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Duality Transforms

p = (2, 1)

We have seen duality for planar graphs and duality of Voronoi
diagrams and Delaunay triangulations. Here we will see a duality
of points and lines in R2.
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Properties

Lemma 1: The following properties hold

(p∗)∗ = p and (`∗)∗ = `
p lies below/on/above ` ⇔ p∗ passes above/through/below `∗

`1 and `2 intersect in point r
⇔ r∗ passes through `∗1 and `∗2
q, r, s collinear
⇔ q∗, r∗, s∗ intersect in a common point
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Applications of Duality

Duality does not make geometric problems easier or harder;
it simply provides a different (but often helpful) perspective!

We will look at two examples in more detail:

upper/lower envelopes of line arrangements
minimum-area triangle in a point set
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Lower Envelope

Def: For a set L of lines the lower envelope LE(L) of L is the
set of all points in ∪`∈L` that are not above any line in the
set L (boundary of the intersection of all lower halfplanes).

Two possibilities for computing lower envelopes
divide&conquer half-plane intersection algorithm (see
Chapter 4.2 in [BCKO08])
consider the dual problem for L∗ = {`∗ | ` ∈ L}

LE(L)
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Envelopes and Duality

`

p q

When does an edge pq of ` appear as a segment on LE(L)?
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Envelopes and Duality

`

p q

When does an edge pq of ` appear as a segment on LE(L)?

p and q are not above any line in L

p∗ and q∗ are not below any point in L∗

⇒ must be neighbors on upper convex hull UCH(L∗)

intersection point of p∗ and q∗ is `∗, a vertex of UCH(L∗)

p∗

q∗`∗

UCH(L∗)

Lemma 2: The lines on LE(L) ordered from right to left
correspond to the vertices of UCH(L∗) ordered from
left to right.
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Computing the Envelope

algorithm for computing upper convex hull in time O(n log n)
(see Lecture 1 on convex hulls)
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Computing the Envelope

algorithm for computing upper convex hull in time O(n log n)
(see Lecture 1 on convex hulls)

primal lines of the points on UCH(L∗) in reverse order form
LE(L)

analogously: upper envelope of L =̂ lower convex hull of L∗

6

output sensitive algorithm for computing convex hull with h
points with time complexity O(n log h)

When does this approach work faster?
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Take a break...

Gergonne liked to season his papers with “philpsophic” remarks. In one
such remark he said, “It is not possible to feel satisfied at having said the
last word about some theory as long as it cannot be explained in a few
words to any passerby encountered in the street”

Joseph Diaz Gergonne (19 June 1771 at Nancy,
France – 4 May 1859 at Montpellier, France) was
a French mathematician and logician.
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How to test for n points whether they are in general position?

How to find a maximum set of collinear points?

Intermediate question:
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Line Arrangements

Def: A set L of lines defines a subdivision A(L) of the plane
(the line arrangement) composed of vertices, edges, and
cells (poss. unbounded).
A(L) is called simple if no three lines share a point and
no two lines are parallel.

edge vertex

cell
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Complexity of A(L)
The combinatorial complexity of A(L) is the number of
vertices, edges, and cells.

Theorem 1: Let A(L) be a simple line arrangement for n lines.
Then A(L) has

(
n
2

)
vertices, n2 edges, and(

n
2

)
+ n + 1 cells.
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Complexity of A(L)
The combinatorial complexity of A(L) is the number of
vertices, edges, and cells.

Theorem 1: Let A(L) be a simple line arrangement for n lines.
Then A(L) has

(
n
2

)
vertices, n2 edges, and(

n
2

)
+ n + 1 cells.

Data structure for A(L):

create bounding box of all vertices (s. exercise)
→ obtain planar embedded Graph G
doubly-connected edge list for G

Do we already know a way to compute A(L)?

→ could use line segment intersection plane sweep in O(n2 log n)
9
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Incrementally Constructing A(L)

Input: lines L = {`1, . . . , `n}
Output: DCEL D for A(L)
D ← bounding box B of the vertices of A(L)
for i← 1 to n do

find leftmost edge e of B intersecting `i
f ← inner cell incident to e
while f 6= outer cell do

split f , update D and set f to the next cell
intersected by `i

e
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Incrementally Constructing A(L)

Input: lines L = {`1, . . . , `n}
Output: DCEL D for A(L)
D ← bounding box B of the vertices of A(L)
for i← 1 to n do

find leftmost edge e of B intersecting `i
f ← inner cell incident to e
while f 6= outer cell do

split f , update D and set f to the next cell
intersected by `i

e

Running time?

start point of `i: O(i)

while-loop:
O(|red path|)

bounding box: O(n2)
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Zone Theorem

Def: For an arrangement A(L) and a line ` 6∈ L the zone
ZA(`) is defined as the set of all cells of A(L) whose
closure intersects `.
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Zone Theorem

Def: For an arrangement A(L) and a line ` 6∈ L the zone
ZA(`) is defined as the set of all cells of A(L) whose
closure intersects `.

How many edges
are in ZA(`)?

Theorem 2: For an arrangement A(L) of n lines in the plane
and a line ` 6∈ L the zone ZA(`) consist of at most
6n edges.

Theorem 3: The arrangement A(L) of a set of n lines can be
constructed in O(n2) time and space.

right bounding
edge ZA(`)

left bounding
edge
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How to test for n points whether they are in general position?

How to find a maximum set of collinear points?
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Smallest Triangle

Given a set P of n points in R2, find a minimum-area
triangle ∆pqr with p, q, r ∈ P .

?
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Given a set P of n points in R2, find a minimum-area
triangle ∆pqr with p, q, r ∈ P .

Let p, q ∈ P . The point r ∈ P \ {p, q} minimizing ∆pqr lies on
the boundary of the largest empty corridor parallel to pq.

p
qr

There is no other point in P between pq and the line `r
through r and parallel to pq.

`r

In dual plane: `∗r lies on r∗

`∗r and (pq)∗ have identical x-coordinate
no line p∗ ∈ P ∗ intersects `∗r(pq)∗

(pq)∗

`∗r

r∗

q∗

p∗
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Computing in the Dual

(pq)∗

`∗r

r∗

q∗

p∗

`∗r lies vertically above or below (pq)∗ in a common cell of
A(P ∗) ⇒ only two candidates

p
qr

`r
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`∗r lies vertically above or below (pq)∗ in a common cell of
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Compute in O(n2) time the arrangement A(P ∗)

Compute in each cell the vertical neighbors of the vertices
→ time linear in cell complexity how?
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`∗r lies vertically above or below (pq)∗ in a common cell of
A(P ∗) ⇒ only two candidates

Compute in O(n2) time the arrangement A(P ∗)

Compute in each cell the vertical neighbors of the vertices
→ time linear in cell complexity

for all O(n2) candidate triples (pq)∗r∗ compute in O(1)
time the area of ∆pqr
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Computing in the Dual

(pq)∗

`∗r
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q∗

p∗

`∗r lies vertically above or below (pq)∗ in a common cell of
A(P ∗) ⇒ only two candidates

Compute in O(n2) time the arrangement A(P ∗)

Compute in each cell the vertical neighbors of the vertices
→ time linear in cell complexity

for all O(n2) candidate triples (pq)∗r∗ compute in O(1)
time the area of ∆pqr

finds minimum in O(n2) time in total

how?

p
qr

`r
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Further Duality Applications

Two thieves have stolen a necklace of diamonds and
emeralds. They want to share fairly without destroying the
necklace more than necessary. How many cuts do they need?
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Further Duality Applications

Two thieves have stolen a necklace of diamonds and
emeralds. They want to share fairly without destroying the
necklace more than necessary. How many cuts do they need?

Theorem 4: Let D,E be two finite sets of points in R2. Then
there is a line ` that divides S and D in half
simultaneously.
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Further Duality Applications

Given n segments in the plane, find a maximum stabbing-line,
i.e., a line intersecting as many segments as possible.

Two thieves have stolen a necklace of diamonds and
emeralds. They want to share fairly without destroying the
necklace more than necessary. How many cuts do they need?

Theorem 4: Let D,E be two finite sets of points in R2. Then
there is a line ` that divides S and D in half
simultaneously.

15
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Duality is a very useful tool in algorithmic geometry!
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Digraphs”Journal of Algorithms and Applications
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Discussion

Duality is a very useful tool in algorithmic geometry!

Yes, you can define incidence- and order-preserving duality transforms
between d-dimensional points and hyperplanes.

Can we use duality in higher dimensions?

What about higher-dimensional arrangements?

The arrangement of n hyperplanes in Rd has complexity Θ(nd). A
generalization of the Zone Theorem yields an O(nd)-time algorithm.

16

Check: ”Monotone Simultaneous Embeddings of Upward Planar
Digraphs”Journal of Algorithms and Applications
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