

Computational Geometry • Lecture

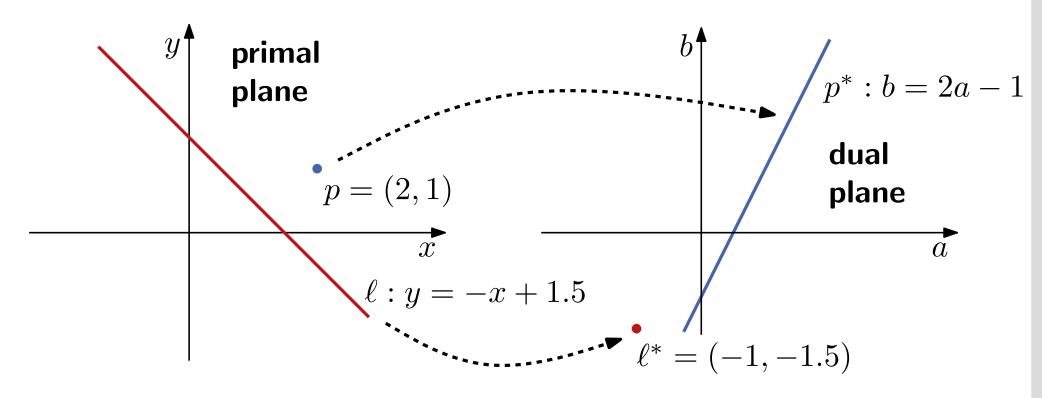
Duality of Points and Lines

INSTITUTE FOR THEORETICAL INFORMATICS · FACULTY OF INFORMATICS

Tamara Mchedlidze · Darren Strash 11.1.2016

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2 .



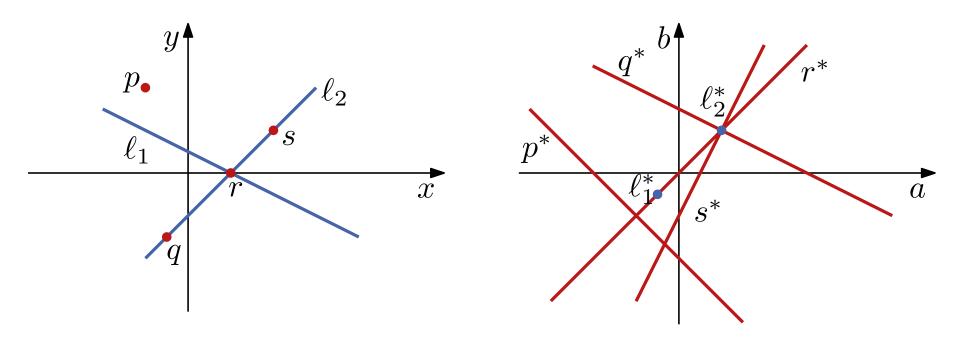
Def: The duality transform $(\cdot)^*$ is defined by

$$p = (p_x, p_y) \qquad \mapsto \qquad p^* : b = p_x a - p_y$$
$$\ell : y = mx + c \qquad \mapsto \qquad \ell^* = (m, -c)$$

Properties

Lemma 1: The following properties hold

- $(p^*)^* = p \text{ and } (\ell^*)^* = \ell$
- p lies below/on/above $\ell \Leftrightarrow p^*$ passes above/through/below ℓ^*
- ℓ_1 and ℓ_2 intersect in point r $\Leftrightarrow r^*$ passes through ℓ_1^* and ℓ_2^*
- q, r, s collinear $\Leftrightarrow q^*, r^*, s^*$ intersect in a common point

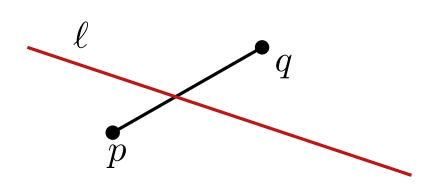


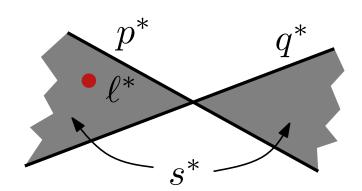
Properties

Lemma 1: The following properties hold

- $(p^*)^* = p \text{ and } (\ell^*)^* = \ell$
- p lies below/on/above $\ell \Leftrightarrow p^*$ passes above/through/below ℓ^*
- ℓ_1 and ℓ_2 intersect in point r $\Leftrightarrow r^*$ passes through ℓ_1^* and ℓ_2^*
- q, r, s collinear $\Leftrightarrow q^*, r^*, s^*$ intersect in a common point

What is the dual object for a line segment $s = \overline{pq}$? What dual property holds for a line ℓ , intersecting s?





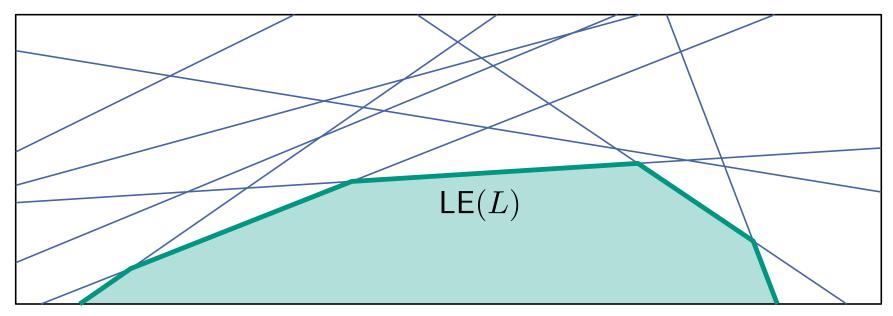
Applications of Duality

Duality does not make geometric problems easier or harder; it simply provides a different (but often helpful) perspective!

We will look at two examples in more detail:

- upper/lower envelopes of line arrangements
- minimum-area triangle in a point set

Lower Envelope

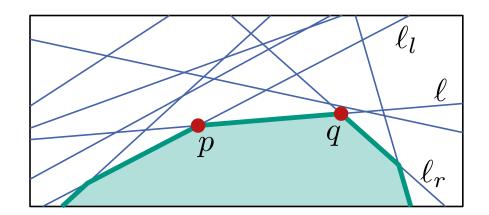


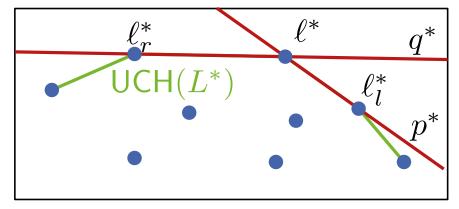
Def: For a set L of lines the **lower envelope** LE(L) of L is the set of all points in $\bigcup_{\ell \in L} \ell$ that are not above any line in the set L (boundary of the intersection of all lower halfplanes).

Two possibilities for computing lower envelopes

- divide&conquer half-plane intersection algorithm (see Chapter 4.2 in [BCKO08])
- consider the dual problem for $L^* = \{\ell^* \mid \ell \in L\}$

Envelopes and Duality





When does an edge \overline{pq} of ℓ appear as a segment on LE(L)?

- lacksquare p and q are not above any line in L
- p^* and q^* are not below any point in L^* \Rightarrow must be neighbors on upper convex hull UCH (L^*)
- intersection point of p^* and q^* is ℓ^* , a vertex of $\mathrm{UCH}(L^*)$

Lemma 2: The lines on $\mathsf{LE}(L)$ ordered from right to left correspond to the vertices of $\mathsf{UCH}(L^*)$ ordered from left to right.

Computing the Envelope

- algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)
- \bullet primal lines of the points on $\mathsf{UCH}(L^*)$ in reverse order form $\mathsf{LE}(L)$
- lacksquare analogously: upper envelope of $L \; \hat{=} \; {\rm lower} \; {\rm convex} \; {\rm hull} \; {\rm of} \; L^*$

When does this approach work faster?

• output sensitive algorithm for computing convex hull with h points with time complexity $O(n\log h)$

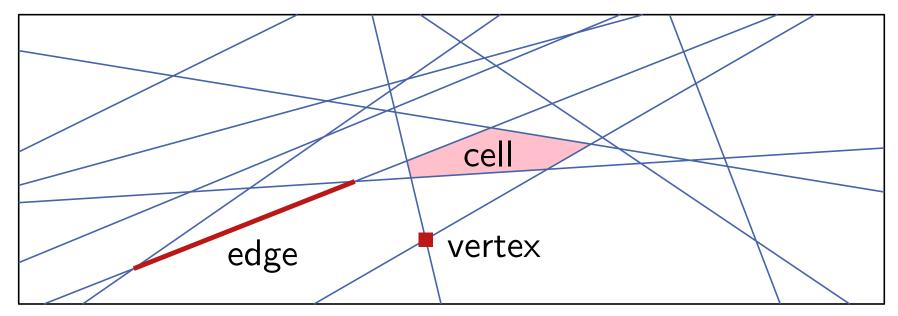
Intermediate question:

How to test for n points whether they are in general position?

How to find a maximum set of collinear points?

Delaunay-Triangulations

Line Arrangements



Def: A set L of lines defines a subdivision $\mathcal{A}(L)$ of the plane (the **line arrangement**) composed of vertices, edges, and cells (poss. unbounded).

 $\mathcal{A}(L)$ is called **simple** if no three lines share a point and no two lines are parallel.

Complexity of A(L)

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.

Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^2 edges, and $\binom{n}{2}+n+1$ cells.

Data structure for A(L):

- create bounding box of all vertices (s. exercise) \rightarrow obtain planar embedded Graph G
- lacktriangle doubly-connected edge list for G

Do we already know a way to compute $\mathcal{A}(L)$?

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L = \{\ell_1, \dots, \ell_n\}$

Output: DCEL \mathcal{D} for $\mathcal{A}(L)$

 $\mathcal{D} \leftarrow \text{bounding box } B \text{ of the vertices of } \mathcal{A}(L)$

for $i \leftarrow 1$ to n do

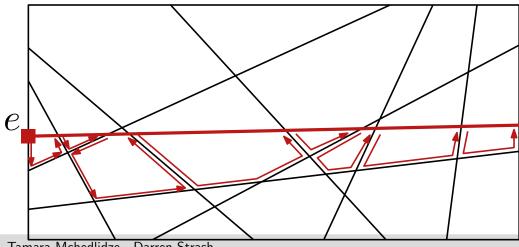
find leftmost edge e of B intersecting ℓ_i

 $f \leftarrow$ inner cell incident to e

while $f \neq$ outer cell **do**

split f, update \mathcal{D} and set f to the next cell

intersected by ℓ_i

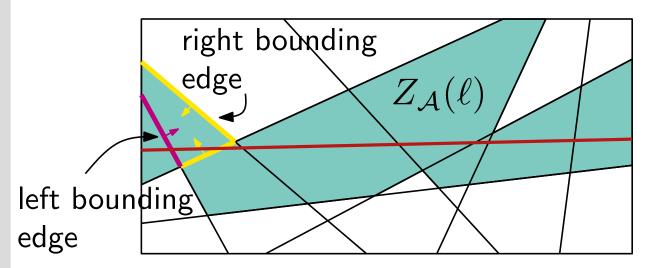


Running time?

- bounding box: $O(n^2)$
- start point of ℓ_i : O(i)
- while-loop: O(|red path|)

Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the **zone** $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ .



How many edges are in $Z_{\mathcal{A}}(\ell)$?

Theorem 2: For an arrangement $\mathcal{A}(L)$ of n lines in the plane and a line $\ell \not\in L$ the zone $Z_{\mathcal{A}}(\ell)$ consist of at most 6n edges.

Theorem 3: The arrangement $\mathcal{A}(L)$ of a set of n lines can be constructed in $O(n^2)$ time and space.

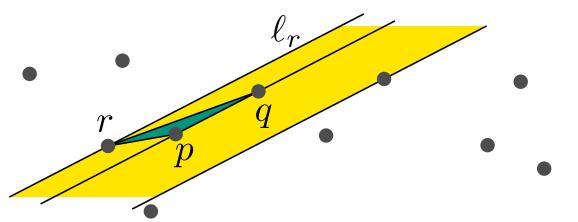
Intermediate question:

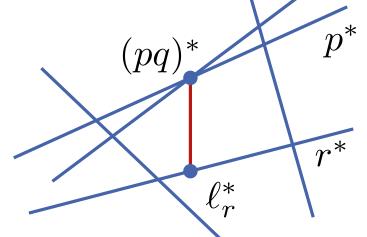
How to test for n points whether they are in general position?

How to find a maximum set of collinear points?

Smallest Triangle

Given a set P of n points in \mathbb{R}^2 , find a minimum-area triangle Δpqr with $p,q,r \in P$.





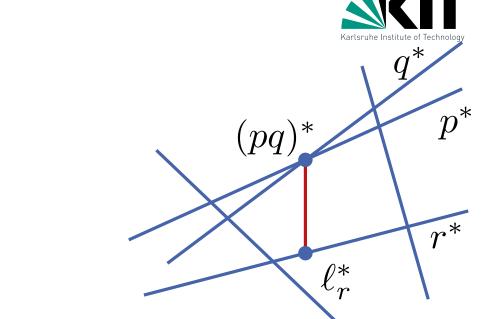
Let $p, q \in P$. The point $r \in P \setminus \{p, q\}$ minimizing Δpqr lies on the boundary of the largest empty corridor parallel to pq.

There is no other point in P between pq and the line ℓ_r through r and parallel to pq.

In dual plane: • ℓ_r^* lies on r^*

- ℓ_r^* and $(pq)^*$ have identical x-coordinate
- no line $p^* \in P^*$ intersects $\ell_r^*(pq)^*$

Computing in the Dual



- ℓ_r^* lies vertically above or below $(pq)^*$ in a common cell of $\mathcal{A}(P^*)\Rightarrow$ only two candidates
- Compute in $O(n^2)$ time the arrangement $\mathcal{A}(P^*)$
- Compute in each cell the vertical neighbors of the vertices → time linear in cell complexity how?
- for all $O(n^2)$ candidate triples $(pq)^*r^*$ compute in O(1) time the area of Δpqr
- lacksquare finds minimum in $O(n^2)$ time in total

Further Duality Applications

15

Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Theorem 4: Let D, E be two finite sets of points in \mathbb{R}^2 . Then there is a line ℓ that divides S and D in half simultaneously.

• Given n segments in the plane, find a maximum stabbing-line, i.e., a line intersecting as many segments as possible.

Discussion

16

Duality is a very useful tool in algorithmic geometry!

Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?

Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

What about higher-dimensional arrangements?

The arrangement of n hyperplanes in \mathbb{R}^d has complexity $\Theta(n^d)$. A generalization of the Zone Theorem yields an $O(n^d)$ -time algorithm.