true do

$p_{j+1} \leftarrow \arg \max \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\} \}$

if $p_{j+1} = p_1$ then break else $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})

Degenerated cases:
Alternative: Gift Wrapping

Idea: Begin with a point p_1 of $CH(P)$, then find the next edge of $CH(P)$ in clockwise order.

GiftWrapping(P)

$p_1 = (x_1, y_1) \leftarrow$ rightmost point in P; $p_0 \leftarrow (x_1, \infty)$; $j \leftarrow 1$

while true do

$p_{j+1} \leftarrow \text{arg max} \{ \angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$

if $p_{j+1} = p_1$ then break else $j \leftarrow j + 1$

return (p_1, \ldots, p_{j+1})

Degenerated cases:

1. Choice of p_1 is not unique.
 Choose the bottommost rightmost point.

2. Choice of p_{j+1} is not unique.
 Choose the point of largest distances.
Computation of Tangents

Given: convex polygon P (clockwise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Right tangent means polygon lies left to tangent.
Computation of Tangents

Given: convex polygon P (clockwise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

$$[a, b] \leftarrow [1, n]$$

while tangent not found do

midpoint $c = \lfloor \frac{a+b}{2} \rfloor$

if ppc is tangent then return pc

if $[c, b]$ contains index of contact point then

$[a, b] \leftarrow [c, b]$

sonst

$[a, b] \leftarrow [a, c]$
Computation of Tangents

Given: convex polygon P (clockwise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

```
[a, b] ← [1, n]
while tangent not found do
    midpoint $c = \lfloor \frac{a+b}{2} \rfloor$
    if $ppc$ is tangent then return $p_c$
    if $[c, b]$ contains index of contact point then
        $[a, b] ← [c, b]$
    sonst
        $[a, b] ← [a, c]$
```
Computation of Tangents

Given: convex polygon P (clockwise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

$$\begin{align*}
[a, b] &\leftarrow [1, n] \\
\textbf{while} & \text{ tangent not found do} \\
& \text{midpoint } c = \lfloor \frac{a+b}{2} \rfloor \\
& \text{if } pp_c \text{ is tangent then } \textbf{return } p_c \\
& \text{if } [c, b] \text{ contains index of contact point then} \\
& \quad [a, b] \leftarrow [c, b] \\
& \text{sonst} \\
& \quad [a, b] \leftarrow [a, c]
\end{align*}$$
Computation of Tangents

Given: convex polygon P (clockwise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

\[
\begin{align*}
[a, b] & \leftarrow [1, n] \\
\text{while tangent not found do} & \\
\quad \text{midpoint } c &= \left\lfloor \frac{a+b}{2} \right\rfloor \\
\quad \text{if } pp_c \text{ is tangent then return } p_c \\
\quad \text{if } [c, b] \text{ contains index of contact point then} & \\
\quad \quad & [a, b] \leftarrow [c, b] \\
\quad \text{sonst} & \\
\quad & [a, b] \leftarrow [a, c]
\end{align*}
\]
Computation of Tangents

Given: convex polygon \(P \) (clockwise) and point \(p \) outside of \(P \)

Find: *right* tangent at \(P \) through \(p \) in \(O(\log n) \) time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.
Computation of Tangents

Given: convex polygon \(P \) (clockwise) and point \(p \) outside of \(P \)
Find: right tangent at \(P \) through \(p \) in \(O(\log n) \) time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

\[[a, b] \leftarrow [1, n] \]

\[\text{while tangent not found do} \]
\[\quad \text{midpoint } c = \left\lfloor \frac{a+b}{2} \right\rfloor \]
\[\quad \text{if } pp_c \text{ is tangent then return } p_c \]
\[\quad \text{if } [c, b] \text{ contains index of contact point then} \]
\[\quad \quad [a, b] \leftarrow [c, b] \]
\[\quad \text{sonst} \]
\[\quad \quad [a, b] \leftarrow [a, c] \]
Computation of Tangents

Given: convex polygon P (clockwise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

How to test in constant time?

\[
[a, b] \leftarrow [1, n]
\]

while tangent not found **do**

midpoint $c = \lfloor \frac{a+b}{2} \rfloor$

if \(pp_c \) is tangent **then** **return** \(p_c \)

if \([c, b]\) contains index of contact point **then**

\[
[a, b] \leftarrow [c, b]
\]

sonst

\[
[a, b] \leftarrow [a, c]
\]

Right tangent means polygon lies left to tangent.

Computation of Tangents

\[[a, b] \leftarrow [1, n] \]

\textbf{while} tangent not found \textbf{do} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \\
\hspace{1cm} \text{middle } c = \left\lfloor \frac{a + b}{2} \right\rfloor \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \\
\hspace{1cm} \text{if } \overrightarrow{pp_c} \text{ is tangent then return } p_c \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \\
\hspace{1cm} \text{if } [c, b] \text{ contains index of contact point then} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \\
\hspace{1cm} \hspace{1cm} [a, b] \leftarrow [c, b] \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \\
\hspace{1cm} \text{sonst} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \\
\hspace{1cm} \hspace{1cm} [a, b] \leftarrow [a, c] \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \\

\textit{p}_i \text{ lies above } \textit{p}_j, \text{ if } \textit{p}_j \text{ lies left to } \overrightarrow{pp_i}.
Computation of Tangents

\[
[a, b] \leftarrow [1, n]
\]

while tangent not found do

middle \(c = \left\lfloor \frac{a+b}{2} \right\rfloor \)

if \(\overrightarrow{pp_c} \) is tangent then return \(p_c \)

if \([c, b] \) contains index of contact point then

\([a, b] \leftarrow [c, b] \)

sonst

\([a, b] \leftarrow [a, c] \)

\[p_i \text{ lies above } p_j, \text{ if } p_j \text{ lies left to } \overrightarrow{pp_i}. \]

Assumption: \(\overrightarrow{pp_i} \) points from right to left.
Computation of Tangents

\[
[a, b] \leftarrow [1, n]
\]

while tangent not found do

\[
\text{middle } c = \lfloor \frac{a+b}{2} \rfloor
\]

if \(pp_c \) is tangent then return \(p_c \)

if \([c, b]\) contains index of contact point then

\[
[a, b] \leftarrow [c, b]
\]

sonst

\[
[a, b] \leftarrow [a, c]
\]

\(p_i \) lies above \(p_j \), if \(p_j \) lies left to \(pp_i \).

Assumption: \(pp_i \) points from right to left.

<table>
<thead>
<tr>
<th>(p_{a+1}) above (p_a):</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_c) above (p_{c+1})</td>
</tr>
<tr>
<td>(p_c) above (p_a)</td>
</tr>
<tr>
<td>(p_c) above (p_{c+1})</td>
</tr>
<tr>
<td>(p_{c+1}) above (p_c)</td>
</tr>
<tr>
<td>(p_a) above (p_{c+1})</td>
</tr>
</tbody>
</table>

\(p_a \) above \(p_{a+1} \): Analogous statements.
Lower Bound

We require that any algorithm computing the convex hull of a given set of points returns the convex hull vertices as a clockwise sorted list of points.
Lower Bound

We require that any algorithm computing the convex hull of a given set of points returns the convex hull vertices as a clockwise sorted list of points.

1. Show that any algorithm for computing the convex hull of n points has a worst case running time of $\Omega(n \log n)$ and thus Graham Scan is worst-case optimal.
Lower Bound

We require that any algorithm computing the convex hull of a given set of points returns the convex hull vertices as a clockwise sorted list of points.

1. Show that any algorithm for computing the convex hull of \(n \) points has a worst case running time of \(\Omega(n \log n) \) and thus Graham Scan is worst-case optimal.

2. Why is the running time of the gift wrapping algorithm not in contradiction to part (a)?
Outline

Convex Hull

Line Segment Intersection
Problem Formulation

Given: Set $S = \{s_1, \ldots, s_n\}$ of line segments in the plane

Output:
- all intersections of two or more line segments
- for each intersection, the line segments involved.
Problem Formulation

Given: Set $S = \{s_1, \ldots, s_n\}$ of line segments in the plane

Output:
- all intersections of two or more line segments
- for each intersection, the line segments involved.

Def: Line segments are **closed**
Problem Formulation

Given: Set $S = \{s_1, \ldots, s_n\}$ of line segments in the plane

Output:
- all intersections of two or more line segments
- for each intersection, the line segments involved.

Def: Line segments are **closed**
Warm Up

Find:
Algorithm that determines whether a polygon has no self-intersection using $O(n \log n)$ running time.
Sweep-Line: Example
Sweep-Line: Example

Events
Sweep-Line: Example
1.) Event Queue Q

- define $p \prec q \iff y_p > y_q \lor (y_p = y_q \land x_p < x_q)$

- Store events by \prec in a balanced binary search tree → e.g., AVL tree, red-black tree, ...

- Operations insert, delete and nextEvent in $O(\log |Q|)$ time

2.) Sweep-Line Status \mathcal{T}

- Stores ℓ cut lines ordered from left to right

- Required operations insert, delete, findNeighbor

- This is also a balanced binary search tree with line segments stored in the leaves!
Algorithm

FindIntersections(S)

Input: Set S of line segments
Output: Set of all intersection points and the line segments involved

$Q \leftarrow \emptyset; \quad T \leftarrow \emptyset$

foreach $s \in S$ do
 Q.insert(upperEndPoint(s))
 Q.insert(lowerEndPoint(s))

while $Q \neq \emptyset$ do
 $p \leftarrow Q$.nextEvent()
 Q.deleteEvent(p)
 handleEvent(p)
Algorithm

handleEvent\((p) \)

\[U(p) \leftarrow \text{Line segments with } p \text{ as upper endpoint} \]
\[L(p) \leftarrow \text{Line segments with } p \text{ as lower endpoint} \]
\[C(p) \leftarrow \text{Line segments with } p \text{ as interior point} \]

\[\text{if } |U(p) \cup L(p) \cup C(p)| \geq 2 \text{ then} \]

\[\begin{align*}
\text{report } p \text{ and } U(p) \cup L(p) \cup C(p) \\
\text{remove } L(p) \cup C(p) \text{ from } \mathcal{T} \\
\text{add } U(p) \cup C(p) \text{ to } \mathcal{T}
\end{align*} \]

\[\text{if } U(p) \cup C(p) = \emptyset \text{ then} \]

\[\begin{align*}
Q \leftarrow \text{check if } s_l \text{ and } s_r \text{ intersect below } p \\
\end{align*} \]

\[\text{else} \]

\[\begin{align*}
Q \leftarrow \text{check if } s_l \text{ and } s' \text{ intersect below } p \\
Q \leftarrow \text{check if } s_r \text{ and } s'' \text{ intersect below } p
\end{align*} \]
Space Consumption

Lecture:
Running time: $O((n + I) \log n)$
Storage: $O(n + I)$

Find:
Find algorithm that needs linear space.

Question:
Which data structure may use more than linear space?
Space Consumption

Lecture:
Running time: $O((n + I) \log n)$
Storage: $O(n + I)$

Find:
Find algorithm that needs linear space.

Question:
Which data structure may use more than linear space?

Event-Queue may contain $2n + I$ many events, where $I \in \Omega(n^2)$ in the worst case.
Space Consumption

Idea: Store only intersection points that are currently adjacent in T.

Obs.: At each point in time there are $O(n)$ many such intersection points.

Procedure: If line segments loose their adjacency in T, remove corresponding intersection points in Q.
Idea: Store only intersection points that are currently adjacent in T.

Obs.: At each point in time there are $O(n)$ many such intersection points.

Procedure: If line segments lose their adjacency in T, remove corresponding intersection points in Q.
Idea: Store only intersection points that are currently adjacent in \mathcal{T}.

Obs.: At each point in time there are $O(n)$ many such intersection points.

Procedure: If line segments loose their adjacency in \mathcal{T}, remove corresponding intersection points in Q.
Space Consumption

Idea: Store only intersection points that are currently adjacent in \mathcal{T}.

Obs.: At each point in time there are $O(n)$ many such intersection points.

Procedure: If line segments loose their adjacency in \mathcal{T}, remove corresponding intersection points in Q.
Idea: Store only intersection points that are currently adjacent in \mathcal{T}.

Obs.: At each point in time there are $O(n)$ many such intersection points.

Procedure: If line segments loose their adjacency in \mathcal{T}, remove corresponding intersection points in Q.
Largest Top-Right Region

Given: Set P with n points.

Definition:
The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.
Largest Top-Right Region

Given: Set P with n points.

Definition:
The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.
Largest Top-Right Region

Given: Set P with n points.

Definition:
The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.
Largest Top-Right Region

Given: Set P with n points.

Definition:
The *largest top-right region* of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.
Largest Top-Right Region

Given: Set P with n points.

Definition:
The *largest top-right region* of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.
Largest Top-Right Region

Given: Set P with n points.

Definition:
The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or the intersection of two open half-planes.
Largest Top-Right Region

Given: Set P with n points.

Definition:
The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or the intersection of two open half-planes.

b1) Which point in $O_1 \cap P$ restricts the largest top-right region of p at most?

b2) Which point in $O_2 \cap P$ restricts the largest top-right region of p at most?
Largest Top-Right Region

Given: Set P with n points.

Definition:
The *largest top-right region* of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or the intersection of two open half-planes.

b1) Which point in $O_1 \cap P$ restricts the largest top-right region of p at most?

b2) Which point in $O_2 \cap P$ restricts the largest top-right region of p at most?

$t(p) \in P$: Point in O_1 with smallest vert. distance to p.

$r(p) \in P$: Point in O_2 with smallest horz. distance to p.
Largest Top-Right Region

Given: Set P with n points.

Definition:
The *largest top-right region* of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or the intersection of two open half-planes.

b1) Which point in $O_1 \cap P$ restricts the largest top-right region of p at most?

b2) Which point in $O_2 \cap P$ restricts the largest top-right region of p at most?

c) Largest top-right region for all points in $O(n \log n)$ running time.

$t(p) \in P$: Point in O_1 with smallest vert. distance to p.

$r(p) \in P$: Point in O_2 with smallest horz. distance to p.
Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top

Events: Points in P

Handling event p

1. Insert p into T.
2. Find point $p' \in T$ directly left to p:

 If p lies in upper octant of p':

 $t(p') \leftarrow p$, delete p' from T
 repeat step 2

Data structure:

Binary search tree T over P, where point $p \in T$, if

1. p lies below the sweep-line
2. $t(p)$ has not been determined yet.

Initially T is empty and points in T are sorted w.r.t. their x-coord.
Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top

Events: Points in P

Handling event p

1. Insert p into \mathcal{T}.
2. Find point $p' \in \mathcal{T}$ directly left to p:
 - If p lies in upper octant of p':

 - Update $t(p') \leftarrow p$, delete p' from \mathcal{T}
 - Repeat step 2

Data structure:

Binary search tree \mathcal{T} over P, where point $p \in \mathcal{T}$, if

1. p lies below the sweep-line
2. $t(p)$ has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.
Largest Top-Right Region

Idea: Determine for each point \(p \) the point \(t(p) \) (and \(r(p) \))

Sweepline: from bottom to top

Events: Points in \(P \)

Handling event \(p \)

1. Insert \(p \) into \(T \).
2. Find point \(p' \in T \) directly left to \(p \):
 If \(p \) lies in upper octant of \(p' \):
 \[
 \begin{align*}
 t(p') & \leftarrow p, \text{ delete } p' \text{ from } T \\
 \text{repeat step 2}
 \end{align*}
 \]

Data structure:
Binary search tree \(T \) over \(P \), where point \(p \in T \), if
 1. \(p \) lies below the sweep-line
 2. \(t(p) \) has not been determined yet.

Initially \(T \) is empty and points in \(T \) are sorted w.r.t. their \(x \)-coord.

\(\bigcirc \) = contained in \(T \)
Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top

Events: Points in P

Handling event p

1. Insert p into \mathcal{T}.
2. Find point $p' \in \mathcal{T}$ directly left to p:
 - If p lies in upper octant of p':
 - $t(p') \leftarrow p$, delete p' from \mathcal{T}
 - repeat step 2

Data structure:
Binary search tree \mathcal{T} over P, where point $p \in \mathcal{T}$, if
 - p lies below the sweep-line
 - $t(p)$ has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.
Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top

Events: Points in P

Handling event p

1. Insert p into T.
2. Find point $p' \in T$ directly left to p:
 - If p lies in upper octant of p':
 \[
 \begin{cases}
 t(p') \leftarrow p, \text{ delete } p' \text{ from } T \\
 \text{repeat step 2}
 \end{cases}
 \]

Data structure:

Binary search tree T over P, where point $p \in T$, if

1. p lies below the sweep-line
2. $t(p)$ has not been determined yet.

Initially T is empty and points in T are sorted w.r.t. their x-coord.
Largest Top-Right Region

Idea: Determine for each point \(p \) the point \(t(p) \) (and \(r(p) \))

Sweepline: from bottom to top

Events: Points in \(P \)

Handling event \(p \)
1. Insert \(p \) into \(T \).
2. Find point \(p' \in T \) directly left to \(p \):
 - If \(p \) lies in upper octant of \(p' \):
 - \(t(p') \leftarrow p \), delete \(p' \) from \(T \)
 - repeat step 2

Data structure:
Binary search tree \(T \) over \(P \), where point \(p \in T \), if
1. \(p \) lies below the sweep-line
2. \(t(p) \) has not been determined yet.

Initially \(T \) is empty and points in \(T \) are sorted w.r.t. their \(x \)-coord.
Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top

Events: Points in P

Handling event p

1. Insert p into T.
2. Find point $p' \in T$ directly left to p:

 If p lies in upper octant of p':

 - $t(p') \leftarrow p$, delete p' from T
 - repeat step 2

Data structure:

Binary search tree T over P, where point $p \in T$, if

1. p lies below the sweep-line
2. $t(p)$ has not been determined yet.

Initially T is empty and points in T are sorted w.r.t. their x-coord.
Subdivision of plane.

- polyline
- vertex
- face
- edge
Subdivision of plane.

Requirements:
- Access to vertices, faces and edges.
- Traversing of faces.
- Traversing outgoing edges.

How to store subdivision efficiently?
Subdivision
For each edge of internal faces introduce directed half-edge (clockwise)
Subdivision

For each edge of internal faces introduce directed half-edge (clockwise)
For each edge of external face introduce directed half-edge (counter-clockwise)
Subdivision

Store for each face arbitrary adjacent half-edge.
Store for each face arbitrary adjacent half-edge.
Store for each half-edge successor/predecessor, the half-edge on the opposite side, and the adjacent face.
Subdivision

Store for each face arbitrary adjacent half-edge. Store for each half-edge successor/predecessor, the half-edge on the opposite side, and the adjacent face. Store for each vertex an arbitrary incident outgoing half-edge.
Subdivision

- Access vertices, faces and edges.
- *Traversing* single faces.
- Traversing outgoing edges of vertex.
Subdivision

- Access vertices, faces and edges
- *Traversing* single faces.
- Traversing outgoing edges of vertex.
Subdivision

- Access vertices, faces and edges
- Traversing single faces
- Traversing outgoing edges of vertex.
Access vertices, faces and edges
- *Traversing* single faces
- Traversing outgoing edges of vertex.
Traversing incident edges
Traversing incident edges

Traversing in counter clockwise order.

\[
\begin{align*}
 f_2 &= \text{next}(\text{partner}(e_2)) \\
 g_2 &= \text{next}(\text{partner}(f_2)) \\
 h_2 &= \text{next}(\text{partner}(g_2)) \\
 e_2 &= \text{next}(\text{partner}(h_2))
\end{align*}
\]