Computational Geometry • Lecture
 Well-Separated Pair Decompositions

INSTITUTE FOR THEORETICAL INFORMATICS • FACULTY OF INFORMATICS

Tamara Mchedlidze • Darren Strash 18.1.2016

Motivation: Spanners

Task:

A set of cities shall be connected by a new road network.

Motivation: Spanners

Task:

A set of cities shall be connected by a new road network.

Idea 1: Euclidean minimum spanning tree

Motivation: Spanners

Task:
A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance $\|x y\|$.

Idea 1: Euclidean minimum spanning tree

Motivation: Spanners

Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance $\|x y\|$.

Idea 1: Euclidean minimum spanning tree
Idea 2: complete graph

Motivation: Spanners

Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance $\|x y\|$.
Construction costs must remain reasonable, e.g., only $O(n)$ edges.

Idea 1: Euclidean minimum spanning tree
Idea 2: complete graph

Motivation: Spanners

Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance $\|x y\|$.
Construction costs must remain reasonable, e.g., only $O(n)$ edges.

Idea 1: Euclidean minimum spanning tree
Idea 2: complete graph
Idea 3: sparse t-spanner

Well-Separated Pairs

Def: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for some $s>0$, if A and B can each be covered by a ball of radius r whose distance is at least $s r$.

Well-Separated Pairs

Def: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for some $s>0$, if A and B can each be covered by a ball of radius r whose distance is at least $s r$.

Well-Separated Pairs

Def: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for some $s>0$, if A and B can each be covered by a ball of radius r whose distance is at least $s r$.

Obs: ■ s-well separated $\Rightarrow s^{\prime}$-well separated for all $s^{\prime} \leq s$

- singletons $\{a\}$ and $\{b\}$ are s-well separated for all $s>0$

Well-Separated Pair Decomposition (WSPD)

For well-separated pair $\{A, B\}$ we know that the distance for all point pairs in $A \otimes B=\{\{a, b\} \mid a \in A, b \in B, a \neq b\}$ is similar.

Goal: $o\left(n^{2}\right)$-sized data structure that approximates the distances of all $\binom{n}{2}$ pairs of points in a set $P=\left\{p_{1}, \ldots, p_{n}\right\}$.

Well-Separated Pair Decomposition (WSPD)

For well-separated pair $\{A, B\}$ we know that the distance for all point pairs in $A \otimes B=\{\{a, b\} \mid a \in A, b \in B, a \neq b\}$ is similar.

Goal: $o\left(n^{2}\right)$-sized data structure that approximates the distances of all $\binom{n}{2}$ pairs of points in a set $P=\left\{p_{1}, \ldots, p_{n}\right\}$.

Def: For a point set P and some $s>0$ an s-well separated pair decomposition (s-WSPD) is a set of pairs $\left\{\left\{A_{1}, B_{1}\right\}, \ldots,\left\{A_{m}, B_{m}\right\}\right\}$ with

- $A_{i}, B_{i} \subset P$ for all i
- $A_{i} \cap B_{i}=\emptyset$ for all i
- $\bigcup_{i=1}^{m} A_{i} \otimes B_{i}=P \otimes P$
- $\left\{A_{i}, B_{i}\right\} s$-well separated for all i

Example

28 point pairs

Example

28 point pairs

$12 s$-well separated pairs

Example

28 point pairs

$12 s$-well separated pairs WSPD of size $O\left(n^{2}\right)$ is trivial. Can we do it in $O(n)$?

Recall: Quadtrees

Def: A quadtree $\mathcal{T}(P)$ for a point set P is a rooted tree, where each internal node has four children. Each node corresponds to a square, and the squares of the leaves form a partition of the root square.

Recall: Quadtrees

Def: A quadtree $\mathcal{T}(P)$ for a point set P is a rooted tree, where each internal node has four children. Each node corresponds to a square, and the squares of the leaves form a partition of the root square.

Lemma 1: The height of $\mathcal{T}(P)$ is at most $\log (s / c)+3 / 2$, where c is the smallest distance in P and s is the side length of the root square Q.

Thm 1: A quadtree $\mathcal{T}(P)$ on n points with height h has $O(h n)$ nodes and can be constructed in $O(h n)$ time.

Compressed Quadtrees

Def: A compressed quadtree is a quadtree, in which each path of non-separating inner nodes is contracted into a single edge. Each such edge has a label to reconstruct the path structure.

Compressed Quadtrees

Def: A compressed quadtree is a quadtree, in which each path of non-separating inner nodes is contracted into a single edge. Each such edge has a label to reconstruct the path structure.

compressed quadtree

Compressed Quadtrees

Def: A compressed quadtree is a quadtree, in which each path of non-separating inner nodes is contracted into a single edge. Each such edge has a label to reconstruct the path structure.

compressed quadtree

Properties of Compressed Quadtrees

Obs: - inner nodes split their point set into ≥ 2 non-empty parts \Rightarrow max. $n-1$ inner nodes

- depth can be $d=n$, so the algorithm to construct quadtrees takes $O\left(n^{2}\right)$ time

Properties of Compressed Quadtrees

Obs: - inner nodes split their point set into ≥ 2 non-empty parts \Rightarrow max. $n-1$ inner nodes

- depth can be $d=n$, so the algorithm to construct quadtrees takes $O\left(n^{2}\right)$ time
Thm 2: A compressed quadtree for n points in \mathbb{R}^{d} with a fixed dimension d can be constructed in $O(n \log n)$ time.
e.g. skip-quadtree [Eppstein et al. 2005] (without proof)

Packing Lemma

Lemma 2: Let K be a ball with radius r in \mathbb{R}^{d} and let X be a set of pairwise disjoint quadtree cells with side length $\geq x$ that intersect K. Then it holds

$$
|X| \leq(1+\lceil 2 r / x\rceil)^{d} .
$$

Packing Lemma

Lemma 2: Let K be a ball with radius r in \mathbb{R}^{d} and let X be a set of pairwise disjoint quadtree cells with side length $\geq x$ that intersect K. Then it holds

$$
|X| \leq(1+\lceil 2 r / x\rceil)^{d} .
$$

Proof:

Packing Lemma

Lemma 2: Let K be a ball with radius r in \mathbb{R}^{d} and let X be a set of pairwise disjoint quadtree cells with side length $\geq x$ that intersect K. Then it holds

$$
|X| \leq(1+\lceil 2 r / x\rceil)^{d} .
$$

Proof:

Packing Lemma

Lemma 2: Let K be a ball with radius r in \mathbb{R}^{d} and let X be a set of pairwise disjoint quadtree cells with side length $\geq x$ that intersect K. Then it holds

$$
|X| \leq(1+\lceil 2 r / x\rceil)^{d} .
$$

Proof:

Representatives and Level

Def: For each node u of a quadtree $\mathcal{T}(P)$ for point set P let $P_{u}=Q_{u} \cap P$ be the set of points in the corresponding square Q_{u}. In each leaf u define the representative

$$
\operatorname{rep}(u)= \begin{cases}p & \text { falls } P_{u}=\{p\}(u \text { is leaf }) \\ \emptyset & \text { otherwise }\end{cases}
$$

For an inner node v assign $\operatorname{rep}(v)=\operatorname{rep}(u)$ for a non-empty child u of v.

Representatives and Level

Def: For each node u of a quadtree $\mathcal{T}(P)$ for point set P let $P_{u}=Q_{u} \cap P$ be the set of points in the corresponding square Q_{u}. In each leaf u define the representative

$$
\operatorname{rep}(u)= \begin{cases}p & \text { falls } P_{u}=\{p\}(u \text { is leaf }) \\ \emptyset & \text { otherwise }\end{cases}
$$

For an inner node v assign $\operatorname{rep}(v)=\operatorname{rep}(u)$ for a non-empty child u of v.

Def: For each node u of a quadtree $\mathcal{T}(P)$ let level (u) be the level of u in the corresponding uncompressed quadtree. We have level $(u) \leq \operatorname{level}(v)$ iff area $\left(Q_{u}\right) \geq \operatorname{area}\left(Q_{v}\right)$.

Representatives and Level

Def: For each node u of a quadtree $\mathcal{T}(P)$ for point set P let

Def: For each node u of a quadtree $\mathcal{T}(P)$ let level (u) be the level of u in the corresponding uncompressed quadtree. We have level $(u) \leq \operatorname{level}(v)$ iff area $\left(Q_{u}\right) \geq \operatorname{area}\left(Q_{v}\right)$.

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v
$\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v
$\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v
$\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v
$\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v
$\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T} return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v
$\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v
$\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v
$\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

Constructing a WSPD

wsPairs $\left(u, v, \mathcal{T}_{s} s\right)$
Input: quadt circles around Q_{u} and Q_{v} (or radius 0 for point in a leaf)
Output: WS increase smaller circle and check if distance $\geq s r$
if $\operatorname{rep}(u)=\emptyset$ or rep $(v)=\emptyset$ or at $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>\operatorname{level}(v)$ then swap u and v $\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T} return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

Constructing a WSPD

wsPairs $\left(u, v, \mathcal{T}_{s} s\right)$
Input: quadt circles around Q_{u} and Q_{v} (or radius 0 for point in a leaf)
Output: WS increase smaller circle and check if distance $\geq s r$
if $\operatorname{rep}(u)=\emptyset$ or rep $(v)=\emptyset$ or at $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v $\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T} return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

$$
\{\{b, c\},\{d\}\}
$$

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v $\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T} return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

$\{\{b, c\},\{d\}\}$
$\{\{a\},\{d\}\}$

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v $\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T} return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

$$
\begin{aligned}
& \{\{b, c\},\{d\}\} \\
& \{\{a\},\{d\}\} \\
& \{\{b, c\},\{e\}\} \\
& \{\{d\},\{e\}\} \\
& \{\{a\},\{b\}\} \\
& \{\{a\},\{c\}\} \\
& \{\{b\},\{c\}\} \\
& \{\{a\},\{e\}\}
\end{aligned}
$$

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else
if level $(u)>$ level (v) then swap u and v
$\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
return $\bigcup_{i=1}^{m}$ wsPairs $\left(u_{i}, v, \mathcal{T}, s\right)$

- initial call wsPairs $\left(u_{0}, u_{0}, \mathcal{T}, s\right)$
- avoid duplicates wsPairs $\left(u_{i}, u_{j}, \mathcal{T}, s\right)$ and $\operatorname{wsPairs}\left(u_{j}, u_{i}, \mathcal{T}, s\right)$ How?
- leaf pairs are always s-well separated, so algorithm terminates
- output are pairs of quadtree nodes

Constructing a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
if $\operatorname{rep}(u)=\emptyset$ or $\operatorname{rep}(v)=\emptyset$ or leaf $u=v$ then return \emptyset else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$ else

$$
\begin{aligned}
& \text { if level }(u)>\text { level }(v) \text { then swap } u \text { and } v \\
& \left(u_{1}, \ldots, u_{m}\right) \leftarrow \operatorname{children~of~} u \text { in } \mathcal{T} \\
& \text { return } \bigcup_{i=1}^{m} \operatorname{wsPairs}\left(u_{i}, v, \mathcal{T}, s\right)
\end{aligned}
$$

- initial call wsPairs $\left(u_{0}, u_{0}, \mathcal{T}, s\right)$
- avoid duplicates wsPairs $\left(u_{i}, u_{j}, \mathcal{T}, s\right)$ and $\operatorname{wsPairs}\left(u_{j}, u_{i}, \mathcal{T}, s\right)$ How?
- leaf pairs are always s-well separated, so algorithm terminates
- output are pairs of quadtree nodes

Question: How many pairs does the algorithm create?

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- simplifying assumption: no quadtree compression required
\Rightarrow in wsPairs (u, v, \mathcal{T}, s) sizes of u and v differ by at most factor 2

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- simplifying assumption: no quadtree compression required \Rightarrow in wsPairs (u, v, \mathcal{T}, s) sizes of u and v differ by at most factor 2
- goal: count calls to wsPairs
- call is trivial if it produces no further recursive calls
- each trivial call produces at most one ws pair
- each non-trivial call produces $\leq 2^{d}$ trivial calls and thus $\leq 2^{d}$ ws pairs

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- simplifying assumption: no quadtree compression required \Rightarrow in wsPairs (u, v, \mathcal{T}, s) sizes of u and v differ by at most factor 2
- goal: count calls to wsPairs
- call is trivial if it produces no further recursive calls
- each trivial call produces at most one ws pair
- each non-trivial call produces $\leq 2^{d}$ trivial calls and thus $\leq 2^{d}$ ws pairs
- let's count non-trivial calls and charge cost to the smaller of the two cells

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- simplifying assumption: no quadtree compression required
\Rightarrow in wsPairs (u, v, \mathcal{T}, s) sizes of u and v differ by at most factor 2
- goal: count calls to wsPairs
- call is trivial if it produces no further recursive calls
- each trivial call produces at most one ws pair
- each non-trivial call produces $\leq 2^{d}$ trivial calls and thus $\leq 2^{d}$ ws pairs
- let's count non-trivial calls and charge cost to the smaller of the two cells goal: each quadtree node has cost $O\left(s^{d}\right)$

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- simplifying assumption: no quadtree compression required \Rightarrow in wsPairs (u, v, \mathcal{T}, s) sizes of u and v differ by at most factor 2
- goal: count calls to wsPairs
- call is trivial if it produces no further recursive calls
- each trivial call produces at most one ws pair
- each non-trivial call produces $\leq 2^{d}$ trivial calls and thus $\leq 2^{d}$ ws pairs
- let's count non-trivial calls and charge cost to the smaller of the two cells
- call non-trivial $\Rightarrow u$ and v not ws, $u \geq v$

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- simplifying assumption: no quadtree compression required \Rightarrow in wsPairs (u, v, \mathcal{T}, s) sizes of u and v differ by at most factor 2
- goal: count calls to wsPairs
- call is trivial if it produces no further recursive calls
- each trivial call produces at most one ws pair
- each non-trivial call produces $\leq 2^{d}$ trivial calls and thus $\leq 2^{d}$ ws pairs
- let's count non-trivial calls and charge cost to the smaller of the two cells
- call non-trivial $\Rightarrow u$ and v not ws, $u \geq v$
- let x be side length of v and $r_{v}=x \sqrt{d} / 2$ the radius of the enclosing ball

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- simplifying assumption: no quadtree compression required \Rightarrow in wsPairs (u, v, \mathcal{T}, s) sizes of u and v differ by at most factor 2
- goal: count calls to wsPairs
- call is trivial if it produces no further recursive calls
- each trivial call produces at most one ws pair
- each non-trivial call produces $\leq 2^{d}$ trivial calls and thus $\leq 2^{d}$ ws pairs
- let's count non-trivial calls and charge cost to the smaller of the two cells
- call non-trivial $\Rightarrow u$ and v not ws, $u \geq v$
- let x be side length of v and $r_{v}=x \sqrt{d} / 2$ the radius of the enclosing ball
- side length of u is x or $2 x$ and $r_{u} \leq 2 r_{v}$

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- simplifying assumption: no quadtree compression required \Rightarrow in wsPairs (u, v, \mathcal{T}, s) sizes of u and v differ by at most factor 2
- goal: count calls to wsPairs
- call is trivial if it produces no further recursive calls
- each trivial call produces at most one ws pair
- each non-trivial call produces $\leq 2^{d}$ trivial calls and thus $\leq 2^{d}$ ws pairs
- let's count non-trivial calls and charge cost to the smaller of the two cells
- call non-trivial $\Rightarrow u$ and v not ws, $u \geq v$
- let x be side length of v and $r_{v}=x \sqrt{d} / 2$ the radius of the enclosing ball
- side length of u is x or $2 x$ and $r_{u} \leq 2 r_{v}$
- u, v not ws \Rightarrow ball distance $\leq s \max \left\{r_{u}, r_{v}\right\} \leq 2 s r_{v}=s x \sqrt{d}$

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$. Sketch of proof:

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- ball centers have distance

$$
\begin{aligned}
& \leq r_{v}+r_{u}+s x \sqrt{d} \\
& \leq(3 / 2+s) x \sqrt{d} \\
& \leq 3 s x \sqrt{d}=: R_{v}
\end{aligned}
$$

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- ball centers have distance

$$
\begin{aligned}
& \leq r_{v}+r_{u}+s x \sqrt{d} \\
& \leq(3 / 2+s) x \sqrt{d} \\
& \leq 3 s x \sqrt{d}=: R_{v}
\end{aligned}
$$

- all cells charging cost to v have size x or $2 x$ and intersect K_{v}; let C be their number and apply Lemma 2 (see board)

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

Recall Lemma 2:

Given ball K with radius r in \mathbb{R}^{d} and set X of pairwise disjoint quadtree cells with side length $\geq x$ that intersect K. Then

$$
|X| \leq(1+\lceil 2 r / x\rceil)^{d} .
$$

- all cells charging cost to v have size x or $2 x$ and intersect K_{v}; let C be their number and apply Lemma 2 (see board)

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

Recall Lemma 2:

Given ball K with radius r in \mathbb{R}^{d} and set X of pairwise disjoint quadtree cells with side length $\geq x$ that intersect K. Then

$$
|X| \leq(1+\lceil 2 r / x\rceil)^{d} .
$$

- all cells charging cost to v have size x or $2 x$ and intersect K_{v}; let C be their number and apply Lemma 2 (see board)
- yields $C=O\left(s^{d}\right)$

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- have $O(n)$ nodes in \mathcal{T}
- each causes $O\left(s^{d}\right)$ non-trivial calls
- each non-trivial call produces $O\left(2^{d}\right)$ ws-pairs

Recall Lemma 2:

Given ball K with radius r in \mathbb{R}^{d} and set X of pairwise disjoint quadtree cells with side length $\geq x$ that intersect K. Then

$$
|X| \leq(1+\lceil 2 r / x\rceil)^{d} .
$$

- all cells charging cost to v have size x or $2 x$ and intersect K_{v}; let C be their number and apply Lemma 2 (see board)
- yields $C=O\left(s^{d}\right)$

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Sketch of proof:

- have $O(n)$ nodes in \mathcal{T}
- each causes $O\left(s^{d}\right)$ non-trivial calls
- each non-trivial call produces $O\left(2^{d}\right)$ ws-pairs
- in total $O\left(s^{d} n\right)$ ws-pairs
- time: $O(n \log n)$ for quadtree and $O\left(s^{d} n\right)$ for the s-WSPD

Recall Lemma 2:

Given ball K with radius r in \mathbb{R}^{d} and set X of pairwise disjoint quadtree cells with side length $\geq x$ that intersect K. Then

$$
|X| \leq(1+\lceil 2 r / x\rceil)^{d} .
$$

- all cells charging cost to v have size x or $2 x$ and intersect K_{v}; let C be their number and apply Lemma 2 (see board)
- yields $C=O\left(s^{d}\right)$

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Obs:
each point pair $\{u, v\}$ is represented by exactly one ws-pair $\left\{A_{i}, B_{i}\right\}$ in this WSPD

t-Spanner

For a set P of n points in \mathbb{R}^{d} the Euclidean graph $\mathcal{E G}(P)=\left(P,\binom{P}{2}\right)$ is the complete weighted graph, whose edge weights correspond to the Euclidean distances of the edges' endpoints.

t-Spanner

For a set P of n points in \mathbb{R}^{d} the Euclidean graph $\mathcal{E G}(P)=\left(P,\binom{P}{2}\right)$ is the complete weighted graph, whose edge weights correspond to the Euclidean distances of the edges' endpoints.

t-Spanner

For a set P of n points in \mathbb{R}^{d} the Euclidean graph $\mathcal{E G}(P)=\left(P,\binom{P}{2}\right)$ is the complete weighted graph, whose edge weights correspond to the Euclidean distances of the edges' endpoints.

Since $\mathcal{E G}(P)$ has $\Theta\left(n^{2}\right)$ edges, one is often interested in a sparse graphs with $O(n)$ edges, whose shortest paths approximate the edge weights in $\mathcal{E G}(P)$.

t-Spanner

For a set P of n points in \mathbb{R}^{d} the Euclidean graph $\mathcal{E G}(P)=\left(P,\binom{P}{2}\right)$ is the complete weighted graph, whose edge weights correspond to the Euclidean distances of the edges' endpoints.

Since $\mathcal{E G}(P)$ has $\Theta\left(n^{2}\right)$ edges, one is often interested in a sparse graphs with $O(n)$ edges, whose shortest paths approximate the edge weights in $\mathcal{E G}(P)$.

Def: A weighted graph G with vertex set P is called t-spanner for P and a stretch factor $t \geq 1$, if for all pairs $x, y \in P$ it holds

$$
\|x y\| \leq \delta_{G}(x, y) \leq t \cdot\|x y\|,
$$

where $\delta_{G}(x, y)=$ length of shortest x - y-path in G.

WSPD und t-Spanner

Def: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$, where

$$
E=\{\{x, y\} \mid \exists\{u, v\} \in W \text { with } \operatorname{rep}(u)=x, \operatorname{rep}(v)=y\} .
$$

Recall: For each node u of a quadtree $\mathcal{T}(P)$ for point set P let $P_{u}=Q_{u} \cap P$ be the set of points in the corresponding square Q_{u}. In each leaf u define the representative

$$
\operatorname{rep}(u)= \begin{cases}p & \text { falls } P_{u}=\{p\} \text { (} u \text { is leaf) } \\ \emptyset & \text { otherwise. }\end{cases}
$$

For inner node v assign rep $(v)=\operatorname{rep}(u)$ for non-empty child u of v.

WSPD und t-Spanner

Def: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$, where $E=\{\{x, y\} \mid \exists\{u, v\} \in W$ with $\operatorname{rep}(u)=x, \operatorname{rep}(v)=y\}$.

WSPD und t-Spanner

Def: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$, where $E=\{\{x, y\} \mid \exists\{u, v\} \in W$ with $\operatorname{rep}(u)=x, \operatorname{rep}(v)=y\}$.

Lemma 3: If W is a s-WSPD for a suitable $s=s(t) \geq 4$, then G is a t-spanner for P with $O\left(s^{d} n\right)$ edges.

WSPD und t-Spanner

Def: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$, where $E=\{\{x, y\} \mid \exists\{u, v\} \in W$ with $\operatorname{rep}(u)=x, \operatorname{rep}(v)=y\}$.

Lemma 3: If W is a s-WSPD for a suitable $s=s(t) \geq 4$, then G is a t-spanner for P with $O\left(s^{d} n\right)$ edges.

Proof: (blackboard)

WSPD und t-Spanner

Def: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$, where $E=\{\{x, y\} \mid \exists\{u, v\} \in W$ with $\operatorname{rep}(u)=x, \operatorname{rep}(v)=y\}$.

Lemma 3: If W is a s-WSPD for a suitable $s=s(t) \geq 4$, then G is a t-spanner for P with $O\left(s^{d} n\right)$ edges.

Proof: (blackboard)

Summary

Thm 4: For a set P of n points in \mathbb{R}^{d} and some $\varepsilon \in(0,1]$ we can compute an $(1+\varepsilon)$-spanner for P with $O\left(n / \varepsilon^{d}\right)$ edges in $O\left(n \log n+n / \varepsilon^{d}\right)$ time.

Summary

Thm 4: For a set P of n points in \mathbb{R}^{d} and some $\varepsilon \in(0,1]$ we can compute an $(1+\varepsilon)$-spanner for P with $O\left(n / \varepsilon^{d}\right)$ edges in $O\left(n \log n+n / \varepsilon^{d}\right)$ time.

Proof: For $t=(1+\varepsilon)$ we have with $s=4 \cdot \frac{t+1}{t-1}$ that

$$
O\left(s^{d} n\right)=O\left(\left(4 \cdot \frac{2+\varepsilon}{\varepsilon}\right)^{d} n\right) \subseteq O\left(\left(\frac{12}{\varepsilon}\right)^{d} n\right)=O\left(\frac{n}{\varepsilon^{d}}\right)
$$

Summary

Thm 4: For a set P of n points in \mathbb{R}^{d} and some $\varepsilon \in(0,1]$ we can compute an $(1+\varepsilon)$-spanner for P with $O\left(n / \varepsilon^{d}\right)$ edges in $O\left(n \log n+n / \varepsilon^{d}\right)$ time.

Proof: For $t=(1+\varepsilon)$ we have with $s=4 \cdot \frac{t+1}{t-1}$ that

$$
\begin{array}{cc}
O\left(s^{d} n\right)=O\left(\left(4 \cdot \frac{2+\varepsilon}{\varepsilon}\right)^{d} n\right) \subseteq O\left(\left(\frac{12}{\varepsilon}\right)^{d} n\right)=O\left(\frac{n}{\varepsilon^{d}}\right) \\
P \\
\downarrow \\
\text { compressed quadtree } & O(n \log n) \\
\downarrow \\
\text { WSPD } \\
\downarrow & O\left(n / \varepsilon^{d}\right) \\
& O\left(n / \varepsilon^{d}\right)
\end{array}
$$

$(1+\varepsilon)$-spanner

