Computational Geometry Lecture Applications of WSPD \& Visibility Graphs

Tamara Mchedlidze • Darren Strash 25.01.2016

Recall: Well-Separated Pair Decomposition

Def: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for some $s>0$, if A and B can each be covered by a ball of radius r whose distance is at least $s r$.

Recall: Well-Separated Pair Decomposition

Karlsruhe Institute of Technology
Def: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for some $s>0$, if A and B can each be covered by a ball of radius r whose distance is at least $s r$.

Def: For a point set P and some $s>0$ an s-well separated pair decomposition (s-WSPD) is a set of pairs $\left\{\left\{A_{1}, B_{1}\right\}, \ldots,\left\{A_{m}, B_{m}\right\}\right\}$ with

- $A_{i}, B_{i} \subset P$ for all i
- $A_{i} \cap B_{i}=\emptyset$ for all i
- $\bigcup_{i=1}^{m} A_{i} \otimes B_{i}=P \otimes P$
- $\left\{A_{i}, B_{i}\right\} s$-well separated for all i

Recall: Well-Separated Pair Decomposition

Def: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for some $s>0$, if A and B can each be covered by a ball of radius r whose distance is at least $s r$.

Def: For a point set P and some $s>0$ an s-well separated pair decomposition (s-WSPD) is a set of pairs $\left\{\left\{A_{1}, B_{1}\right\}, \ldots,\left\{A_{m}, B_{m}\right\}\right\}$ with

- $A_{i}, B_{i} \subset P$ for all i
- $A_{i} \cap B_{i}=\emptyset$ for all i
- $\bigcup_{i=1}^{m} A_{i} \otimes B_{i}=P \otimes P$
- $\left\{A_{i}, B_{i}\right\} s$-well separated for all i

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Further Applications of WSPD

Euclidean MST

Problem: Given a point set P find a minimum spanning tree (MST) in the Euclidean graph $\mathcal{E G}(P)$.

Euclidean MST

Problem: Given a point set P find a minimum spanning tree (MST) in the Euclidean graph $\mathcal{E G}(P)$.

```
Prim: MST in a graph G}=(V,E)\mathrm{ can be
computed in O(|E| + |V| log |V|) time.
```


Euclidean MST

Problem: Given a point set P find a minimum spanning tree (MST) in the Euclidean graph $\mathcal{E G}(P)$.

Prim: MST in a graph $G=(V, E)$ can be computed in $O(|E|+|V| \log |V|)$ time.

- $\mathcal{E G}(P)$ has $\Theta\left(n^{2}\right)$ edges \Rightarrow running time $O\left(n^{2}\right)$
- (1+ $)$-spanner for P has $O\left(n / \varepsilon^{d}\right)$ edges \Rightarrow running time $O\left(n \log n+n / \varepsilon^{d}\right)$

Euclidean MST

Problem: Given a point set P find a minimum spanning tree (MST) in the Euclidean graph $\mathcal{E G}(P)$.

Prim: MST in a graph $G=(V, E)$ can be computed in $O(|E|+|V| \log |V|)$ time.

- $\mathcal{E} \mathcal{G}(P)$ has $\Theta\left(n^{2}\right)$ edges \Rightarrow running time $O\left(n^{2}\right)$
- (1+ $)$-spanner for P has $O\left(n / \varepsilon^{d}\right)$ edges \Rightarrow running time $O\left(n \log n+n / \varepsilon^{d}\right)$

How good is the MST of a $(1+\varepsilon)$-spanner?

Euclidean MST

Problem: Given a point set P find a minimum spanning tree (MST) in the Euclidean graph $\mathcal{E G}(P)$.

Prim: MST in a graph $G=(V, E)$ can be computed in $O(|E|+|V| \log |V|)$ time.

- $\mathcal{E} \mathcal{G}(P)$ has $\Theta\left(n^{2}\right)$ edges \Rightarrow running time $O\left(n^{2}\right)$
- (1+ $)$-spanner for P has $O\left(n / \varepsilon^{d}\right)$ edges \Rightarrow running time $O\left(n \log n+n / \varepsilon^{d}\right)$

How good is the MST of a $(1+\varepsilon)$-spanner?

Thm 5: The MST obtained from a $(1+\varepsilon)$-spanner of P is a $(1+\varepsilon)$-approximation of the EMST of P.

Diameter of P

Problem: Find the diameter of a point set P (i.e., the pair $\{x, y\} \subset P$ with maximum distance).

Diameter of P

Problem: Find the diameter of a point set P (i.e., the pair $\{x, y\} \subset P$ with maximum distance).

- brute-force testing all point pairs \Rightarrow running time $O\left(n^{2}\right)$:-(
- test distances $\| \operatorname{rep}(u)$ rep $(v) \|$ of all ws-pairs $\left\{P_{u}, P_{v}\right\}$ \Rightarrow running time $O\left(n \log n+s^{d} n\right)$

Diameter of P

Problem: Find the diameter of a point set P (i.e., the pair $\{x, y\} \subset P$ with maximum distance).

- brute-force testing all point pairs \Rightarrow running time $O\left(n^{2}\right)$:-(
- test distances $\| \operatorname{rep}(u)$ rep $(v) \|$ of all ws-pairs $\left\{P_{u}, P_{v}\right\}$ \Rightarrow running time $O\left(n \log n+s^{d} n\right)$

How good is the computed diameter?

Diameter of P

Problem: Find the diameter of a point set P (i.e., the pair $\{x, y\} \subset P$ with maximum distance).

- brute-force testing all point pairs \Rightarrow running time $O\left(n^{2}\right)$:-(
- test distances $\| \operatorname{rep}(u)$ rep $(v) \|$ of all ws-pairs $\left\{P_{u}, P_{v}\right\}$ \Rightarrow running time $O\left(n \log n+s^{d} n\right)$

How good is the computed diameter?

Thm 6:The diameter obtained from an s-WSPD of P for $s=4 / \varepsilon$ is a $(1+\varepsilon)$-approximation of the diameter of P.

Closest Pair of Points

Problem: Find the pair $\{x, y\} \subset P$ with minimum distance.

Closest Pair of Points

Problem: Find the pair $\{x, y\} \subset P$ with minimum distance.

- brute-force testing all point pairs \Rightarrow running time $O\left(n^{2}\right)$:-(
- test distances $\|$ rep (u) rep $(v) \|$ of all ws-pairs $\left\{P_{u}, P_{v}\right\}$ \Rightarrow running time $O\left(n \log n+s^{d} n\right)$

Closest Pair of Points

Problem: Find the pair $\{x, y\} \subset P$ with minimum distance.

- brute-force testing all point pairs \Rightarrow running time $O\left(n^{2}\right)$:-(
- test distances $\| \operatorname{rep}(u)$ rep $(v) \|$ of all ws-pairs $\left\{P_{u}, P_{v}\right\}$ \Rightarrow running time $O\left(n \log n+s^{d} n\right)$

Exercise: For $s>2$ this actually yields the closest pair.

Discussion

What are further applications of the WSPD?

Discussion

What are further applications of the WSPD?

WSPD is useful whenever one can do without knowing all $\Theta\left(n^{2}\right)$ exact distances in a point set and approximate them instead. One example are force-based layout algorithms in graph drawing, where pairwise repulsive forces of n points need to be calculated.

Discussion

What are further applications of the WSPD?

WSPD is useful whenever one can do without knowing all $\Theta\left(n^{2}\right)$ exact distances in a point set and approximate them instead. One example are force-based layout algorithms in graph drawing, where pairwise repulsive forces of n points need to be calculated.

Why approximate geometrically?

Discussion

What are further applications of the WSPD?

WSPD is useful whenever one can do without knowing all $\Theta\left(n^{2}\right)$ exact distances in a point set and approximate them instead. One example are force-based layout algorithms in graph drawing, where pairwise repulsive forces of n points need to be calculated.

Why approximate geometrically?

On the one hand, this replaces slow computations by faster (but less precise) ones; on the other hand, often the input data are imprecise so that approximate solutions can be sufficient depending on the application.

Discussion

What are further applications of the WSPD?

WSPD is useful whenever one can do without knowing all $\Theta\left(n^{2}\right)$ exact distances in a point set and approximate them instead. One example are force-based layout algorithms in graph drawing, where pairwise repulsive forces of n points need to be calculated.

Why approximate geometrically?

On the one hand, this replaces slow computations by faster (but less precise) ones; on the other hand, often the input data are imprecise so that approximate solutions can be sufficient depending on the application.

Can we achieve the same time bounds with exact computations?

Discussion

What are further applications of the WSPD?

WSPD is useful whenever one can do without knowing all $\Theta\left(n^{2}\right)$ exact distances in a point set and approximate them instead. One example are force-based layout algorithms in graph drawing, where pairwise repulsive forces of n points need to be calculated.

Why approximate geometrically?

On the one hand, this replaces slow computations by faster (but less precise) ones; on the other hand, often the input data are imprecise so that approximate solutions can be sufficient depending on the application.

Can we achieve the same time bounds with exact computations?
In \mathbb{R}^{2} this is often true, but not in \mathbb{R}^{d} for $d>2$. (e.g. EMST, diameter)

Organizational Information

Oral Exams:

Length: 30 minutes
Dates: Feb. 23, 24, 25; April 12, 13, 14
Times: 9, 9:30, 10, 10:30, 11
Doodle: Select all time slots that you have available!

Please come to our offices and ask questions!

Project presentations:

Next week on Feb. 1 and 3.

Motion planning and Visibility Graphs

Robot Motion Planning

Problem: Given a (point) robot at position $p_{\text {start }}$ in a area with polygonal obstacles, find a shortest path to $p_{\text {goal }}$ avoiding obstacles.

Robot Motion Planning

Problem: Given a (point) robot at position $p_{\text {start }}$ in a area with polygonal obstacles, find a shortest path to $p_{\text {goal }}$ avoiding obstacles.

Robot Motion Planning

Problem: Given a (point) robot at position $p_{\text {start }}$ in a area with polygonal obstacles, find a shortest path to $p_{\text {goal }}$ avoiding obstacles.

First Idea: Shortest Paths in Graphs

First Idea: Shortest Paths in Graphs

- First compute trapezoidal map

First Idea: Shortest Paths in Graphs

- First compute trapezoidal map
- Remove segments in obstacles

First Idea: Shortest Paths in Graphs

- First compute trapezoidal map
- Remove segments in obstacles
- Nodes in trapezoids and vertical line segments

First Idea: Shortest Paths in Graphs

- First compute trapezoidal map
- Remove segments in obstacles
- Nodes in trapezoids and vertical line segments
- Euclidean weighted "dual graph" G with nodes on vertical segments

First Idea: Shortest Paths in Graphs

- First compute trapezoidal map - Locate start and goal
- Remove segments in obstacles
- Nodes in trapezoids and vertical line segments
- Euclidean weighted "dual graph" G with nodes on vertical segments

First Idea: Shortest Paths in Graphs

- First compute trapezoidal map
- Remove segments in obstacles
- Locate start and goal
- Nodes in trapezoids and vertical line segments
- Euclidean weighted "dual graph" G with nodes on vertical segments

First Idea: Shortest Paths in Graphs

- First compute trapezoidal map
- Remove segments in obstacles
- Locate start and goal
- Nodes in trapezoids and vertical line segments
- Euclidean weighted "dual graph" G with nodes on vertical segments

First Idea: Shortest Paths in Graphs

- First compute trapmond not the shortest path! cate start and goal
- Remove segments
- Nodes in trapezoids and vertical line segments
- Euclidean weighted "dual graph" G with nodes on vertical segments

First Idea: Shortest Paths in Graphs

- First compute trapmona not the shortest path! cate start and goal
- Remove segments mimosarms path ortest path with Dijkstra in G
- Nodes in trapezoids and vertical line segments
- Euclidean weighted "dual graph" G with nodes on vertical segments

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Shortest Paths in Polygonal Areas

Lemma 1: For a set S of disjoint open polygons in \mathbb{R}^{2} and two points s and t not in S each shortest st-path in $\mathbb{R}^{2} \backslash \bigcup S$ is a polygonal path whose internal vertices are vertices of S.

Proof sketch:

Visibility Graph

Given a set S of disjoint open polygons...

Visibility Graph

Given a set S of disjoint open polygons...

...with point set $V(S)$.

Visibility Graph

Given a set S of disjoint open polygons...

...with point set $V(S)$.

Def.: Then $G_{\text {vis }}(S)=\left(V(S), E_{\text {vis }}(S)\right)$ is the visibility graph of S with $E_{\text {vis }}(S)=\{u v \mid u, v \in V(S)$ and u sees $v\}$ und $w(u v)=|u v|$.

Visibility Graph

Given a set S of disjoint open polygons...

...with point set $V(S)$.

Def.: Then $G_{\text {vis }}(S)=\left(V(S), E_{\text {vis }}(S)\right)$ is the visibility graph of S with $E_{\text {vis }}(S)=\{u v \mid u, v \in V(S)$ and u sees $v\}$ und $w(u v)=|u v|$. Where u sees $v: \Leftrightarrow \overline{u v} \cap \bigcup S=\emptyset$

Visibility Graph

Given a set S of disjoint open polygons...

...with point set $V(S)$.

Def.: Then $G_{\text {vis }}(S)=\left(V(S), E_{\text {vis }}(S)\right)$ is the visibility graph of S with $E_{\text {vis }}(S)=\{u v \mid u, v \in V(S)$ and u sees $v\}$ und $w(u v)=|u v|$.
Where u sees $v: \Leftrightarrow \overline{u v} \cap \bigcup S=\emptyset$
Define $S^{\star}=S \cup\{s, t\}$ and $G_{\text {vis }}\left(S^{\star}\right)$ analogously.

Visibility Graph

Given a set S of disjoint open polygons...

...with point set $V(S)$.

Def.: Then $G_{\text {vis }}(S)=\left(V(S), E_{\text {vis }}(S)\right)$ is the visibility graph of S with $E_{\text {vis }}(S)=\{u v \mid u, v \in V(S)$ and u sees $v\}$ und $w(u v)=|u v|$.
Where u sees $v: \Leftrightarrow \overline{u v} \cap \bigcup S=\emptyset$
Define $S^{\star}=S \cup\{s, t\}$ and $G_{\text {vis }}\left(S^{\star}\right)$ analogously.
Lemma 1
A shortest st-path in \mathbb{R}^{2} avoiding obstacles in S is equivalent to a shortest $s t$-path in $G_{\text {vis }}\left(S^{\star}\right)$.

Algorithm

ShortestPath (S, s, t)
Input: Obstacles S, points $s, t \in \mathbb{R}^{2} \backslash \bigcup S$
Output: Shortest collision-free st-path in S
$1 G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}(S \cup\{s, t\})$
2 foreach $u v \in E_{\text {vis }}$ do $w(u v) \leftarrow|u v|$
3 return Dijkstra($\left.G_{\text {vis }}, w, s, t\right)$

Algorithm

ShortestPath (S, s, t)

$$
n=|V(S)|, m=\left|E_{\mathrm{vis}}(S)\right|
$$

Input: Obstacles S, points $s, t \in \mathbb{R}^{2} \backslash \bigcup S$
Output: Shortest collision-free st-path in S
$1 G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}(S \cup\{s, t\})$
2 foreach $u v \in E_{\text {vis }}$ do $w(u v) \leftarrow|u v|$
$O(m)$
3 return Dijkstra($\left.G_{\text {vis }}, w, s, t\right)$
$O(n \log n+m)$

Algorithm

ShortestPath (S, s, t)

$$
n=|V(S)|, m=\left|E_{\mathrm{vis}}(S)\right|
$$

Input: Obstacles S, points $s, t \in \mathbb{R}^{2} \backslash \bigcup S$
Output: Shortest collision-free st-path in S
Input: Obstacles S, points $s, t \in \mathbb{R}^{2} \backslash \bigcup S$
Output: Shortest collision-free st-path in S
$1 G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}(S \cup\{s, t\})$
$O\left(n^{2} \log n\right)$
2 foreach $u v \in E_{\text {vis }}$ do $w(u v) \leftarrow|u v|$
$O(m)$
3 return Dijkstra($G_{\text {vis }}, w, s, t$)

$O\left(n^{2} \log n\right)$
$O(m)$
$O(n \log n+m)$
$O\left(n^{2} \log n\right)$

Thm 1: A shortest $s t$-path in an area with polygonal obstacles with n edges can be computed in $O\left(n^{2} \log n\right)$ time.

Computing a Visibility Graph

VisibilityGraph (S)
Input: Set of disjoint polygons S
Output: Visibility graph $G_{\text {vis }}(S)$
$1 E \leftarrow \emptyset$
2 foreach $v \in V(S)$ do
$3 \quad W \leftarrow \operatorname{VisibleVertices}(v, S)$
$E \leftarrow E \cup\{v w \mid w \in W\}$
5 return $(V(S), E)$

Computing Visible Nodes

VisibleVertices (p, S)

Computing Visible Nodes

VisibleVertices (p, S)

Computing Visible Nodes

VisibleVertices (p, S)

Computing Visible Nodes

VisibleVertices (p, S)
Problem: Given p and S, find in $O(n \log n)$ time all nodes that p sees in $V(S)$!

Computing Visible Nodes

VisibleVertices (p, S)

$$
r \leftarrow\left\{p+(k, 0) \mid k \in \mathbb{R}_{0}^{+}\right\}
$$

Computing Visible Nodes

VisibleVertices (p, S)

$$
\begin{aligned}
& r \leftarrow\left\{p+(k, 0) \mid k \in \mathbb{R}_{0}^{+}\right\} \\
& I \leftarrow\{e \in E(S) \mid e \cap r \neq \emptyset\}
\end{aligned}
$$

Computing Visible Nodes

VisibleVertices (p, S)
$r \leftarrow\left\{p+(k, 0) \mid k \in \mathbb{R}_{0}^{+}\right\}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \emptyset\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)

Computing Visible Nodes

VisibleVertices (p, S)
$r \leftarrow\left\{p+(k, 0) \mid k \in \mathbb{R}_{0}^{+}\right\}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \emptyset\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I) $w_{1}, \ldots, w_{n} \leftarrow \operatorname{sort} V(S)$ in cyclic order around p

Computing Visible Nodes

VisibleVertices (p, S)
$r \leftarrow\left\{p+(k, 0) \mid k \in \mathbb{R}_{0}^{+}\right\}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \emptyset\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
$w_{1}, \ldots, w_{n} \leftarrow \operatorname{sort} V(S)$ in cyclic order around p

$$
\begin{aligned}
& v \prec v^{\prime}: \Leftrightarrow \\
& \angle v<\angle v^{\prime} \text { or } \\
& \left(\angle v=\angle v^{\prime} \text { and }|p v|<\left|p v^{\prime}\right|\right)
\end{aligned}
$$

Computing Visible Nodes

VisibleVertices (p, S)
$r \leftarrow\left\{p+(k, 0) \mid k \in \mathbb{R}_{0}^{+}\right\}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \emptyset\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
$w_{1}, \ldots, w_{n} \leftarrow \operatorname{sort} V(S)$ in cyclic order around p

$$
\begin{aligned}
& v \prec v^{\prime}: \Leftrightarrow \\
& \qquad \begin{array}{l}
\angle v<\angle v^{\prime} \text { or } \\
\left(\angle v=\angle v^{\prime} \text { and }|p v|<\left|p v^{\prime}\right|\right)
\end{array}
\end{aligned}
$$

Computing Visible Nodes

VisibleVertices (p, S)
$r \leftarrow\left\{p+(k, 0) \mid k \in \mathbb{R}_{0}^{+}\right\}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \emptyset\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
$w_{1}, \ldots, w_{n} \leftarrow \operatorname{sort} V(S)$ in cyclic order around p

$$
\begin{aligned}
& v \prec v^{\prime}: \Leftrightarrow \\
& \qquad \begin{array}{l}
\angle v<\angle v^{\prime} \text { or } \\
\left(\angle v=\angle v^{\prime} \text { and }|p v|<\left|p v^{\prime}\right|\right)
\end{array}
\end{aligned}
$$

Sweep method with rotation

Computing Visible Nodes

VisibleVertices (p, S)
$r \leftarrow\left\{p+(k, 0) \mid k \in \mathbb{R}_{0}^{+}\right\}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \emptyset\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
$w_{1}, \ldots, w_{n} \leftarrow \operatorname{sort} V(S)$ in cyclic order around p

Computing Visible Nodes

VisibleVertices (p, S)
$r \leftarrow\left\{p+(k, 0) \mid k \in \mathbb{R}_{0}^{+}\right\}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \emptyset\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
$w_{1}, \ldots, w_{n} \leftarrow \operatorname{sort} V(S)$ in
cyclic order around p
$W \leftarrow \emptyset$

for $i=1$ to n do
if $\operatorname{Visible}\left(p, w_{i}\right)$ then

$$
W \leftarrow W \cup\left\{w_{i}\right\}
$$

Add to \mathcal{T} edges incident to w_{i} : CW from $\overrightarrow{p w_{i}}+$ Remove from \mathcal{T} edges incident to w_{i} : CCW from ${\overrightarrow{p w_{i}}}^{-}$ return W

Computing Visible Nodes

VisibleVertices (p, S)
$r \leftarrow\left\{p+(k, 0) \mid k \in \mathbb{R}_{0}^{+}\right\}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \emptyset\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
$w_{1}, \ldots, w_{n} \leftarrow \operatorname{sort} V(S)$ in
cyclic order around p
$W \leftarrow \emptyset$
for $i=1$ to n do
if $\operatorname{Visible}\left(p, w_{i}\right)$ then

$$
W \leftarrow W \cup\left\{w_{i}\right\}
$$

Add to \mathcal{T} edges incident to w_{i} : CW from $\overrightarrow{p w_{i}}+$ Remove from \mathcal{T} edges incident to w_{i} : CCW from $\overrightarrow{p w i}^{-}$ return W

Computing Visible Nodes

VisibleVertices (p, S)
$r \leftarrow\left\{p+(k, 0) \mid k \in \mathbb{R}_{0}^{+}\right\}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \emptyset\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
$w_{1}, \ldots, w_{n} \leftarrow \operatorname{sort} V(S)$ in
cyclic order around p
$W \leftarrow \emptyset$
for $i=1$ to n do
if $\operatorname{Visible}\left(p, w_{i}\right)$ then
$W \leftarrow W \cup\left\{w_{i}\right\}$
Add to \mathcal{T} edges incident to w_{i} : CW from $\overrightarrow{p w_{i}}+$ Remove from \mathcal{T} edges incident to w_{i} : CCW from $\overrightarrow{p w i}^{-}$ return W

Visibility Case Analysis

Visible $\left(p, w_{i}\right)$
if $\overline{p w_{i}}$ intersects polygon of w_{i} then
\llcorner return false

Visibility Case Analysis

Visible $\left(p, w_{i}\right)$
if $\overline{p w_{i}}$ intersects polygon of w_{i} then
L return false
if $i=1$ or $w_{i-1} \notin \overline{p w_{i}}$ then
$e \leftarrow$ edge of leftmost leaf of \mathcal{T}
if $e \neq$ nil and $\overline{p w_{i}} \cap e \neq \emptyset$ then return false
else return true

Visibility Case Analysis

Visible $\left(p, w_{i}\right)$
if $\overline{p w_{i}}$ intersects polygon of w_{i} then return false

if $i=1$ or $w_{i-1} \notin \overline{p w_{i}}$ then
$e \leftarrow$ edge of leftmost leaf of \mathcal{T} if $e \neq$ nil and $\overline{p w_{i}} \cap e \neq \emptyset$ then return false else return true

else
if w_{i-1} is not visible then return false else

$e \leftarrow$ find edge in \mathcal{T}, that $\overline{w_{i-1} w_{i}}$ cuts; if $e \neq$ nil then return false else return true

Summary

Thm 1: A shortest st-path in an area with polygonal obstacles with n edges can be computed in $O\left(n^{2} \log n\right)$ time.

Summary

Thm 1: A shortest $s t$-path in an area with polygonal obstacles with n edges can be computed in $O\left(n^{2} \log n\right)$ time.

Proof:

- Correctness follows directly from Lemma 1.

Summary

Thm 1: A shortest st-path in an area with polygonal obstacles with n edges can be computed in $O\left(n^{2} \log n\right)$ time.

Proof:

- Correctness follows directly from Lemma 1.
- Running time:
- VisibleVertices takes $O(n \log n)$ time per vertex - n calls to VisibleVertices

Summary

Thm 1: A shortest st-path in an area with polygonal obstacles with n edges can be computed in $O\left(n^{2} \log n\right)$ time.

Proof:

- Correctness follows directly from Lemma 1.
- Running time:
- VisibleVertices takes $O(n \log n)$ time per vertex - n calls to VisibleVertices

$O\left(n^{2}\right)$ with duality (see exercise or D. Mount [M12] Lect. 31)

Discussion

Robots are not single points...

Discussion

Robots are not single points...

For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Discussion

Robots are not single points...

For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Discussion

Robots are not single points...

For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Discussion

Robots are not single points...

For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Discussion

Robots are not single points...
For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Discussion

Robots are not single points...
For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Discussion

Robots are not single points...
For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Discussion

Robots are not single points...

For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Discussion

Robots are not single points...
For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Discussion

Robots are not single points...
For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Can we compute faster than $O\left(n^{2} \log n\right)$?

Discussion

Robots are not single points...
For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Can we compute faster than $O\left(n^{2} \log n\right)$?
Yes, by use duality and a simultaneous rotation sweep for all points in the dual. Computing the arrangement, is also in $O\left(n^{2}\right)$. Even though $G_{\text {vis }}$ can have $\Omega\left(n^{2}\right)$
 edges, the visibility graph can be constructed even faster with an output sensitive $O(n \log n+m)$-time algorithm.
[Ghosh, Mount 1987]

Discussion

Robots are not single points...
For robots modelled by a convex polygon that cannot rotate, we can resize (grow) the polygons representing the obstacles $(\rightarrow$ Minkowski Sums, Ch. 13 in [BCKO08]).

Can we compute faster than $O\left(n^{2} \log n\right)$?
Yes, by use duality and a simultaneous rotation sweep for all points in the dual. Computing the arrangement, is also in $O\left(n^{2}\right)$. Even though $G_{\text {vis }}$ can have $\Omega\left(n^{2}\right)$
 edges, the visibility graph can be constructed even faster with an output sensitive $O(n \log n+m)$-time algorithm.
[Ghosh, Mount 1987]
If you search only for one shortest Euclidean st-path, there is an algorithm with optimal $O(n \log n)$ time.
[Hershberger, Suri 1999]

