Computational Geometry · Lecture
Quadtrees and Meshing

Tamara Mchedlidze · Darren Strash
14.12.2015
Motivation: Meshing PC Board Layouts

To simulate the heat produced on boards we can use the finite element method (FEM):

- decompose the board in small homogeneous elements (e.g., triangles) → mesh
- heat generation and impact on neighbors for each element known
- approximate numerically the entire heat generation of board

Quality properties of FEM:

- the finer the mesh, the better the approximation
- the larger the mesh, the faster the calculation
- the more compact the elements, the faster the convergence

Goal:

- adaptive mesh size (small on materials, otherwise coarser)
- fat triangles (not too narrow)
Adaptive Triangular Mesh

Given: Square $Q = [0, U] \times [0, U]$ for power of two $U = 2^j$ with *octilinear*, integer-coordinate polygons inside.

Goal: Triangular mesh for Q with the following properties

- no triangle vertex in interior of triangular mesh
Adaptive Triangular Mesh

Given: Square $Q = [0, U] \times [0, U]$ for power of two $U = 2^j$ with *octilinear*, integer-coordinate polygons inside.

Goal: Triangular mesh for Q with the following properties
- no triangle vertex in interior of triangular mesh
- input edges must be part of the triangulation
Adaptive Triangular Mesh

Given: Square $Q = [0, U] \times [0, U]$ for power of two $U = 2^j$ with *octilinear*, integer-coordinate polygons inside.

Goal: Triangular mesh for Q with the following properties

- no triangle vertex in interior of triangular mesh
- input edges must be part of the triangulation
- triangle angle between 45° and 90°
Adaptive Triangular Mesh

Given: Square \(Q = [0, U] \times [0, U] \) for power of two \(U = 2^j \) with *octilinear*, integer-coordinate polygons inside.

Goal: Triangular mesh for \(Q \) with the following properties

- no triangle vertex in interior of triangular mesh
- input edges must be part of the triangulation
- triangle angle between 45° and 90°
- **adaptive** (i.e., fine at the polygon edges, otherwise coarser)

Do we already have meaningful triangulations of \(Q \)?
Delaunay Triangulation?

- maximize smallest angle
- is defined for points and ignores existing edges
Delaunay Triangulation?

- maximize smallest angle
- is defined for points and ignores existing edges
- can still produce very small angles
Delaunay Triangulation?

- maximize smallest angle
- is defined for points and ignores existing edges
- can still produce very small angles
- does not use additional *Steiner* points

Allowed angles, but uniform

![512 triangles](image)

Allowed angles and adaptive

![52 triangles](image)
Quadtrees

Def.: A *quadtree* is a rooted tree, where each internal node has 4 children. Each node corresponds to a square, and the squares of the leaves form a partition of the root square.
Quadtrees

Def.: A **quadtree** is a rooted tree, where each internal node has 4 children. Each node corresponds to a square, and the squares of the leaves form a partition of the root square.

Def.: For a point set P in a square $Q = [x_Q, x'_Q] \times [y_Q, y'_Q]$ define the quadtree $\mathcal{T}(P)$

- if $|P| \leq 1$ then $\mathcal{T}(P)$ is a leaf, then Q stores P
- otherwise let $x_{\text{mid}} = \frac{x_Q + x'_Q}{2}$ and $y_{\text{mid}} = \frac{y_Q + y'_Q}{2}$ and

 $P_{NE} := \{ p \in P \mid p_x > x_{\text{mid}} \text{ and } p_y > y_{\text{mid}} \}$
 $P_{NW} := \{ p \in P \mid p_x \leq x_{\text{mid}} \text{ and } p_y > y_{\text{mid}} \}$
 $P_{SW} := \{ p \in P \mid p_x \leq x_{\text{mid}} \text{ and } p_y \leq y_{\text{mid}} \}$
 $P_{SE} := \{ p \in P \mid p_x > x_{\text{mid}} \text{ and } p_y \leq y_{\text{mid}} \}$

$\mathcal{T}(P)$ has root v_v, then Q has 4 children storing P_i and Q_i ($i \in \{NE, NW, SW, SE\}$).
Example
Quadtrees and Meshing

What is the depth of a quadtree on n points?

Lemma 1: The depth of $\mathcal{T}(P)$ is at most $\log(s/c) + 3/2$, where c is the smallest distance in P and s is the length of a side of Q.

Theorem 1: A quadtree $\mathcal{T}(P)$ on n points with depth d has $O((d + 1)n)$ nodes and can be constructed in $O((d + 1)n)$ time.
Finding Neighbors

NorthNeighbor(v, \mathcal{T})

Input: Nodes v in quadtree \mathcal{T}

Output: Deepest node v' not deeper than v with $v'.Q$ to the north.

Neighbor of $v.Q$

if $v = \text{root}(\mathcal{T})$ then return nil

$\pi \leftarrow \text{parent}(v)$

if $v = \text{SW-} / \text{SE-child of } \pi$ then return $\text{NW-} / \text{NE-child of } \pi$

$\mu \leftarrow \text{NorthNeighbor}(\pi, \mathcal{T})$

if $\mu = \text{nil}$ or μ leaf then

return μ

else

if $v = \text{NW-} / \text{NE-child of } \pi$ then return $\text{SW-} / \text{SE-child of } \mu$

Theorem 2: Let \mathcal{T} be a quadtree with depth d. The neighbor of a node v in any direction can be found in $O(d + 1)$ time.
Balanced Quadtrees

Def.: A quadtree is called balanced if any two neighboring squares differ at most a factor two in size. A quadtree is called balanced if its subdivision is balanced.
Balancing Quadtrees

BalanceQuadtree(\(\mathcal{T}\))

Input: Quadtree \(\mathcal{T}\)

Output: A balanced version of \(\mathcal{T}\)

\(L \leftarrow\) List of all leaves of \(\mathcal{T}\)

while \(L\) not empty do

\(\mu \leftarrow\) extract leaf from \(L\)

if \(\mu.Q\) too large then

Divide \(\mu.Q\) into four parts and put four leaves in \(\mathcal{T}\)

add new leaves to \(L\)

if \(\mu.Q\) now has neighbors that are too large then add it to \(L\)

return \(\mathcal{T}\)

Thm 3: Let \(\mathcal{T}\) be a quadtree with \(m\) nodes and depth \(d\). The balanced version \(\mathcal{T}_B\) of \(\mathcal{T}\) has \(O(m)\) nodes and can be constructed in \(O((d + 1)m)\) time.
Quadtrees and Adaptive Triangular Meshes

Recall:

Given: Square $Q = [0, U] \times [0, U]$ for power of two $U = 2^j$ with *octilinear*, integer-coordinate polygons inside.

Goal: Triangular mesh for Q with the following properties

- no triangle vertex in interior of triangular mesh
- input edges must be part of the triangulation
- triangle angle between 45° and 90°
- **adaptive** (i.e., fine at the polygon edges, otherwise coarser)

Idea: Use a quadtree as the basis for the triangular mesh!

Adaptation: Split squares until they are no longer cut by a polygon or have size 1

Squares and edges are finished
Observe: when the interior of a square in a quadtree is intersected by an edge, then it is a diagonal.

How do you get a valid triangular mesh?

- Diagonals for all remaining squares?
From Quadtree to Triangular Mesh

Obs.: when the interior of a square in a quadtree is intersected by an edge, then it is a diagonal.

How do you get a valid triangular mesh?

- Diagonals for all remaining squares? **no!**
- Use subdivision nodes in triangulation?
From Quadtree to Triangular Mesh

- Obs.: when the interior of a square in a quadtree is intersected by an edge, then it is a diagonal.

- How do you get a valid triangular mesh?
 - Diagonals for all remaining squares? no!
 - Use subdivision nodes in triangulation? no!
 - Balance quadtree and, if necessary, add a Steiner vertex!
Algorithm

GenerateMesh(S)

Input: Set S octilinear, integer-coordinate polygons in

$$Q = [0, 2^j] \times [0, 2^j]$$

Output: valid, adaptive triangular mesh for S

$\mathcal{T} \leftarrow \text{CreateQuadtree}$

$\mathcal{T} \leftarrow \text{BalanceQuadtree}(\mathcal{T})$

$\mathcal{D} \leftarrow \text{DCEL for subdivisions of } Q \text{ by } \mathcal{T}$

foreach Face f in \mathcal{D} do

if $\text{int}(f) \cap S \neq \emptyset$ then

 add appropriate diagonals in f to \mathcal{D}

else

 if Nodes only on the corners of f then

 add a diagonal in f to \mathcal{D}

 else

 generate Steiner point in the middle of f and connect it to all nodes in ∂f of \mathcal{D}

return \mathcal{D}
Summary

Theorem 4: For a set S of disjoint octilinear, integer-coordinate polygons with total perimeter $p(S)$ in a square $Q = [0, U] \times [0, U]$ we can compute in $O(p(S) \log^2 U)$ time a valid adaptive triangular mesh with $O(p(S) \log U)$ triangles.
Discussion

Are there quadtree variants with space linear in \(n \)?

Yes, if you contract internal nodes with only one non-empty child you get a so-called *compressed quadtree* (see exercise); a more advanced data structure is the *skip quadtree* with \(O(n) \) space and insert, remove, and search in \(O(\log n) \) time. [Eppstein et al., ’05]

What other applications are there?

Quadtrees are frequently used in practice in Computer Graphics, Image Processing, GIS and others, for range queries, although they are theoretically worse than range trees or \(kd \)-trees. (see exercise)

As always: higher dimensions?

Quadtrees can be easily generalized to higher dimensions. Then they are also called octrees.