Computational Geometry • Lecture
 Duality of Points and Lines

Tamara Mchedlidze • Darren Strash 11.1.2016

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Def: The duality transform $(\cdot)^{*}$ is defined by

$$
p=\left(p_{x}, p_{y}\right) \quad \mapsto \quad p^{*}: b=p_{x} a-p_{y}
$$

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Def: The duality transform $(\cdot)^{*}$ is defined by

$$
p=\left(p_{x}, p_{y}\right) \quad \mapsto \quad p^{*}: b=p_{x} a-p_{y}
$$

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Def: The duality transform $(\cdot)^{*}$ is defined by

$$
p=\left(p_{x}, p_{y}\right) \quad \mapsto \quad p^{*}: b=p_{x} a-p_{y}
$$

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Def: The duality transform $(\cdot)^{*}$ is defined by

$$
\begin{array}{rll}
p=\left(p_{x}, p_{y}\right) & \mapsto & p^{*}: b=p_{x} a-p_{y} \\
\ell: y=m x+c & \mapsto & \ell^{*}=(m,-c)
\end{array}
$$

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Def: The duality transform $(\cdot)^{*}$ is defined by

$$
\begin{array}{rll}
p=\left(p_{x}, p_{y}\right) & \mapsto & p^{*}: b=p_{x} a-p_{y} \\
\ell: y=m x+c & \mapsto & \ell^{*}=(m,-c)
\end{array}
$$

Properties

Lemma 1: The following properties hold

- $\left(p^{*}\right)^{*}=p$ and $\left(\ell^{*}\right)^{*}=\ell$
- p lies below/on/above $\ell \Leftrightarrow p^{*}$ passes above/through/below ℓ^{*}
- ℓ_{1} and ℓ_{2} intersect in point r
$\Leftrightarrow r^{*}$ passes through ℓ_{1}^{*} and ℓ_{2}^{*}
- q, r, s collinear
$\Leftrightarrow q^{*}, r^{*}, s^{*}$ intersect in a common point

Properties

Lemma 1: The following properties hold

- $\left(p^{*}\right)^{*}=p$ and $\left(\ell^{*}\right)^{*}=\ell$
- p lies below/on/above $\ell \Leftrightarrow p^{*}$ passes above/through/below ℓ^{*}
- ℓ_{1} and ℓ_{2} intersect in point r
$\Leftrightarrow r^{*}$ passes through ℓ_{1}^{*} and ℓ_{2}^{*}
- q, r, s collinear
$\Leftrightarrow q^{*}, r^{*}, s^{*}$ intersect in a common point
What is the dual object for a line segment $s=\overline{p q}$? What dual property holds for a line ℓ, intersecting s ?

Properties

Lemma 1: The following properties hold

- $\left(p^{*}\right)^{*}=p$ and $\left(\ell^{*}\right)^{*}=\ell$
- p lies below/on/above $\ell \Leftrightarrow p^{*}$ passes above/through/below ℓ^{*}
- ℓ_{1} and ℓ_{2} intersect in point r
$\Leftrightarrow r^{*}$ passes through ℓ_{1}^{*} and ℓ_{2}^{*}
- q, r, s collinear
$\Leftrightarrow q^{*}, r^{*}, s^{*}$ intersect in a common point
What is the dual object for a line segment $s=\overline{p q}$? What dual property holds for a line ℓ, intersecting s ?

Properties

Lemma 1: The following properties hold

- $\left(p^{*}\right)^{*}=p$ and $\left(\ell^{*}\right)^{*}=\ell$
- p lies below/on/above $\ell \Leftrightarrow p^{*}$ passes above/through/below ℓ^{*}
- ℓ_{1} and ℓ_{2} intersect in point r
$\Leftrightarrow r^{*}$ passes through ℓ_{1}^{*} and ℓ_{2}^{*}
- q, r, s collinear
$\Leftrightarrow q^{*}, r^{*}, s^{*}$ intersect in a common point
What is the dual object for a line segment $s=\overline{p q}$? What dual property holds for a line ℓ, intersecting s ?

Applications of Duality

Duality does not make geometric problems easier or harder; it simply provides a different (but often helpful) perspective!

We will look at two examples in more detail:

- upper/lower envelopes of line arrangements
- minimum-area triangle in a point set

Lower Envelope

Def: For a set L of lines the lower envelope $\operatorname{LE}(L)$ of L is the set of all points in $\cup_{\ell \in L} \ell$ that are not above any line in the set L (boundary of the intersection of all lower halfplanes).

Two possibilities for computing lower envelopes

- divide\&conquer half-plane intersection algorithm (see Chapter 4.2 in [BCKO08])
- consider the dual problem for $L^{*}=\left\{\ell^{*} \mid \ell \in L\right\}$

Envelopes and Duality

When does an edge $\overline{p q}$ of ℓ appear as a segment on $\operatorname{LE}(L)$?

Envelopes and Duality

When does an edge $\overline{p q}$ of ℓ appear as a segment on $\operatorname{LE}(L)$?

- p and q are not above any line in L

Envelopes and Duality

When does an edge $\overline{p q}$ of ℓ appear as a segment on $\mathrm{LE}(L)$?

- p and q are not above any line in L
- p^{*} and q^{*} are not below any point in L^{*}

Envelopes and Duality

When does an edge $\overline{p q}$ of ℓ appear as a segment on $\mathrm{LE}(L)$?

- p and q are not above any line in L
- p^{*} and q^{*} are not below any point in L^{*}
\Rightarrow must be neighbors on upper convex hull $\mathrm{UCH}\left(L^{*}\right)$
- intersection point of p^{*} and q^{*} is ℓ^{*}, a vertex of $\operatorname{UCH}\left(L^{*}\right)$

Envelopes and Duality

When does an edge $\overline{p q}$ of ℓ appear as a segment on $\mathrm{LE}(L)$?

- p and q are not above any line in L
- p^{*} and q^{*} are not below any point in L^{*} \Rightarrow must be neighbors on upper convex hull $\mathrm{UCH}\left(L^{*}\right)$
- intersection point of p^{*} and q^{*} is ℓ^{*}, a vertex of $\operatorname{UCH}\left(L^{*}\right)$

Lemma 2: The lines on $\operatorname{LE}(L)$ ordered from right to left correspond to the vertices of $\mathrm{UCH}\left(L^{*}\right)$ ordered from left to right.

Computing the Envelope

- algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)

Computing the Envelope

- algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)
- primal lines of the points on $\operatorname{UCH}\left(L^{*}\right)$ in reverse order form LE (L)

Computing the Envelope

- algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)
- primal lines of the points on $\operatorname{UCH}\left(L^{*}\right)$ in reverse order form LE(L)
- analogously: upper envelope of $L \hat{=}$ lower convex hull of L^{*}

Computing the Envelope

- algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)
- primal lines of the points on $\operatorname{UCH}\left(L^{*}\right)$ in reverse order form LE (L)
- analogously: upper envelope of $L \hat{=}$ lower convex hull of L^{*}

When does this approach work faster?

Computing the Envelope

- algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)
- primal lines of the points on $\operatorname{UCH}\left(L^{*}\right)$ in reverse order form LE(L)
- analogously: upper envelope of $L \hat{=}$ lower convex hull of L^{*}

When does this approach work faster?

- output sensitive algorithm for computing convex hull with h points with time complexity $O(n \log h)$

Take a break...

Joseph Diaz Gergonne (19 June 1771 at Nancy, France - 4 May 1859 at Montpellier, France) was a French mathematician and logician.

Gergonne liked to season his papers with "philpsophic" remarks. In one such remark he said, "It is not possible to feel satisfied at having said the last word about some theory as long as it cannot be explained in a few words to any passerby encountered in the street"

Intermediate question:

How to test for n points whether they are in general position?
How to find a maximum set of collinear points?

Line Arrangements

Def: A set L of lines defines a subdivision $\mathcal{A}(L)$ of the plane (the line arrangement) composed of vertices, edges, and cells (poss. unbounded).
$\mathcal{A}(L)$ is called simple if no three lines share a point and no two lines are parallel.

Complexity of $\mathcal{A}(L)$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.
Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^{2} edges, and $\binom{n}{2}+n+1$ cells.

Complexity of $\mathcal{A}(L)$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.
Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^{2} edges, and $\binom{n}{2}+n+1$ cells.

Data structure for $\mathcal{A}(L)$:

- create bounding box of all vertices (s. exercise) \rightarrow obtain planar embedded Graph G
- doubly-connected edge list for G

Complexity of $\mathcal{A}(L)$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.
Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^{2} edges, and $\binom{n}{2}+n+1$ cells.

Data structure for $\mathcal{A}(L)$:

- create bounding box of all vertices (s. exercise) \rightarrow obtain planar embedded Graph G
- doubly-connected edge list for G

Do we already know a way to compute $\mathcal{A}(L)$?

Complexity of $\mathcal{A}(L)$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.
Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^{2} edges, and $\binom{n}{2}+n+1$ cells.

Data structure for $\mathcal{A}(L)$:

- create bounding box of all vertices (s. exercise) \rightarrow obtain planar embedded Graph G
- doubly-connected edge list for G

Do we already know a way to compute $\mathcal{A}(L)$?
\rightarrow could use line segment intersection plane sweep in $O\left(n^{2} \log n\right)$

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Running time?

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Running time?

- bounding box: $O\left(n^{2}\right)$
- start point of $\ell_{i}: O(i)$
- while-loop: $O(\mid$ red path $\mid)$

Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ.

Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ.

How many edges are in $Z_{\mathcal{A}}(\ell)$?

Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ.

How many edges are in $Z_{\mathcal{A}}(\ell)$?

Theorem 2: For an arrangement $\mathcal{A}(L)$ of n lines in the plane and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ consist of at most $6 n$ edges.

Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ.

How many edges are in $Z_{\mathcal{A}}(\ell)$?

Theorem 2: For an arrangement $\mathcal{A}(L)$ of n lines in the plane and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ consist of at most $6 n$ edges.

Theorem 3: The arrangement $\mathcal{A}(L)$ of a set of n lines can be constructed in $O\left(n^{2}\right)$ time and space.

Intermediate question:

How to test for n points whether they are in general position?
How to find a maximum set of collinear points?

Smallest Triangle

Given a set P of n points in \mathbb{R}^{2}, find a minimum-area triangle $\Delta p q r$ with $p, q, r \in P$.

Smallest Triangle

Given a set P of n points in \mathbb{R}^{2}, find a minimum-area triangle $\Delta p q r$ with $p, q, r \in P$.

Let $p, q \in P$. The point $r \in P \backslash\{p, q\}$ minimizing $\Delta p q r$ lies on the boundary of the largest empty corridor parallel to $p q$.

Smallest Triangle

Given a set P of n points in \mathbb{R}^{2}, find a minimum-area triangle $\Delta p q r$ with $p, q, r \in P$.

Let $p, q \in P$. The point $r \in P \backslash\{p, q\}$ minimizing $\Delta p q r$ lies on the boundary of the largest empty corridor parallel to $p q$.
There is no other point in P between $p q$ and the line ℓ_{r} through r and parallel to $p q$.

Smallest Triangle

Given a set P of n points in \mathbb{R}^{2}, find a minimum-area triangle $\Delta p q r$ with $p, q, r \in P$.

Let $p, q \in P$. The point $r \in P \backslash\{p, q\}$ minimizing $\Delta p q r$ lies on the boundary of the largest empty corridor parallel to $p q$.
There is no other point in P between $p q$ and the line ℓ_{r} through r and parallel to $p q$.

In dual plane: - ℓ_{r}^{*} lies on r^{*}

- ℓ_{r}^{*} and $(p q)^{*}$ have identical x-coordinate
- no line $p^{*} \in P^{*}$ intersects $\overline{\ell_{r}^{*}(p q)^{*}}$

Computing in the Dual

- ℓ_{r}^{*} lies vertically above or below $(p q)^{*}$ in a common cell of $\mathcal{A}\left(P^{*}\right) \Rightarrow$ only two candidates

Computing in the Dual

- ℓ_{r}^{*} lies vertically above or below $(p q)^{*}$ in a common cell of $\mathcal{A}\left(P^{*}\right) \Rightarrow$ only two candidates
- Compute in $O\left(n^{2}\right)$ time the arrangement $\mathcal{A}\left(P^{*}\right)$

Computing in the Dual

- ℓ_{r}^{*} lies vertically above or below $(p q)^{*}$ in a common cell of $\mathcal{A}\left(P^{*}\right) \Rightarrow$ only two candidates
- Compute in $O\left(n^{2}\right)$ time the arrangement $\mathcal{A}\left(P^{*}\right)$
- Compute in each cell the vertical neighbors of the vertices \rightarrow time linear in cell complexity how?

Computing in the Dual

- ℓ_{r}^{*} lies vertically above or below $(p q)^{*}$ in a common cell of $\mathcal{A}\left(P^{*}\right) \Rightarrow$ only two candidates
- Compute in $O\left(n^{2}\right)$ time the arrangement $\mathcal{A}\left(P^{*}\right)$
- Compute in each cell the vertical neighbors of the vertices \rightarrow time linear in cell complexity how?
- for all $O\left(n^{2}\right)$ candidate triples $(p q)^{*} r^{*}$ compute in $O(1)$ time the area of $\Delta p q r$

Computing in the Dual

- ℓ_{r}^{*} lies vertically above or below $(p q)^{*}$ in a common cell of $\mathcal{A}\left(P^{*}\right) \Rightarrow$ only two candidates
- Compute in $O\left(n^{2}\right)$ time the arrangement $\mathcal{A}\left(P^{*}\right)$
- Compute in each cell the vertical neighbors of the vertices \rightarrow time linear in cell complexity how?
- for all $O\left(n^{2}\right)$ candidate triples $(p q)^{*} r^{*}$ compute in $O(1)$ time the area of $\Delta p q r$
- finds minimum in $O\left(n^{2}\right)$ time in total

Further Duality Applications

- Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Further Duality Applications

- Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Theorem 4: Let D, E be two finite sets of points in \mathbb{R}^{2}. Then there is a line ℓ that divides S and D in half simultaneously.

Further Duality Applications

- Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Theorem 4: Let D, E be two finite sets of points in \mathbb{R}^{2}. Then there is a line ℓ that divides S and D in half simultaneously.

- Given n segments in the plane, find a maximum stabbing-line, i.e., a line intersecting as many segments as possible.

Discussion

Duality is a very useful tool in algorithmic geometry!

Discussion

Duality is a very useful tool in algorithmic geometry!
Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Discussion

Duality is a very useful tool in algorithmic geometry!
 Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?

Discussion

Duality is a very useful tool in algorithmic geometry!
Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?
Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

Discussion

Duality is a very useful tool in algorithmic geometry!
Check: "Monotone Simultaneous Embeddings of Upward Planar
Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?
Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

What about higher-dimensional arrangements?

Discussion

Duality is a very useful tool in algorithmic geometry!
Check: "Monotone Simultaneous Embeddings of Upward Planar
Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?
Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

What about higher-dimensional arrangements?
The arrangement of n hyperplanes in \mathbb{R}^{d} has complexity $\Theta\left(n^{d}\right)$. A generalization of the Zone Theorem yields an $O\left(n^{d}\right)$-time algorithm.

