

Computational Geometry Lecture Applications of WSPD & Visibility Graphs

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Tamara Mchedlidze · Darren Strash 25.01.2016

Recall: Well-Separated Pair Decomposition

Def: A pair of disjoint point sets A and B in \mathbb{R}^d is called s-well separated for some s>0, if A and B can each be covered by a ball of radius r whose distance is at least sr.

Recall: Well-Separated Pair Decomposition

Def: A pair of disjoint point sets A and B in \mathbb{R}^d is called s-well separated for some s>0, if A and B can each be covered by a ball of radius r whose distance is at least sr.

Def: For a point set P and some s > 0 an s-well separated pair decomposition (s-WSPD) is a set of pairs $\{\{A_1, B_1\}, \dots, \{A_m, B_m\}\}$ with

- $A_i, B_i \subset P$ for all i
- $A_i \cap B_i = \emptyset$ for all i
- $\{A_i, B_i\}$ s-well separated for all i

Recall: Well-Separated Pair Decomposition

Def: A pair of disjoint point sets A and B in \mathbb{R}^d is called s-well separated for some s>0, if A and B can each be covered by a ball of radius r whose distance is at least sr.

Def: For a point set P and some s > 0 an s-well separated pair decomposition (s-WSPD) is a set of pairs $\{A_1, B_1\}, \ldots, \{A_m, B_m\}$ with

- $A_i, B_i \subset P$ for all i
- $A_i \cap B_i = \emptyset$ for all i
- $\{A_i, B_i\}$ s-well separated for all i

Thm 3: Given a point set P in \mathbb{R}^d and $s \geq 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Further Applications of WSPD

Problem: Given a point set P find a minimum spanning tree (MST) in the Euclidean graph $\mathcal{EG}(P)$.

Problem: Given a point set P find a minimum spanning tree (MST) in the Euclidean graph $\mathcal{EG}(P)$.

Prim: MST in a graph G = (V, E) can be computed in $O(|E| + |V| \log |V|)$ time.

Problem: Given a point set P find a minimum spanning tree (MST) in the Euclidean graph $\mathcal{EG}(P)$.

Prim: MST in a graph G = (V, E) can be computed in $O(|E| + |V| \log |V|)$ time.

- $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges \Rightarrow running time $O(n^2)$:-
- $(1+\varepsilon)$ -spanner for P has $O(n/\varepsilon^d)$ edges \Rightarrow running time $O(n\log n + n/\varepsilon^d)$:-]

Problem: Given a point set P find a minimum spanning tree (MST) in the Euclidean graph $\mathcal{EG}(P)$.

Prim: MST in a graph G = (V, E) can be computed in $O(|E| + |V| \log |V|)$ time.

- $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges \Rightarrow running time $O(n^2)$:-
- $(1+\varepsilon)$ -spanner for P has $O(n/\varepsilon^d)$ edges \Rightarrow running time $O(n\log n + n/\varepsilon^d)$:-]

How good is the MST of a $(1 + \varepsilon)$ -spanner?

Problem: Given a point set P find a minimum spanning tree (MST) in the Euclidean graph $\mathcal{EG}(P)$.

Prim: MST in a graph G = (V, E) can be computed in $O(|E| + |V| \log |V|)$ time.

- $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges \Rightarrow running time $O(n^2)$:-
- $(1+\varepsilon)$ -spanner for P has $O(n/\varepsilon^d)$ edges \Rightarrow running time $O(n\log n + n/\varepsilon^d)$:-)

How good is the MST of a $(1 + \varepsilon)$ -spanner?

Thm 5: The MST obtained from a $(1 + \varepsilon)$ -spanner of P is a $(1 + \varepsilon)$ -approximation of the EMST of P.

Problem: Find the diameter of a point set P (i.e., the pair $\{x,y\}\subset P$ with maximum distance).

Problem: Find the diameter of a point set P (i.e., the pair $\{x,y\}\subset P$ with maximum distance).

- brute-force testing all point pairs \Rightarrow running time $O(n^2)$:-(
- test distances ||rep(u)|| rep(v)|| of all ws-pairs $\{P_u, P_v\}$ \Rightarrow running time $O(n \log n + s^d n)$:-

Problem: Find the diameter of a point set P (i.e., the pair $\{x,y\}\subset P$ with maximum distance).

- brute-force testing all point pairs \Rightarrow running time $O(n^2)$:-(
- test distances ||rep(u)|| rep(v)|| of all ws-pairs $\{P_u, P_v\}$ \Rightarrow running time $O(n \log n + s^d n)$:-

How good is the computed diameter?

Problem: Find the diameter of a point set P (i.e., the pair $\{x,y\}\subset P$ with maximum distance).

- brute-force testing all point pairs \Rightarrow running time $O(n^2)$:-(
- test distances ||rep(u)|| rep(v)|| of all ws-pairs $\{P_u, P_v\}$ \Rightarrow running time $O(n \log n + s^d n)$:-

How good is the computed diameter?

Thm 6: The diameter obtained from an s-WSPD of P for $s=4/\varepsilon$ is a $(1+\varepsilon)$ -approximation of the diameter of P.

Closest Pair of Points

Problem: Find the pair $\{x,y\} \subset P$ with minimum distance.

Closest Pair of Points

Problem: Find the pair $\{x,y\} \subset P$ with minimum distance.

- brute-force testing all point pairs \Rightarrow running time $O(n^2)$:-(
- test distances ||rep(u)|| rep(v)|| of all ws-pairs $\{P_u, P_v\}$ \Rightarrow running time $O(n \log n + s^d n)$:-

Closest Pair of Points

Problem: Find the pair $\{x,y\} \subset P$ with minimum distance.

- brute-force testing all point pairs \Rightarrow running time $O(n^2)$:-(
- test distances ||rep(u)|| rep(v)|| of all ws-pairs $\{P_u, P_v\}$ \Rightarrow running time $O(n\log n + s^d n)$:-

Exercise: For s > 2 this actually yields the closest pair.

What are further applications of the WSPD?

What are further applications of the WSPD?

WSPD is useful whenever one can do without knowing all $\Theta(n^2)$ exact distances in a point set and approximate them instead. One example are force-based layout algorithms in graph drawing, where pairwise repulsive forces of n points need to be calculated.

What are further applications of the WSPD?

WSPD is useful whenever one can do without knowing all $\Theta(n^2)$ exact distances in a point set and approximate them instead. One example are force-based layout algorithms in graph drawing, where pairwise repulsive forces of n points need to be calculated.

Why approximate geometrically?

What are further applications of the WSPD?

WSPD is useful whenever one can do without knowing all $\Theta(n^2)$ exact distances in a point set and approximate them instead. One example are force-based layout algorithms in graph drawing, where pairwise repulsive forces of n points need to be calculated.

Why approximate geometrically?

On the one hand, this replaces slow computations by faster (but less precise) ones; on the other hand, often the input data are imprecise so that approximate solutions can be sufficient depending on the application.

What are further applications of the WSPD?

WSPD is useful whenever one can do without knowing all $\Theta(n^2)$ exact distances in a point set and approximate them instead. One example are force-based layout algorithms in graph drawing, where pairwise repulsive forces of n points need to be calculated.

Why approximate geometrically?

On the one hand, this replaces slow computations by faster (but less precise) ones; on the other hand, often the input data are imprecise so that approximate solutions can be sufficient depending on the application.

Can we achieve the same time bounds with exact computations?

What are further applications of the WSPD?

WSPD is useful whenever one can do without knowing all $\Theta(n^2)$ exact distances in a point set and approximate them instead. One example are force-based layout algorithms in graph drawing, where pairwise repulsive forces of n points need to be calculated.

Why approximate geometrically?

On the one hand, this replaces slow computations by faster (but less precise) ones; on the other hand, often the input data are imprecise so that approximate solutions can be sufficient depending on the application.

Can we achieve the same time bounds with exact computations?

In \mathbb{R}^2 this is often true, but not in \mathbb{R}^d for d>2. (e.g. EMST, diameter)

Organizational Information

Oral Exams:

Length: 30 minutes

Dates: Feb. 23, 24, 25; April 12, 13, 14

Times: 9, 9:30, 10, 10:30, 11

Doodle: Select all time slots that you have available!

	February Tue 23	February 2016 Tue 23					April 2016 Thu 14
1 participant	9:00 AM	9:30 AM	10:00 AM	10:30 AM	11:00 AM	9:00 AM	11:00 AM
m / Darren Strash	✓	√	√	√	✓	√	V
Your name							

Please come to our offices and ask questions!

Project presentations:

Next week on Feb. 1 and 3.

Motion planning and Visibility Graphs

Robot Motion Planning

Problem: Given a (point) robot at position p_{start} in a area with polygonal obstacles, find a shortest path to p_{goal} avoiding obstacles.

Robot Motion Planning

Problem: Given a (point) robot at position p_{start} in a area with polygonal obstacles, find a shortest path to p_{goal} avoiding obstacles.

Robot Motion Planning

Problem: Given a (point) robot at position p_{start} in a area with polygonal obstacles, find a shortest path to p_{goal} avoiding obstacles.

First compute trapezoidal map

- First compute trapezoidal map
- Remove segments in obstacles

- First compute trapezoidal map
- Remove segments in obstacles
- Nodes in trapezoids and vertical line segments

- First compute trapezoidal map
- Remove segments in obstacles
- Nodes in trapezoids and vertical line segments
- ullet Euclidean weighted "dual graph" G with nodes on vertical segments

- First compute trapezoidal map

 Locate start and goal

- Remove segments in obstacles
- Nodes in trapezoids and vertical line segments
- Euclidean weighted "dual graph" G with nodes on vertical segments

- First compute trapezoidal map

 Locate start and goal

- Remove segments in obstacles \blacksquare Shortest path with Dijkstra in G
- Nodes in trapezoids and vertical line segments
- Euclidean weighted "dual graph" G with nodes on vertical segments

- First compute trapezoidal map
- Remove segments in obstacles
- Locate start and goal
- Shortest path with Dijkstra in G
- Nodes in trapezoids and vertical line segments
- ullet Euclidean weighted "dual graph" G with nodes on vertical segments

First Idea: Shortest Paths in Graphs

- Nodes in trapezoids and vertical line segments
- ullet Euclidean weighted "dual graph" G with nodes on vertical segments

First Idea: Shortest Paths in Graphs

- Nodes in trapezoids and vertical line segments
- ullet Euclidean weighted "dual graph" G with nodes on vertical segments

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in Seach shortest $\mathit{st} ext{-path}$ in $\mathbb{R}^2\setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^2 and two points s and t not in S each shortest st-path in $\mathbb{R}^2 \setminus \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Given a set S of disjoint open polygons...

Given a set S of disjoint open polygons...

...with point set V(S).

Given a set S of disjoint open polygons...

...with point set V(S).

Def.: Then $G_{\text{vis}}(S) = (V(S), E_{\text{vis}}(S))$ is the **visibility graph** of S with $E_{\text{vis}}(S) = \{uv \mid u, v \in V(S) \text{ and } u \text{ sees } v\}$ und w(uv) = |uv|.

Given a set S of disjoint open polygons...

...with point set V(S).

Def.: Then $G_{\text{vis}}(S) = (V(S), E_{\text{vis}}(S))$ is the **visibility graph** of S with $E_{\text{vis}}(S) = \{uv \mid u, v \in V(S) \text{ and } u \text{ sees } v\}$ und w(uv) = |uv|. Where $u \text{ sees } v :\Leftrightarrow \overline{uv} \cap \bigcup S = \emptyset$

Given a set S of disjoint open polygons...

...with point set V(S).

Def.: Then $G_{\text{vis}}(S) = (V(S), E_{\text{vis}}(S))$ is the **visibility graph** of S with $E_{\text{vis}}(S) = \{uv \mid u, v \in V(S) \text{ and } u \text{ sees } v\}$ und w(uv) = |uv|. Where $u \text{ sees } v :\Leftrightarrow \overline{uv} \cap \bigcup S = \emptyset$

Define $S^* = S \cup \{s, t\}$ and $G_{vis}(S^*)$ analogously.

Given a set S of disjoint open polygons...

...with point set V(S).

Def.: Then $G_{\text{vis}}(S) = (V(S), E_{\text{vis}}(S))$ is the **visibility graph** of S with $E_{\text{vis}}(S) = \{uv \mid u, v \in V(S) \text{ and } u \text{ sees } v\}$ und w(uv) = |uv|. Where $u \text{ sees } v :\Leftrightarrow \overline{uv} \cap \bigcup S = \emptyset$

Define $S^* = S \cup \{s, t\}$ and $G_{vis}(S^*)$ analogously.

A shortest st-path in \mathbb{R}^2 avoiding obstacles in S is equivalent to a shortest st-path in $G_{\text{vis}}(S^{\star})$.

Algorithm

 $\mathsf{ShortestPath}(S, s, t)$

Input: Obstacles S, points $s, t \in \mathbb{R}^2 \setminus \bigcup S$

Output: Shortest collision-free st-path in S

- 1 $G_{\mathsf{vis}} \leftarrow \mathsf{VisibilityGraph}(S \cup \{s, t\})$
- 2 foreach $uv \in E_{\mathsf{vis}}$ do $w(uv) \leftarrow |uv|$
- 3 return Dijkstra $(G_{\mathsf{vis}}, w, s, t)$

Algorithm

 $\mathsf{ShortestPath}(S, s, t)$

$$n = |V(S)|, m = |E_{\mathsf{vis}}(S)|$$

Input: Obstacles S, points $s, t \in \mathbb{R}^2 \setminus \bigcup S$

Output: Shortest collision-free st-path in S

- 1 $G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{s, t\})$
- 2 foreach $uv \in E_{\text{vis}}$ do $w(uv) \leftarrow |uv|$
- 3 return Dijkstra $(G_{\mathsf{vis}}, w, s, t)$

$$O(n\log n + m)$$

Algorithm

 $\mathsf{ShortestPath}(S, s, t)$

$$n = |V(S)|, m = |E_{\mathsf{vis}}(S)|$$

Input: Obstacles S, points $s, t \in \mathbb{R}^2 \setminus \bigcup S$

Output: Shortest collision-free st-path in S

- 1 $G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{s, t\})$
- 2 foreach $uv \in E_{\text{vis}}$ do $w(uv) \leftarrow |uv|$
- 3 return Dijkstra $(G_{\mathsf{vis}}, w, s, t)$

$$O(n^2 \log n)$$

$$O(n\log n + m)$$

$$O(n^2 \log n)$$

Thm 1: A shortest st-path in an area with polygonal obstacles with n edges can be computed in $O(n^2 \log n)$ time.

Computing a Visibility Graph

 $\mathsf{VisibilityGraph}(S)$

Input: Set of disjoint polygons S

Output: Visibility graph $G_{vis}(S)$

- 1 $E \leftarrow \emptyset$
- 2 foreach $v \in V(S)$ do
- $\mathbf{3} \quad | \quad W \leftarrow \mathsf{VisibleVertices}(v,S)$
- $\mathbf{4} \quad \mid \quad E \leftarrow E \cup \{vw \mid w \in W\}$
- 5 return (V(S), E)

VisibleVertices(p, S)

Problem: Given p and S, find in $O(n \log n)$ time all nodes that p sees in V(S)!

$$r \leftarrow \{p + (k, 0) \mid k \in \mathbb{R}_0^+\}$$

$$r \leftarrow \{p + (k, 0) \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

VisibleVertices(p, S)

$$r \leftarrow \{p + (k, 0) \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

VisibleVertices(p, S)

$$r \leftarrow \{p + (k, 0) \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sort } V(S) \text{ in cyclic order around } p$

VisibleVertices(p, S)

$$r \leftarrow \{p + (k, 0) \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sort } V(S) \text{ in cyclic order around } p$

VisibleVertices(p, S)

$$r \leftarrow \{p + (k, 0) \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sort } V(S) \text{ in cyclic order around } p$

VisibleVertices(p, S)

$$r \leftarrow \{p + (k, 0) \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sort } V(S) \text{ in cyclic order around } p$

Sweep method with rotation

VisibleVertices(p, S)

$$r \leftarrow \{p + (k, 0) \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sort } V(S) \text{ in cyclic order around } p$

VisibleVertices(p, S)

$$r \leftarrow \{p + (k,0) \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \dots, w_n \leftarrow \text{sort } V(S) \text{ in cyclic order around } p$ $W \leftarrow \emptyset$

for i = 1 to n do

if
$$Visible(p, w_i)$$
 then

$$W \leftarrow W \cup \{w_i\}$$

Add to \mathcal{T} edges incident to w_i : CW from $\overrightarrow{pw_i}^+$ Remove from \mathcal{T} edges incident to w_i :CCW from $\overrightarrow{pw_i}^-$

return W

VisibleVertices(p, S)

$$r \leftarrow \{p + (k,0) \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sort } V(S) \text{ in cyclic order around } p$

$$W \leftarrow \emptyset$$

for i = 1 to n do

if $Visible(p, w_i)$ then

$$W \leftarrow W \cup \{w_i\}$$

Add to \mathcal{T} edges incident to w_i : CW from $\overrightarrow{pw_i}^+$ Remove from \mathcal{T} edges incident to w_i :CCW from $\overrightarrow{pw_i}^-$

return W

VisibleVertices(p, S)

$$r \leftarrow \{p + (k, 0) \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sort } V(S) \text{ in cyclic order around } p$

$$W \leftarrow \emptyset$$

for i = 1 to n do

if
$$Visible(p, w_i)$$
 then

$$W \leftarrow W \cup \{w_i\}$$

Add to \mathcal{T} edges incident to w_i : CW from $\overrightarrow{pw_i}^+$ Remove from \mathcal{T} edges incident to w_i :CCW from $\overrightarrow{pw_i}^-$

return W

Visibility Case Analysis

 $\mathsf{Visible}(p, w_i)$

if $\overline{pw_i}$ intersects polygon of w_i then \bot return false

nil

Visibility Case Analysis

 $\mathsf{Visible}(p, w_i)$

if $\overline{pw_i}$ intersects polygon of w_i then return false

if i=1 or $w_{i-1} \notin \overline{pw_i}$ then $e \leftarrow \text{edge of leftmost leaf of } \mathcal{T}$ if $e \neq \text{nil and } \overline{pw_i} \cap e \neq \emptyset$ then | return false else return true

nil

Visibility Case Analysis

Karlsruhe Institute of Technology

 $\mathsf{Visible}(p, w_i)$

if $\overline{pw_i}$ intersects polygon of w_i then return false

if i=1 or $w_{i-1} \not\in \overline{pw_i}$ then $e \leftarrow \text{edge of leftmost leaf of } \mathcal{T}$ if $e \neq \text{nil and } \overline{pw_i} \cap e \neq \emptyset$ then | return false else return true

else

if w_{i-1} is not visible then return false

 $e \leftarrow$ find edge in \mathcal{T} , that $\overline{w_{i-1}w_i}$ cuts; if $e \neq$ nil then return false else return true

Thm 1: A shortest st-path in an area with polygonal obstacles with n edges can be computed in $O(n^2 \log n)$ time.

Thm 1: A shortest st-path in an area with polygonal obstacles with n edges can be computed in $O(n^2 \log n)$ time.

Proof:

Correctness follows directly from Lemma 1.

Thm 1: A shortest st-path in an area with polygonal obstacles with n edges can be computed in $O(n^2 \log n)$ time.

Proof:

- Correctness follows directly from Lemma 1.
- Running time:
 - Visible Vertices takes $O(n \log n)$ time per vertex – n calls to Visible Vertices

Thm 1: A shortest st-path in an area with polygonal obstacles with n edges can be computed in $O(n^2 \log n)$ time.

Proof:

- Correctness follows directly from Lemma 1.
- Running time:
 - VisibleVertices takes $O(n \log n)$ time per vertex n calls to VisibleVertices

 $O(n^2)$ with duality (see exercise or D. Mount [M12] Lect. 31)

Robots are not single points...

Robots are not single points...

Robots are not single points...

Robots are not single points...

Robots are not single points...

Robots are not single points...

Robots are not single points...

Robots are not single points...

Robots are not single points...

For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles

(→ Minkowski Sums, Ch. 13 in [BCKO08]).

Robots are not single points...

For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles

(→ Minkowski Sums, Ch. 13 in [BCKO08]).

Robots are not single points...

For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow Minkowski Sums, Ch. 13 in [BCKO08]).$

Can we compute faster than $O(n^2 \log n)$?

Robots are not single points...

For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow Minkowski Sums, Ch. 13 in [BCKO08]).$

Can we compute faster than $O(n^2 \log n)$?

Yes, by use duality and a simultaneous rotation sweep for all points in the dual. Computing the arrangement, is also in $O(n^2)$. Even though G_{vis} can have $\Omega(n^2)$ edges, the visibility graph can be constructed even faster with an output sensitive $O(n \log n + m)$ -time algorithm.

[Ghosh, Mount 1987]

Robots are not single points...

For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow Minkowski Sums, Ch. 13 in [BCKO08]).$

Can we compute faster than $O(n^2 \log n)$?

Yes, by use duality and a simultaneous rotation sweep for all points in the dual. Computing the arrangement, is also in $O(n^2)$. Even though G_{vis} can have $\Omega(n^2)$ edges, the visibility graph can be constructed even faster with an output sensitive $O(n \log n + m)$ -time algorithm.

[Ghosh, Mount 1987]

If you search only for *one* shortest Euclidean st-path, there is an algorithm with optimal $O(n \log n)$ time. [Hershberger, Suri 1999]