

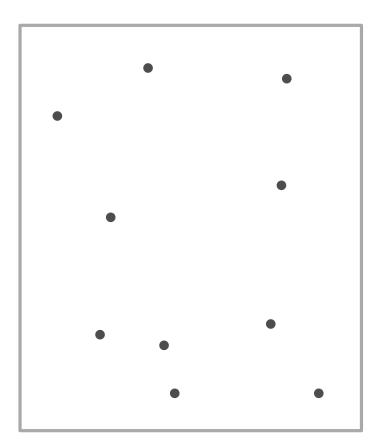
Computational Geometry • Lecture

Well-Separated Pair Decompositions

INSTITUTE FOR THEORETICAL INFORMATICS · FACULTY OF INFORMATICS

Tamara Mchedlidze · Darren Strash 18.1.2016

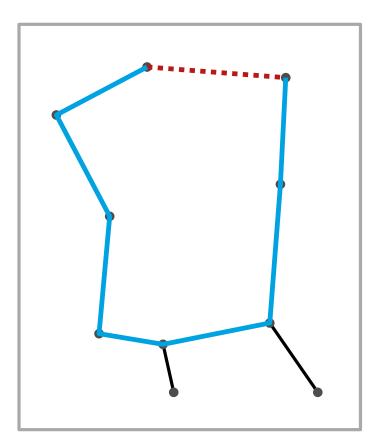
Motivation: Spanners



Task:

A set of cities shall be connected by a new road network.

Motivation: Spanners



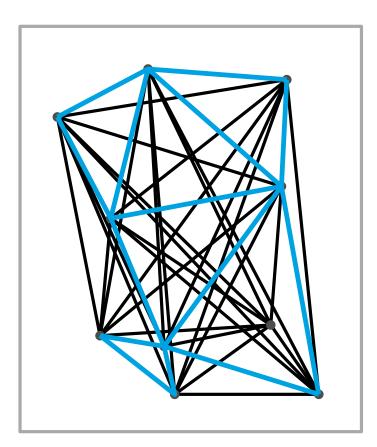
Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance ||xy||.

Idea 1: Euclidean minimum spanning tree

Motivation: Spanners



Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance ||xy||.

Construction costs must remain reasonable, e.g., only O(n) edges.

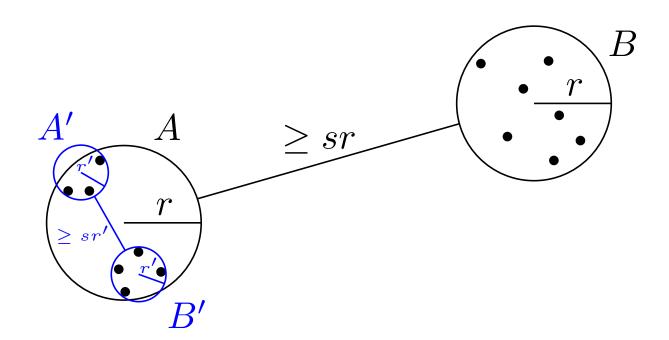
Idea 1: Euclidean minimum spanning tree

Idea 2: complete graph

Idea 3: sparse *t*-spanner

Well-Separated Pairs

Def: A pair of disjoint point sets A and B in \mathbb{R}^d is called s-well separated for some s > 0, if A and B can each be covered by a ball of radius r whose distance is at least sr.



Obs: • s-well separated \Rightarrow s'-well separated for all $s' \leq s$

• singletons $\{a\}$ and $\{b\}$ are s-well separated for all s>0

Well-Separated Pair Decomposition (WSPD)

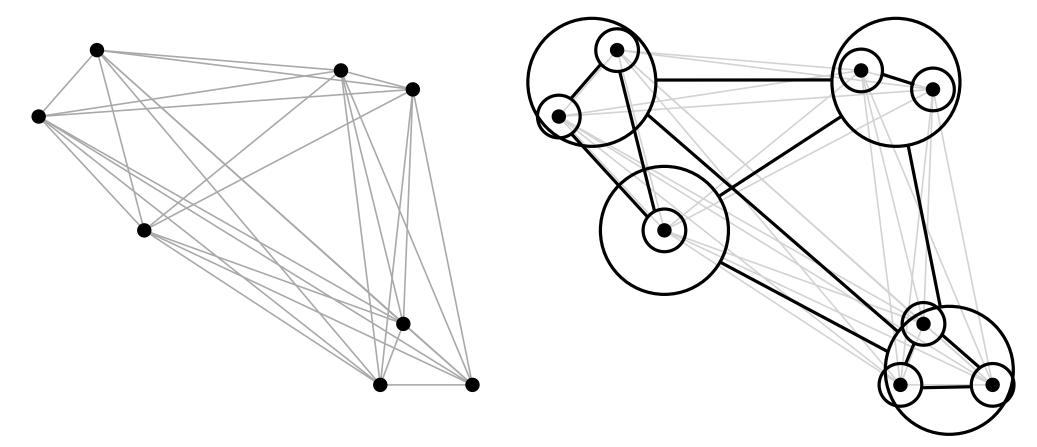
For well-separated pair $\{A,B\}$ we know that the distance for all point pairs in $A\otimes B=\{\{a,b\}\mid a\in A,b\in B,a\neq b\}$ is similar.

Goal: $o(n^2)$ -sized data structure that approximates the distances of all $\binom{n}{2}$ pairs of points in a set $P = \{p_1, \dots, p_n\}$.

Def: For a point set P and some s > 0 an s-well separated pair decomposition (s-WSPD) is a set of pairs $\{\{A_1, B_1\}, \dots, \{A_m, B_m\}\}$ with

- $A_i, B_i \subset P$ for all i
- $A_i \cap B_i = \emptyset$ for all i
- $\{A_i, B_i\}$ s-well separated for all i

Example



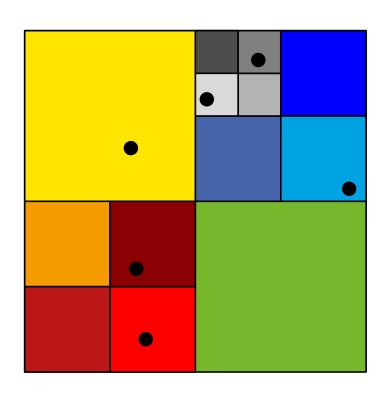
28 point pairs

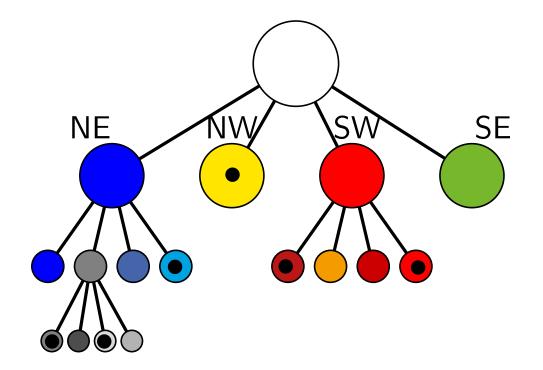
12 s-well separated pairs

WSPD of size $O(n^2)$ is trivial. Can we do it in O(n)?

Recall: Quadtrees

Def: A **quadtree** $\mathcal{T}(P)$ for a point set P is a rooted tree, where each internal node has four children. Each node corresponds to a square, and the squares of the leaves form a partition of the root square.





Recall: Quadtrees

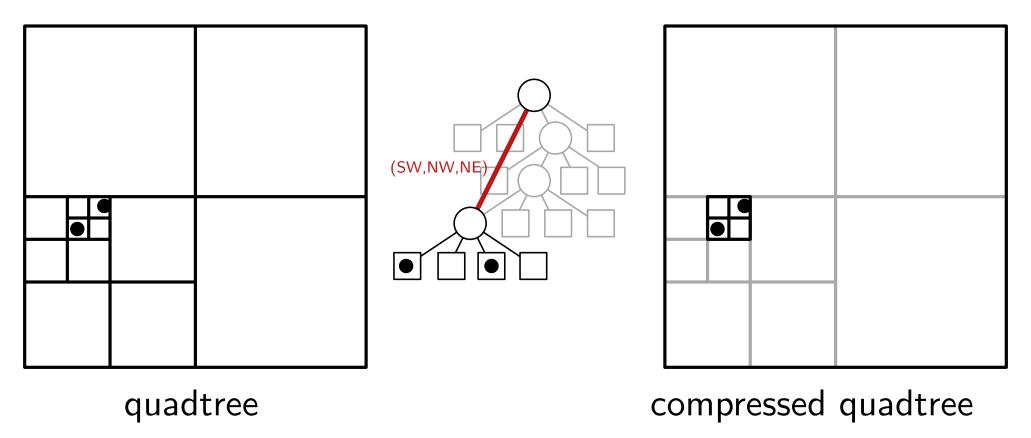
Def: A quadtree $\mathcal{T}(P)$ for a point set P is a rooted tree, where each internal node has four children. Each node corresponds to a square, and the squares of the leaves form a partition of the root square.

Lemma 1: The height of $\mathcal{T}(P)$ is at most $\log(s/c) + 3/2$, where c is the smallest distance in P and s is the side length of the root square Q.

Thm 1: A quadtree $\mathcal{T}(P)$ on n points with height h has O(hn) nodes and can be constructed in O(hn) time.

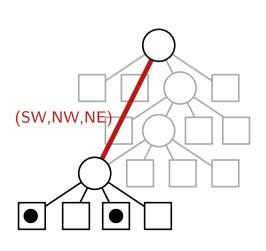
Compressed Quadtrees

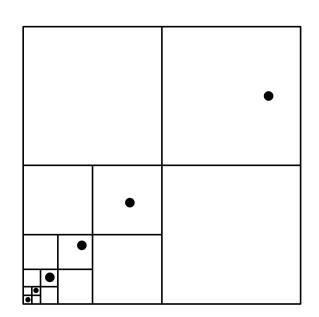
Def: A **compressed** quadtree is a quadtree, in which each path of non-separating inner nodes is contracted into a single edge. Each such edge has a label to reconstruct the path structure.



Properties of Compressed Quadtrees

- **Obs:** inner nodes split their point set into ≥ 2 non-empty parts \Rightarrow max. n-1 inner nodes
 - depth can be d=n, so the algorithm to construct quadtrees takes ${\cal O}(n^2)$ time
- **Thm 2:** A compressed quadtree for n points in \mathbb{R}^d with a fixed dimension d can be constructed in $O(n \log n)$ time. e.g. skip-quadtree [Eppstein et al. 2005] (without proof)



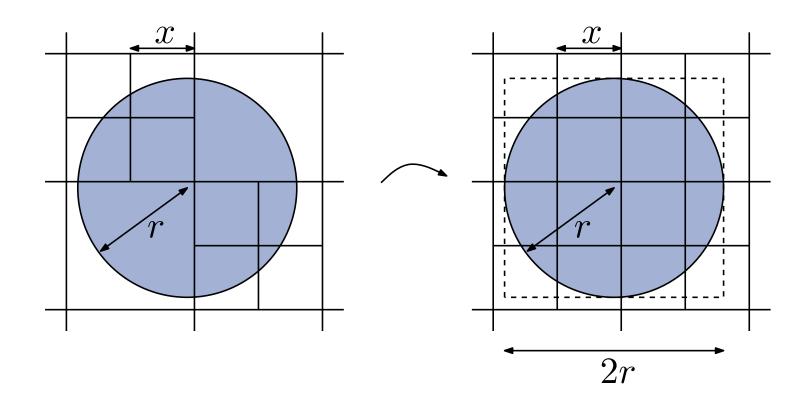


Packing Lemma

Lemma 2: Let K be a ball with radius r in \mathbb{R}^d and let X be a set of pairwise disjoint quadtree cells with side length $\geq x$ that intersect K. Then it holds

$$|X| \le (1 + \lceil 2r/x \rceil)^d.$$

Proof:



Representatives and Level

Def: For each node u of a quadtree $\mathcal{T}(P)$ for point set P let $P_u = Q_u \cap P$ be the set of points in the corresponding square Q_u . In each leaf u define the representative

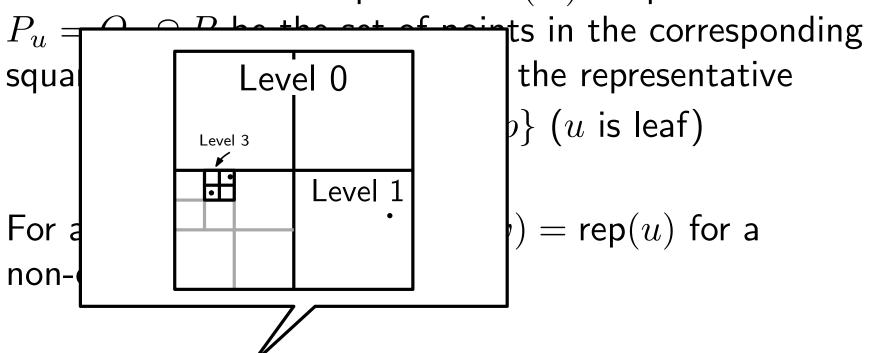
$$\operatorname{rep}(u) = \begin{cases} p & \text{falls } P_u = \{p\} \text{ (u is leaf)} \\ \emptyset & \text{otherwise.} \end{cases}$$

For an inner node v assign $\operatorname{rep}(v) = \operatorname{rep}(u)$ for a non-empty child u of v.

Def: For each node u of a quadtree $\mathcal{T}(P)$ let level(u) be the level of u in the corresponding uncompressed quadtree. We have level $(u) \leq \text{level}(v)$ iff $\text{area}(Q_u) \geq \text{area}(Q_v)$.

Representatives and Level

Def: For each node u of a quadtree $\mathcal{T}(P)$ for point set P let



Def: For each node u of a quadtree $\mathcal{T}(P)$ let level(u) be the level of u in the corresponding uncompressed quadtree. We have level $(u) \leq \text{level}(v)$ iff $\text{area}(Q_u) \geq \text{area}(Q_v)$.

wsPairs (u, v, \mathcal{T}, s)

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0

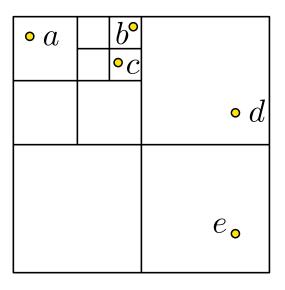
Output: WSPD for $P_u \otimes P_v$

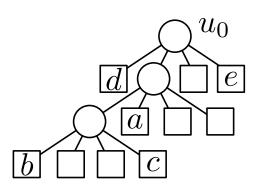
if $\operatorname{rep}(u) = \emptyset$ or $\operatorname{rep}(v) = \emptyset$ or leaf u = v then return \emptyset

else if P_u and P_v s-well separated then return $\{\{u,v\}\}$

else

if level(u) > level(v) then swap u and v $(u_1, \ldots, u_m) \leftarrow children of <math>u$ in \mathcal{T} return $\bigcup_{i=1}^m wsPairs(u_i, v, \mathcal{T}, s)$





wsPairs $(u, v, \mathcal{T}, \underline{s})$

Input: quadt circles around Q_u and Q_v (or radius 0 for point in a leaf)

Output: WS increase smaller circle and check if distance $\geq sr$

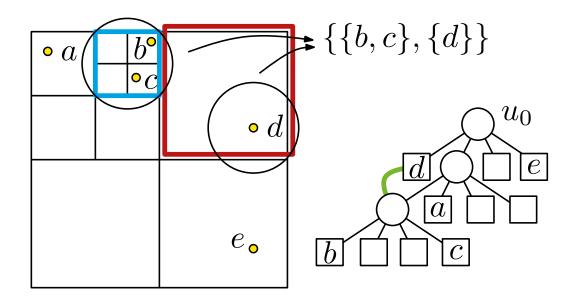
if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or eat u = v then return \emptyset

else if P_u and P_v s-well separated then return $\{\{u,v\}\}$

else

if level(u) > level(v) then swap u and v $(u_1, \ldots, u_m) \leftarrow children of <math>u$ in \mathcal{T} return $\bigcup_{i=1}^m wsPairs(u_i, v, \mathcal{T}, s)$

 $\{\{b,c\},\{d\}\}$



wsPairs (u, v, \mathcal{T}, s)

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0

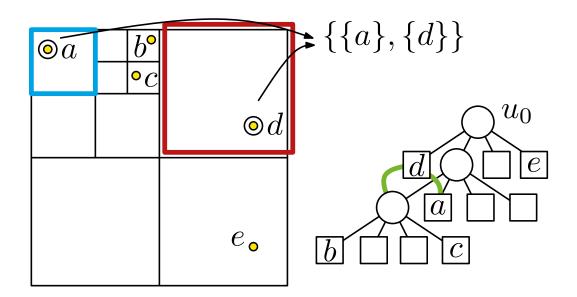
Output: WSPD for $P_u \otimes P_v$

if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaf u = v then return \emptyset

else if P_u and P_v s-well separated then return $\{\{u,v\}\}$

else

if level(u) > level(v) then swap u and v $(u_1, \ldots, u_m) \leftarrow children of <math>u$ in \mathcal{T} return $\bigcup_{i=1}^m wsPairs(u_i, v, \mathcal{T}, s)$



 $\{\{b,c\},\{d\}\}\$

wsPairs (u, v, \mathcal{T}, s)

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0

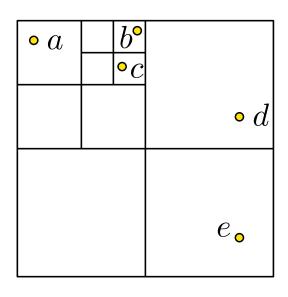
Output: WSPD for $P_u \otimes P_v$

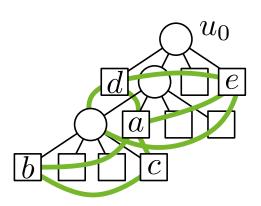
if $\operatorname{rep}(u) = \emptyset$ or $\operatorname{rep}(v) = \emptyset$ or leaf u = v then return \emptyset

else if P_u and P_v s-well separated then return $\{\{u,v\}\}$

else

if level(u) > level(v) then swap u and v $(u_1, \ldots, u_m) \leftarrow children of <math>u$ in \mathcal{T} return $\bigcup_{i=1}^m wsPairs(u_i, v, \mathcal{T}, s)$





$\{\{b,c\},\{d\}\}$
$\{\{a\}, \{d\}\}$
$\{\{b,c\},\{e\}\}$
$\{\{d\},\{e\}\}$
$\{\{a\},\{b\}\}$
$\{\{a\},\{c\}\}$
$\{\{b\},\{c\}\}$
$\{\{a\}, \{e\}\}$


```
wsPairs(u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree \mathcal{T}, s > 0
Output: WSPD for P_u \otimes P_v
if \operatorname{rep}(u) = \emptyset or \operatorname{rep}(v) = \emptyset or leaf u = v then return \emptyset
else if P_u and P_v s-well separated then return \{\{u, v\}\}\}
else

| if \operatorname{level}(u) > \operatorname{level}(v) then swap u and v
| (u_1, \ldots, u_m) \leftarrow \operatorname{children} of u in \mathcal{T}
| return \bigcup_{i=1}^m \operatorname{wsPairs}(u_i, v, \mathcal{T}, s)
```

- initial call wsPairs $(u_0, u_0, \mathcal{T}, s)$
- avoid duplicates wsPairs $(u_i, u_j, \mathcal{T}, s)$ and wsPairs $(u_j, u_i, \mathcal{T}, s)$ How?
- leaf pairs are always s-well separated, so algorithm terminates
- output are pairs of quadtree nodes

Space use?

Question: How many pairs does the algorithm create?

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

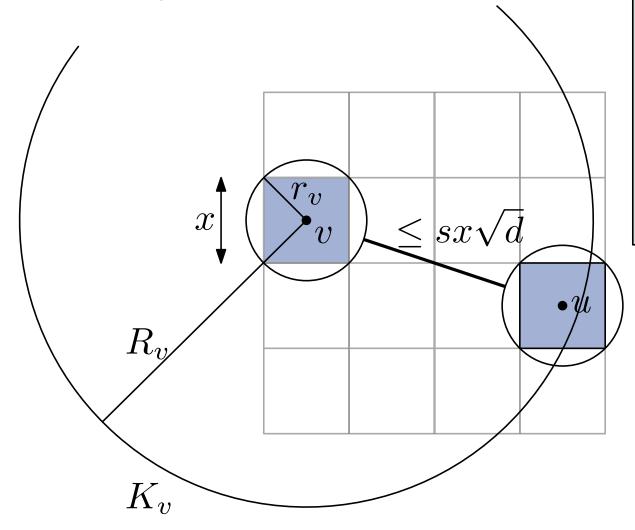
Sketch of proof:

- simplifying assumption: no quadtree compression required \Rightarrow in wsPairs (u, v, \mathcal{T}, s) sizes of u and v differ by at most factor 2
- goal: count calls to wsPairs
 - call is trivial if it produces no further recursive calls
 - each trivial call produces at most one ws pair
 - ullet each non-trivial call produces $\leq 2^d$ trivial calls and thus $\leq 2^d$ ws pairs
- let's count non-trivial calls and charge cost to the smaller of the two cells
- call non-trivial $\Rightarrow u$ and v not ws, $u \ge v$
- let x be side length of v and $r_v = x\sqrt{d}/2$ the radius of the enclosing ball
- side length of u is x or 2x and $r_u \leq 2r_v$
- u, v not ws \Rightarrow ball distance $\leq s \max\{r_u, r_v\} \leq 2sr_v = sx\sqrt{d}$

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Sketch of proof:



Recall Lemma 2:

Given ball K with radius r in \mathbb{R}^d and set X of pairwise disjoint quadtree cells with side length $\geq x$ that intersect K. Then $|X| \leq (1 + \lceil 2r/x \rceil)^d$.

- all cells charging cost to v have size x or 2x and intersect K_v ; let C be their number and apply Lemma 2 (see board)
- yields $C = O(s^d)$

Analysis of WSPD Construction

Thm 3: Given a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Sketch of proof:

- have O(n) nodes in \mathcal{T}
- each causes $O(s^d)$ non-trivial calls
- $\begin{tabular}{l} \bullet \end{tabular} \begin{tabular}{l} \bullet \end{tabular} each non-trivial call produces $O(2^d)$ \\ ws-pairs \end{tabular}$
- in total $O(s^d n)$ ws-pairs
- time: $O(n \log n)$ for quadtree and $O(s^d n)$ for the $s ext{-WSPD}$

Recall Lemma 2:

Given ball K with radius r in \mathbb{R}^d and set X of pairwise disjoint quadtree cells with side length $\geq x$ that intersect K. Then

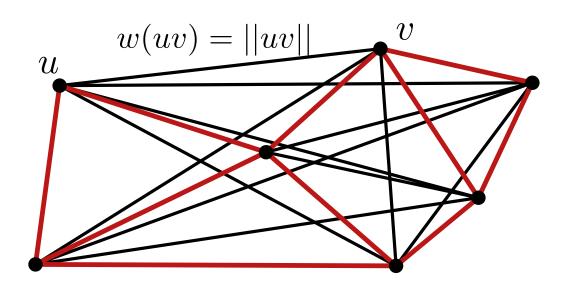
$$|X| \le (1 + \lceil 2r/x \rceil)^d.$$

- all cells charging cost to v have size x or 2x and intersect K_v ; let C be their number and apply Lemma 2 (see board)
- yields $C = O(s^d)$

t-Spanner

For a set P of n points in \mathbb{R}^d the **Euclidean graph** $\mathcal{EG}(P) = (P, \binom{P}{2})$ is the complete weighted graph, whose edge weights correspond to the Euclidean distances of the edges' endpoints.

Since $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges, one is often interested in a sparse graphs with O(n) edges, whose shortest paths approximate the edge weights in $\mathcal{EG}(P)$.



t-Spanner

For a set P of n points in \mathbb{R}^d the **Euclidean graph** $\mathcal{EG}(P) = (P, \binom{P}{2})$ is the complete weighted graph, whose edge weights correspond to the Euclidean distances of the edges' endpoints.

Since $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges, one is often interested in a sparse graphs with O(n) edges, whose shortest paths approximate the edge weights in $\mathcal{EG}(P)$.

Def: A weighted graph G with vertex set P is called t-spanner for P and a stretch factor $t \geq 1$, if for all pairs $x,y \in P$ it holds

$$||xy|| \leq \delta_G(x,y) \leq t \cdot ||xy||,$$

where $\delta_G(x,y) = \text{length of shortest } x$ -y-path in G.

WSPD und t-Spanner

Def: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G=(P,E), where

$$E = \{ \{x,y\} \mid \exists \{u,v\} \in W \text{ with } \text{rep}(u) = x, \text{rep}(v) = y \}.$$

Recall: For each node u of a quadtree $\mathcal{T}(P)$ for point set P let $P_u = Q_u \cap P$ be the set of points in the corresponding square Q_u . In each leaf u define the representative

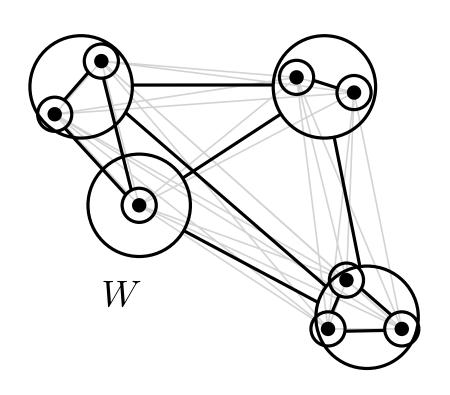
$$\operatorname{rep}(u) = \begin{cases} p & \text{falls } P_u = \{p\} \text{ (u is leaf)} \\ \emptyset & \text{otherwise.} \end{cases}$$

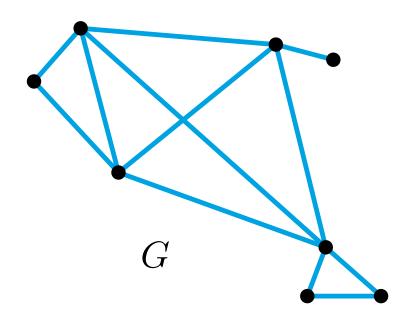
For inner node v assign rep(v) = rep(u) for non-empty child u of v.

WSPD und t-Spanner

Def: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G=(P,E), where

$$E = \{\{x,y\} \mid \exists \{u,v\} \in W \text{ with } \text{rep}(u) = x, \text{rep}(v) = y\}.$$





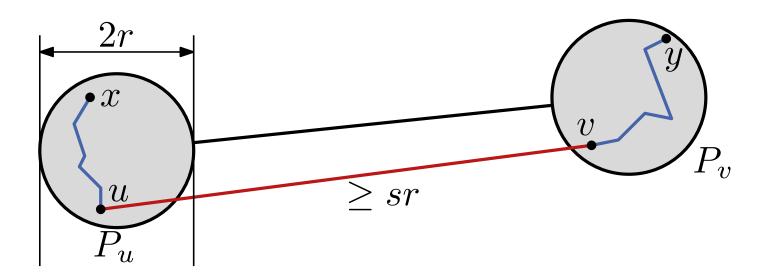
WSPD und t-Spanner

Def: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G=(P,E), where

$$E = \{\{x,y\} \mid \exists \{u,v\} \in W \text{ with } \text{rep}(u) = x, \text{rep}(v) = y\}.$$

Lemma 3: If W is a s-WSPD for a suitable $s=s(t)\geq 4$, then G is a t-spanner for P with $O(s^dn)$ edges.

Proof: (blackboard)



Summary

Thm 4: For a set P of n points in \mathbb{R}^d and some $\varepsilon \in (0,1]$ we can compute an $(1+\varepsilon)$ -spanner for P with $O(n/\varepsilon^d)$ edges in $O(n\log n + n/\varepsilon^d)$ time.

Proof: For $t = (1 + \varepsilon)$ we have with $s = 4 \cdot \frac{t+1}{t-1}$ that

$$O(s^d n) = O\left(\left(4 \cdot \frac{2+\varepsilon}{\varepsilon}\right)^d n\right) \subseteq O\left(\left(\frac{12}{\varepsilon}\right)^d n\right) = O\left(\frac{n}{\varepsilon^d}\right)$$

$$\begin{array}{c} P \\ \downarrow & O(n\log n) \\ \text{compressed quadtree} \\ \downarrow & O(n/\varepsilon^d) \\ \text{WSPD} \\ \downarrow & O(n/\varepsilon^d) \\ (1+\varepsilon)\text{-spanner} \end{array}$$