

Computational Geometry • Lecture Duality of Points and Lines

INSTITUTE FOR THEORETICAL INFORMATICS · FACULTY OF INFORMATICS

Tamara Mchedlidze · Darren Strash 11.1.2016

Tamara Mchedlidze · Darren Strash

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2 .

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2 .

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2 .

Def: The duality transform $(\cdot)^*$ is defined by $p = (p_x, p_y) \quad \mapsto \quad p^* : b = p_x a - p_y$

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2 .

Def: The duality transform $(\cdot)^*$ is defined by $p = (p_x, p_y) \quad \mapsto \quad p^* : b = p_x a - p_y$

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2 .

 $p = (p_x, p_y) \quad \mapsto \quad p^* : b = p_x a - p_y$

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2 .

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2 .

Lemma 1: The following properties hold

•
$$(p^*)^* = p$$
 and $(\ell^*)^* = \ell$

- p lies below/on/above $\ell \Leftrightarrow p^*$ passes above/through/below ℓ^*
- ℓ_1 and ℓ_2 intersect in point r $\Leftrightarrow r^*$ passes through ℓ_1^* and ℓ_2^*
- q, r, s collinear

 $\Leftrightarrow q^*, r^*, s^*$ intersect in a common point

Lemma 1: The following properties hold

•
$$(p^*)^* = p$$
 and $(\ell^*)^* = \ell$

- p lies below/on/above $\ell \Leftrightarrow p^*$ passes above/through/below ℓ^*
- ℓ_1 and ℓ_2 intersect in point r $\Leftrightarrow r^*$ passes through ℓ_1^* and ℓ_2^*
- q, r, s collinear

 $\Leftrightarrow q^*, r^*, s^*$ intersect in a common point

What is the dual object for a line segment $s = \overline{pq}$? What dual property holds for a line ℓ , intersecting s?

Lemma 1: The following properties hold

•
$$(p^*)^* = p$$
 and $(\ell^*)^* = \ell$

- p lies below/on/above $\ell \Leftrightarrow p^*$ passes above/through/below ℓ^*
- ℓ_1 and ℓ_2 intersect in point r $\Leftrightarrow r^*$ passes through ℓ_1^* and ℓ_2^*
- q, r, s collinear

 $\Leftrightarrow q^*, r^*, s^*$ intersect in a common point

What is the dual object for a line segment $s = \overline{pq}$? What dual property holds for a line ℓ , intersecting s?

Lemma 1: The following properties hold

•
$$(p^*)^* = p$$
 and $(\ell^*)^* = \ell$

- p lies below/on/above $\ell \Leftrightarrow p^*$ passes above/through/below ℓ^*
- ℓ_1 and ℓ_2 intersect in point r $\Leftrightarrow r^*$ passes through ℓ_1^* and ℓ_2^*
- q, r, s collinear

 $\Leftrightarrow q^*, r^*, s^*$ intersect in a common point

What is the dual object for a line segment $s = \overline{pq}$? What dual property holds for a line ℓ , intersecting s?

Duality does not make geometric problems easier or harder; it simply provides a different (but often helpful) perspective!

We will look at two examples in more detail:

- upper/lower envelopes of line arrangements
- minimum-area triangle in a point set

Lower Envelope

Def: For a set L of lines the **lower envelope** LE(L) of L is the set of all points in $\bigcup_{\ell \in L} \ell$ that are not above any line in the set L (boundary of the intersection of all lower halfplanes).

 Two possibilities for computing lower envelopes
 divide&conquer half-plane intersection algorithm (see Chapter 4.2 in [BCKO08])

• consider the dual problem for $L^* = \{\ell^* \mid \ell \in L\}$

When does an edge \overline{pq} of ℓ appear as a segment on LE(L)?

When does an edge \overline{pq} of ℓ appear as a segment on LE(L)? • p and q are not above any line in L

When does an edge \overline{pq} of ℓ appear as a segment on LE(L)?

- p and q are not above any line in L
- p^* and q^* are not below any point in L^*

When does an edge \overline{pq} of ℓ appear as a segment on LE(L)?

- p and q are not above any line in L
- p^* and q^* are not below any point in L^* \Rightarrow must be neighbors on upper convex hull UCH (L^*)
- intersection point of p^* and q^* is $\ell^*,$ a vertex of $\mathrm{UCH}(L^*)$

When does an edge \overline{pq} of ℓ appear as a segment on LE(L)?

- p and q are not above any line in L
- p^* and q^* are not below any point in L^* \Rightarrow must be neighbors on upper convex hull UCH (L^*)
- intersection point of p^* and q^* is $\ell^*,$ a vertex of $\mathsf{UCH}(L^*)$
- **Lemma 2:** The lines on LE(L) ordered from right to left correspond to the vertices of $UCH(L^*)$ ordered from left to right.

 algorithm for computing upper convex hull in time O(n log n) (see Lecture 1 on convex hulls)

- algorithm for computing upper convex hull in time O(n log n) (see Lecture 1 on convex hulls)
- primal lines of the points on ${\rm UCH}(L^*)$ in reverse order form ${\rm LE}(L)$

- algorithm for computing upper convex hull in time O(n log n) (see Lecture 1 on convex hulls)
- primal lines of the points on ${\rm UCH}(L^*)$ in reverse order form ${\rm LE}(L)$
- analogously: upper envelope of $L \stackrel{\scriptscriptstyle\frown}{=}$ lower convex hull of L^*

- algorithm for computing upper convex hull in time O(n log n) (see Lecture 1 on convex hulls)
- primal lines of the points on ${\rm UCH}(L^*)$ in reverse order form ${\rm LE}(L)$
- analogously: upper envelope of $L \stackrel{\scriptscriptstyle\frown}{=}$ lower convex hull of L^*

When does this approach work faster?

- algorithm for computing upper convex hull in time O(n log n) (see Lecture 1 on convex hulls)
- primal lines of the points on ${\rm UCH}(L^*)$ in reverse order form ${\rm LE}(L)$
- analogously: upper envelope of $L \stackrel{\scriptscriptstyle\frown}{=}$ lower convex hull of L^*

When does this approach work faster?

• output sensitive algorithm for computing convex hull with h points with time complexity $O(n\log h)$

Joseph Diaz Gergonne (19 June 1771 at Nancy, France – 4 May 1859 at Montpellier, France) was a French mathematician and logician.

Gergonne liked to season his papers with "philpsophic" remarks. In one such remark he said, *"It is not possible to feel satisfied at having said the last word about some theory as long as it cannot be explained in a few words to any passerby encountered in the street"*

Delaunay-Triangulations

Intermediate question:

How to test for n points whether they are in general position? How to find a maximum set of collinear points?

Line Arrangements

Def: A set L of lines defines a subdivision $\mathcal{A}(L)$ of the plane (the **line arrangement**) composed of vertices, edges, and cells (poss. unbounded). $\mathcal{A}(L)$ is called **simple** if no three lines share a point and no two lines are parallel.

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.

Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^2 edges, and $\binom{n}{2} + n + 1$ cells.

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.

Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^2 edges, and $\binom{n}{2} + n + 1$ cells.

Data structure for $\mathcal{A}(L)$:

- create bounding box of all vertices (s. exercise) \rightarrow obtain planar embedded Graph G
- doubly-connected edge list for ${\cal G}$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.

Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^2 edges, and $\binom{n}{2} + n + 1$ cells.

Data structure for $\mathcal{A}(L)$:

- create bounding box of all vertices (s. exercise) \rightarrow obtain planar embedded Graph G
- $\hfill \hfill \hfill$

Do we already know a way to compute $\mathcal{A}(L)$?

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.

Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^2 edges, and $\binom{n}{2} + n + 1$ cells.

Data structure for $\mathcal{A}(L)$:

- create bounding box of all vertices (s. exercise) \rightarrow obtain planar embedded Graph G
- $\hfill \hfill \hfill$

Do we already know a way to compute $\mathcal{A}(L)$?

ightarrow could use line segment intersection plane sweep in $O(n^2 \log n)$

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$ **Output**: DCEL \mathcal{D} for $\mathcal{A}(L)$ $\mathcal{D} \leftarrow \text{bounding box } B \text{ of the vertices of } \mathcal{A}(L)$ for $i \leftarrow 1$ to n do find leftmost edge e of B intersecting ℓ_i $f \leftarrow \text{inner cell incident to } e$ while $f \neq$ outer cell **do** split f, update \mathcal{D} and set f to the next cell intersected by ℓ_i

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$ **Output**: DCEL \mathcal{D} for $\mathcal{A}(L)$ $\mathcal{D} \leftarrow \text{bounding box } B \text{ of the vertices of } \mathcal{A}(L)$ for $i \leftarrow 1$ to n do find leftmost edge e of B intersecting ℓ_i $f \leftarrow \text{inner cell incident to } e$ while $f \neq$ outer cell **do** split f, update \mathcal{D} and set f to the next cell intersected by ℓ_i

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$ **Output**: DCEL \mathcal{D} for $\mathcal{A}(L)$ $\mathcal{D} \leftarrow \text{bounding box } B \text{ of the vertices of } \mathcal{A}(L)$ for $i \leftarrow 1$ to n do find leftmost edge e of B intersecting ℓ_i $f \leftarrow \text{inner cell incident to } e$ while $f \neq$ outer cell **do** split f, update \mathcal{D} and set f to the next cell intersected by ℓ_i

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$ **Output**: DCEL \mathcal{D} for $\mathcal{A}(L)$ $\mathcal{D} \leftarrow \text{bounding box } B \text{ of the vertices of } \mathcal{A}(L)$ for $i \leftarrow 1$ to n do find leftmost edge e of B intersecting ℓ_i $f \leftarrow \text{inner cell incident to } e$ while $f \neq$ outer cell **do** split f, update \mathcal{D} and set f to the next cell intersected by ℓ_i

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$ **Output**: DCEL \mathcal{D} for $\mathcal{A}(L)$ $\mathcal{D} \leftarrow \text{bounding box } B \text{ of the vertices of } \mathcal{A}(L)$ for $i \leftarrow 1$ to n do find leftmost edge e of B intersecting ℓ_i $f \leftarrow \text{inner cell incident to } e$ while $f \neq$ outer cell **do** split f, update \mathcal{D} and set f to the next cell intersected by ℓ_i

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$ **Output**: DCEL \mathcal{D} for $\mathcal{A}(L)$ $\mathcal{D} \leftarrow \text{bounding box } B \text{ of the vertices of } \mathcal{A}(L)$ for $i \leftarrow 1$ to n do find leftmost edge e of B intersecting ℓ_i $f \leftarrow \text{inner cell incident to } e$ while $f \neq$ outer cell **do** split f, update \mathcal{D} and set f to the next cell intersected by ℓ_i

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$ **Output**: DCEL \mathcal{D} for $\mathcal{A}(L)$ $\mathcal{D} \leftarrow \text{bounding box } B \text{ of the vertices of } \mathcal{A}(L)$ for $i \leftarrow 1$ to n do find leftmost edge e of B intersecting ℓ_i $f \leftarrow \text{inner cell incident to } e$ while $f \neq$ outer cell **do** split f, update \mathcal{D} and set f to the next cell intersected by ℓ_i

Running time?

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$ **Output**: DCEL \mathcal{D} for $\mathcal{A}(L)$ $\mathcal{D} \leftarrow \text{bounding box } B \text{ of the vertices of } \mathcal{A}(L)$ for $i \leftarrow 1$ to n do find leftmost edge e of B intersecting ℓ_i $f \leftarrow \text{inner cell incident to } e$ while $f \neq$ outer cell **do** split f, update \mathcal{D} and set f to the next cell intersected by ℓ_i

Running time?

- bounding box: $O(n^2)$
- start point of ℓ_i : O(i)

Delaunay-Triangulations

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the **zone** $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ .

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the **zone** $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ .

How many edges are in $Z_{\mathcal{A}}(\ell)$?

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the **zone** $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ .

How many edges are in $Z_{\mathcal{A}}(\ell)$?

Theorem 2: For an arrangement $\mathcal{A}(L)$ of n lines in the plane and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ consist of at most 6n edges.

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the **zone** $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ .

How many edges are in $Z_{\mathcal{A}}(\ell)$?

- **Theorem 2:** For an arrangement $\mathcal{A}(L)$ of n lines in the plane and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ consist of at most 6n edges.
- **Theorem 3:** The arrangement $\mathcal{A}(L)$ of a set of n lines can be constructed in $O(n^2)$ time and space.

Intermediate question:

How to test for n points whether they are in general position? How to find a maximum set of collinear points?

Given a set P of n points in \mathbb{R}^2 , find a minimum-area triangle Δpqr with $p, q, r \in P$.

Given a set P of n points in \mathbb{R}^2 , find a minimum-area triangle Δpqr with $p, q, r \in P$.

Let $p, q \in P$. The point $r \in P \setminus \{p, q\}$ minimizing Δpqr lies on the boundary of the largest empty corridor parallel to pq.

Given a set P of n points in \mathbb{R}^2 , find a minimum-area triangle Δpqr with $p, q, r \in P$.

Let $p, q \in P$. The point $r \in P \setminus \{p, q\}$ minimizing Δpqr lies on the boundary of the largest empty corridor parallel to pq.

There is no other point in P between pq and the line ℓ_r through r and parallel to pq.

Let $p, q \in P$. The point $r \in P \setminus \{p, q\}$ minimizing Δpqr lies on the boundary of the largest empty corridor parallel to pq.

There is no other point in P between pq and the line ℓ_r through r and parallel to pq.

In dual plane: ℓ_r^* lies on r^* ℓ_r^* and $(pq)^*$ have identical x-coordinate no line $p^* \in P^*$ intersects $\overline{\ell_r^*(pq)^*}$

Computing in the Dual r q

 $\mathcal{A}(P^*) \Rightarrow$ only two candidates

• ℓ_r^* lies vertically above or below $(pq)^*$ in a common cell of

 a^*

 $(pq)^{*}$

 ℓ_r^*

 p^*

 $r^{\hat{*}}$

Computing in the Dual p_{r} p_{r} p_{r} p_{r} p_{r} p_{r} p_{r}

- ℓ_r^* lies vertically above or below $(pq)^*$ in a common cell of $\mathcal{A}(P^*) \Rightarrow$ only two candidates
- Compute in $O(n^2)$ time the arrangement $\mathcal{A}(P^*)$

- ℓ_r^* lies vertically above or below $(pq)^*$ in a common cell of $\mathcal{A}(P^*) \Rightarrow$ only two candidates
- Compute in $O(n^2)$ time the arrangement $\mathcal{A}(P^*)$
- Compute in each cell the vertical neighbors of the vertices \rightarrow time linear in cell complexity how?

- ℓ_r^* lies vertically above or below $(pq)^*$ in a common cell of $\mathcal{A}(P^*) \Rightarrow$ only two candidates
- Compute in $O(n^2)$ time the arrangement $\mathcal{A}(P^*)$
- Compute in each cell the vertical neighbors of the vertices
 → time linear in cell complexity
 how?
- for all $O(n^2)$ candidate triples $(pq)^*r^*$ compute in O(1) time the area of Δpqr

Computing in the Dual l

- ℓ_r^* lies vertically above or below $(pq)^*$ in a common cell of $\mathcal{A}(P^*) \Rightarrow$ only two candidates
- Compute in $O(n^2)$ time the arrangement $\mathcal{A}(P^*)$
- Compute in each cell the vertical neighbors of the vertices \rightarrow time linear in cell complexity how?
- for all $O(n^2)$ candidate triples $(pq)^*r^*$ compute in O(1) time the area of Δpqr
 - finds minimum in $O(n^2)$ time in total

Further Duality Applications

Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Further Duality Applications

Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Theorem 4: Let D, E be two finite sets of points in \mathbb{R}^2 . Then there is a line ℓ that divides S and D in half simultaneously.

Further Duality Applications

Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Theorem 4: Let D, E be two finite sets of points in \mathbb{R}^2 . Then there is a line ℓ that divides S and D in half simultaneously.

Given n segments in the plane, find a maximum stabbing-line,
 i.e., a line intersecting as many segments as possible.

Discussion

Duality is a very useful tool in algorithmic geometry!

Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?

Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?

Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?

Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

What about higher-dimensional arrangements?

Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?

Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

What about higher-dimensional arrangements?

The arrangement of n hyperplanes in \mathbb{R}^d has complexity $\Theta(n^d)$. A generalization of the Zone Theorem yields an $O(n^d)$ -time algorithm.