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Recall: Well-Separated Pair Decomposition

Def: A pair of disjoint point sets A and B in Rd is called
s-well separated for some s > 0, if A and B can each
be covered by a ball of radius r whose distance is at
least sr.

Def: For a point set P and some s > 0 an s-well separated
pair decomposition (s-WSPD) is a set of pairs
{{A1, B1}, . . . , {Am, Bm}} with

Ai, Bi ⊂ P for all i
Ai ∩Bi = ∅ for all i⋃m

i=1 Ai ⊗Bi = P ⊗ P
{Ai, Bi} s-well separated for all i

Thm 3: Given a point set P in Rd and s ≥ 1 we can construct
an s-WSPD with O(sdn) pairs in time
O(n log n + sdn).
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Further Applications of WSPD
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Euclidean MST

Problem:Given a point set P find a minimum spanning tree
(MST) in the Euclidean graph EG(P ).

Prim: MST in a graph G = (V,E) can be
computed in O(|E|+ |V | log |V |) time.

EG(P ) has Θ(n2) edges ⇒ running time O(n2) :-(
(1 + ε)-spanner for P has O(n/εd) edges
⇒ running time O(n log n + n/εd) :-)

How good is the MST of a (1 + ε)-spanner?

Thm 5: The MST obtained from a (1 + ε)-spanner of P is a
(1 + ε)-approximation of the EMST of P .
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Diameter of P

Problem: Find the diameter of a point set P (i.e., the pair
{x, y} ⊂ P with maximum distance).

brute-force testing all point pairs ⇒ running time O(n2) :-(
test distances ||rep(u) rep(v)|| of all ws-pairs {Pu, Pv}
⇒ running time O(n log n + sdn) :-)

How good is the computed diameter?

Thm 6:The diameter obtained from an s-WSPD of P for
s = 4/ε is a (1 + ε)-approximation of the diameter of P .
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Closest Pair of Points

Problem: Find the pair {x, y} ⊂ P with minimum distance.

brute-force testing all point pairs⇒ running time O(n2) :-(
test distances ||rep(u) rep(v)|| of all ws-pairs {Pu, Pv}
⇒ running time O(n log n + sdn) :-)

Exercise: For s > 2 this actually yields the closest pair.

18
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Discussion

What are further applications of the WSPD?

WSPD is useful whenever one can do without knowing all Θ(n2) exact
distances in a point set and approximate them instead. One example are
force-based layout algorithms in graph drawing, where pairwise repulsive
forces of n points need to be calculated.

Can we achieve the same time bounds with exact computations?

In R2 this is often true, but not in Rd for d > 2. (e.g. EMST, diameter)

Why approximate geometrically?

On the one hand, this replaces slow computations by faster (but less
precise) ones; on the other hand, often the input data are imprecise so
that approximate solutions can be sufficient depending on the application.
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Organizational Information

Oral Exams:

Length: 30 minutes
Dates: Feb. 23, 24, 25; April 12, 13, 14
Times: 9, 9:30, 10, 10:30, 11
Doodle: Select all time slots that you have available!

Project presentations:

Next week on Feb. 1 and 3.

Please come to our offices and ask questions!
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Motion planning and Visibility Graphs
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Robot Motion Planning

?

Problem:Given a (point) robot at position pstart in a area with
polygonal obstacles, find a shortest path to pgoal
avoiding obstacles.

Ideas?
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First Idea: Shortest Paths in Graphs

pgoal

First compute trapezoidal map

Remove segments in obstacles

Nodes in trapezoids and vertical line segments

Euclidean weighted “dual graph” G with nodes on vertical segments

Locate start and goal

pstart

Shortest path with Dijkstra in G
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First Idea: Shortest Paths in Graphs

pgoal

First compute trapezoidal map

Remove segments in obstacles

Nodes in trapezoids and vertical line segments

Euclidean weighted “dual graph” G with nodes on vertical segments

Locate start and goal

pstart

Shortest path with Dijkstra in G
not the shortest path!not the shortest path!
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Shortest Paths in Polygonal Areas

s

t

Proof sketch:

Lemma 1: For a set S of disjoint open polygons in R2 and two
points s and t not in S
each shortest st-path in R2 \

⋃
S is a polygonal

path whose internal vertices are vertices of S.
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Visibility Graph

Def.: Then Gvis(S) = (V (S), Evis(S)) is the visibility graph of S with
Evis(S) = {uv | u, v ∈ V (S) and u sees v} und w(uv) = |uv|.

Given a set S of disjoint open polygons...

...with point set V (S).

Where u sees v :⇔ uv ∩
⋃
S = ∅

Define S? = S ∪ {s, t} and Gvis(S
?) analogously.

s

t

Lemma 1
⇒ A shortest st-path in R2 avoiding obstacles in S is equivalent

to a shortest st-path in Gvis(S
?).



Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Applications of WSPD & Visibility Graphs14

Algorithm

ShortestPath(S, s, t)

Input: Obstacles S, points s, t ∈ R2 \
⋃
S

Output: Shortest collision-free st-path in S
1 Gvis ← VisibilityGraph(S ∪ {s, t})
2 foreach uv ∈ Evis do w(uv)← |uv|
3 return Dijkstra(Gvis, w, s, t)

n = |V (S)|,m = |Evis(S)|

?
O(m)

O(n log n + m)

Thm 1: A shortest st-path in an area with polygonal obstacles
with n edges can be computed in O(n2 log n) time.

O(n2 log n)

O(n2 log n)
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Computing a Visibility Graph

VisibilityGraph(S)

Input: Set of disjoint polygons S
Output: Visibility graph Gvis(S)

1 E ← ∅
2 foreach v ∈ V (S) do
3 W ← VisibleVertices(v, S)
4 E ← E ∪ {vw | w ∈W}
5 return (V (S), E)
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Computing Visible Nodes

VisibleVertices(p, S)
p

e4

e1

e2

e3

e5

e1 e2 e3 e4

e5 e6

e1

e2

e3

e4

e6

w1, . . . , wn ← sort V (S) in
cyclic order around p

r ← {p + (k, 0) | k ∈ R+
0 } r

v ≺ v′ :⇔
∠v < ∠v′ or
(∠v = ∠v′ and |pv| < |pv′|)

I ← {e ∈ E(S) | e ∩ r 6= ∅}

T ← balancedBinaryTree(I)
e5

Sweep method with rotation

T

v

∠v
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Computing Visible Nodes

VisibleVertices(p, S)
p

e1

e2

e3

e4

e6

w1, . . . , wn ← sort V (S) in
cyclic order around p

r ← {p + (k, 0) | k ∈ R+
0 } r

I ← {e ∈ E(S) | e ∩ r 6= ∅}

T ← balancedBinaryTree(I)
e5

W ← ∅
for i = 1 to n do

if Visible(p, wi) then
W ←W ∪ {wi}

Add to T edges incident to wi: CW from −→pwi
+

Remove from T edges incident to wi:CCW from −→pwi
−

return W

p
wi−→pwi

+

−→pwi
−

v

∠v
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Visibility Case Analysis
Visible(p, wi)

if pwi intersects polygon of wi then
return false

if i = 1 or wi−1 6∈ pwi then
e← edge of leftmost leaf of T
if e 6= nil and pwi ∩ e 6= ∅ then

return false
else return true

else
if wi−1 is not visible then

return false
else

e← find edge in T , that wi−1wi cuts; if e 6= nil
then return false
else return true

p
wi

p
wi

wi−1

p
wi

wi−1

p wi−1
wi

e
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Summary

Thm 1: A shortest st-path in an area with polygonal obstacles
with n edges can be computed in O(n2 log n) time.

Proof:
Correctness follows directly from Lemma 1.

Running time:
– VisibleVertices takes O(n log n) time per vertex – n calls
to VisibleVertices

O(n2) with duality
(see exercise or D. Mount [M12] Lect. 31)
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Discussion

Robots are not single points...

For robots modelled by a convex polygon that cannot rotate, we can
resize (grow) the polygons representing the obstacles
(→ Minkowski Sums, Ch. 13 in [BCKO08]).

Can we compute faster than O(n2 log n)?

Yes, by use duality and a simultaneous rotation sweep
for all points in the dual. Computing the arrangement,
is also in O(n2). Even though Gvis can have Ω(n2)
edges, the visibility graph can be constructed

even faster with an output sensitive O(n log n + m)-time algorithm.

If you search only for one shortest Euclidean st-path, there is an
algorithm with optimal O(n log n) time. [Hershberger, Suri 1999]

[Ghosh, Mount 1987]

O
bstacle
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