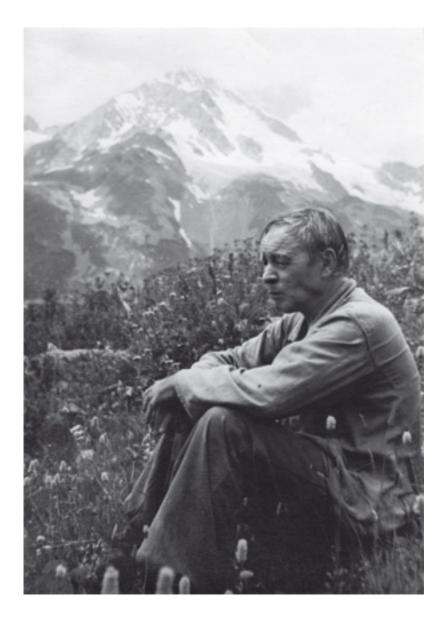


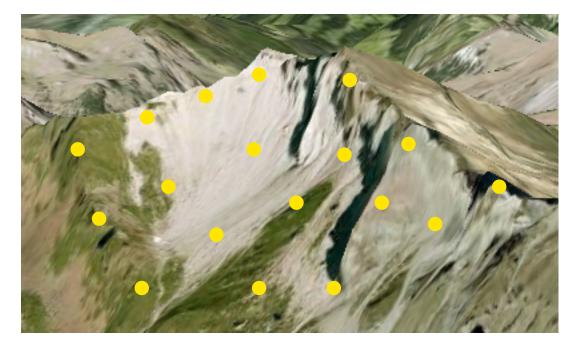
INSTITUTE FOR THEORETICAL INFORMATICS · FACULTY OF INFORMATICS

Tamara Mchedlidze · Darren Strash

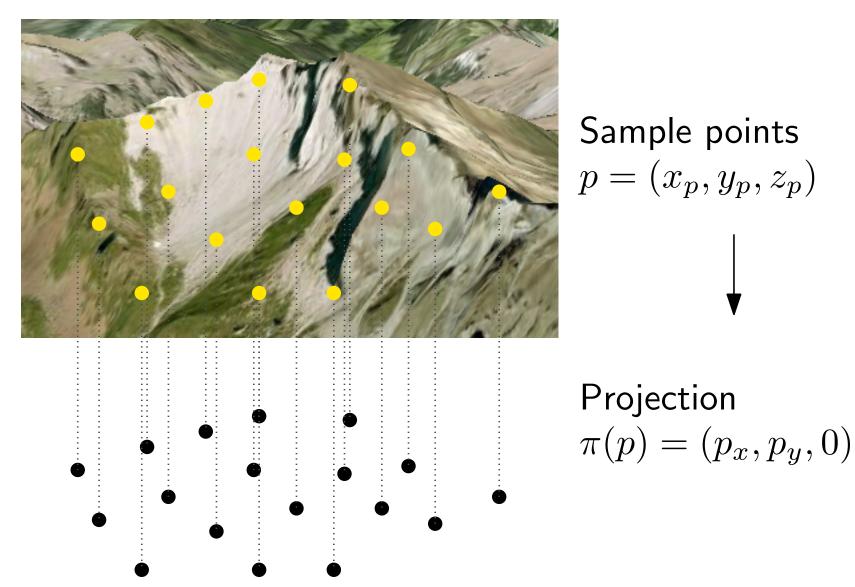
Delaunay-Triangulations

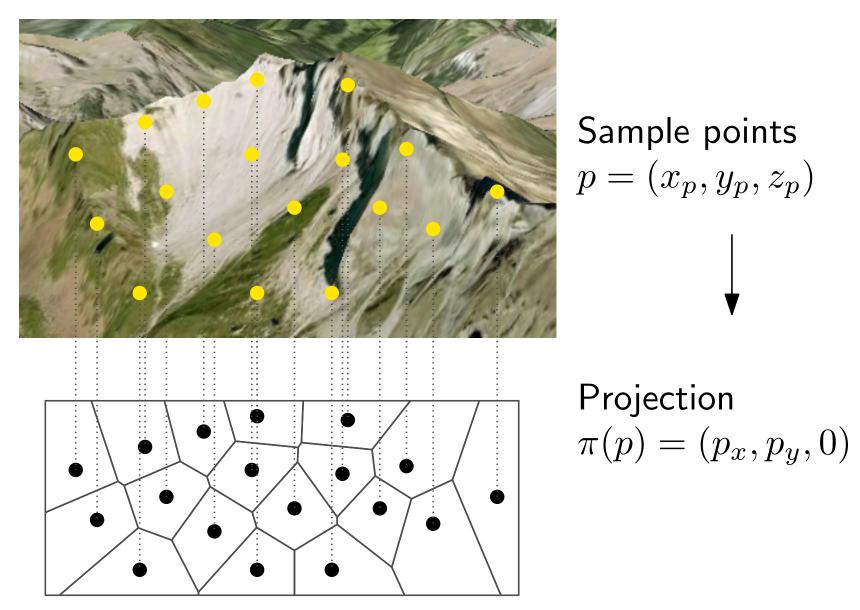
Delaunay



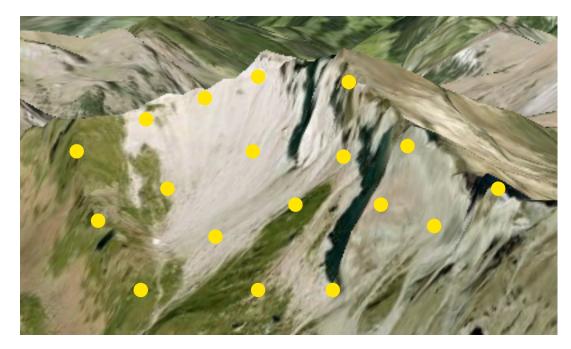


Sample points $p = (x_p, y_p, z_p)$

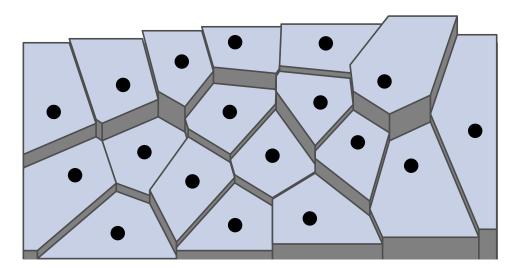




Interpolation 1: each point gets the height of the nearest sample point



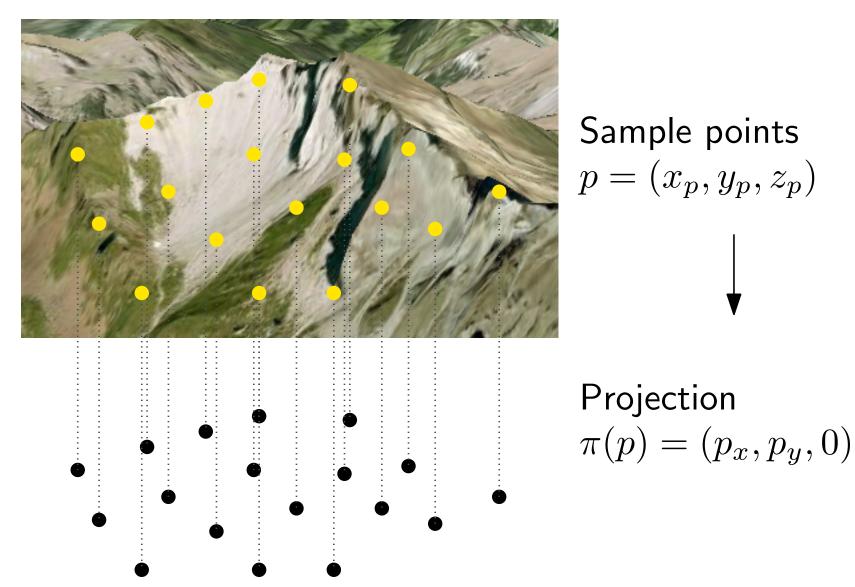
Sample points $p = (x_p, y_p, z_p)$

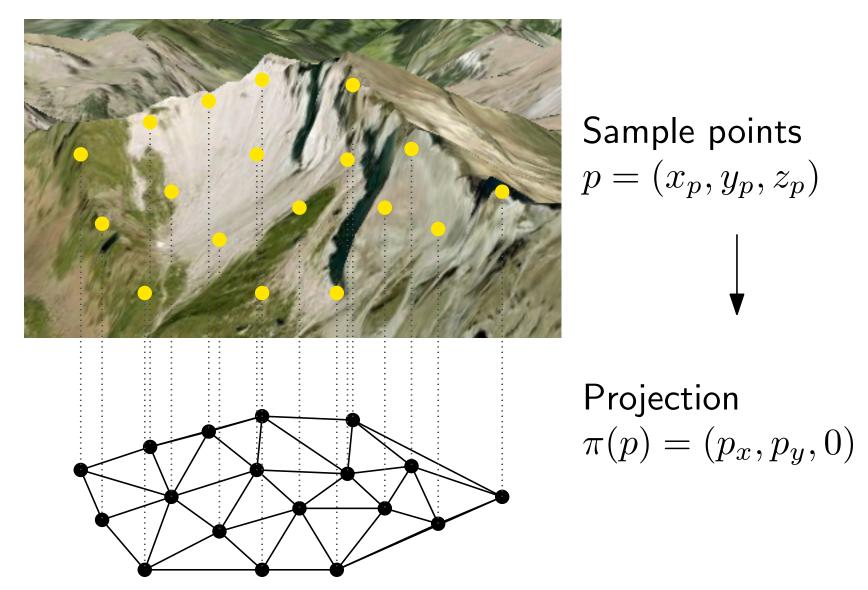


Projection

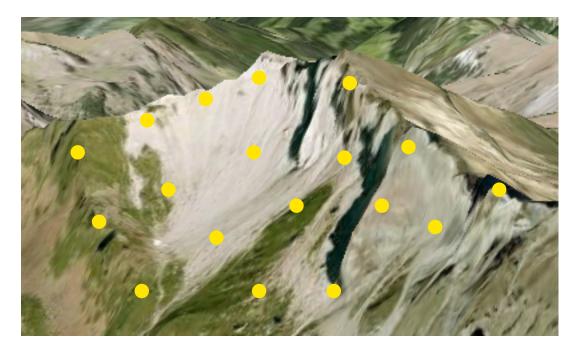
$$\pi(p) = (p_x, p_y, 0)$$

Interpolation 1: each point gets the height of the nearest sample point

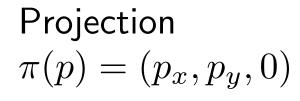


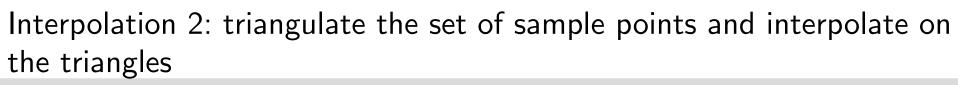


Interpolation 2: triangulate the set of sample points and interpolate on the triangles



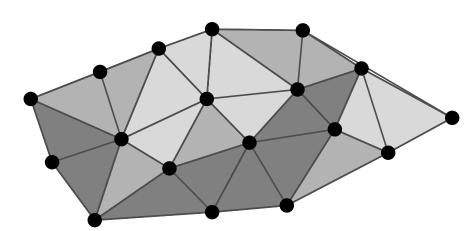
Sample points $p = (x_p, y_p, z_p)$





Sample points
$$p = (x_p, y_p, z_p)$$

What a good triangulation looks like?

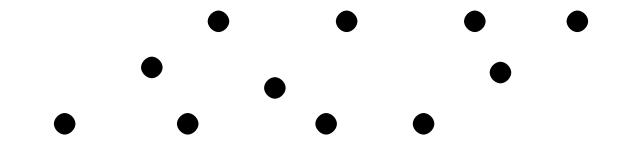


Projection

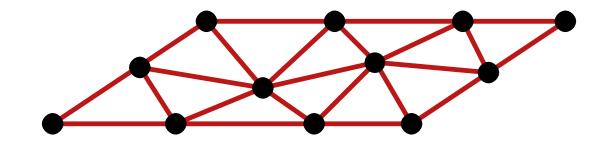
$$\pi(p) = (p_x, p_y, 0)$$

Interpolation 2: triangulate the set of sample points and interpolate on the triangles

Def.: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with a vertex set P.

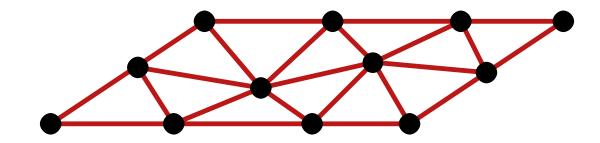


Def.: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with a vertex set P.



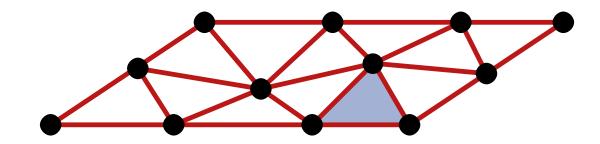
Obs.:

Def.: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with a vertex set P.



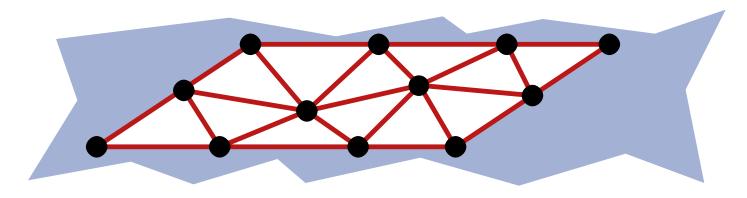
Obs.: • all internal faces are triangles

Def.: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with a vertex set P.



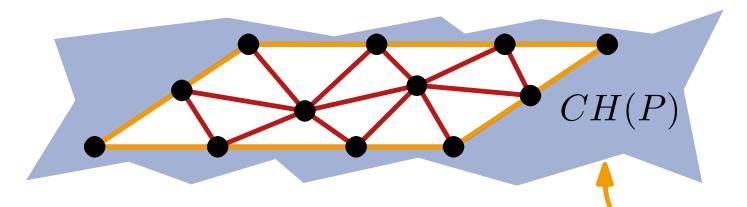
Obs.: • all internal faces are triangles

Def.: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with a vertex set P.



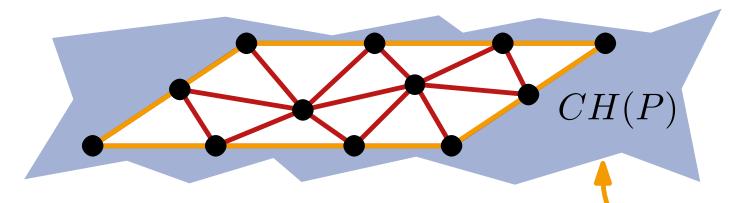
- **Obs.:** all internal faces are triangles
 - outer face is the complement of the convex hull

Def.: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with a vertex set P.



- **Obs.:** all internal faces are triangles
 - outer face is the complement of the convex hull

Def.: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with a vertex set P.

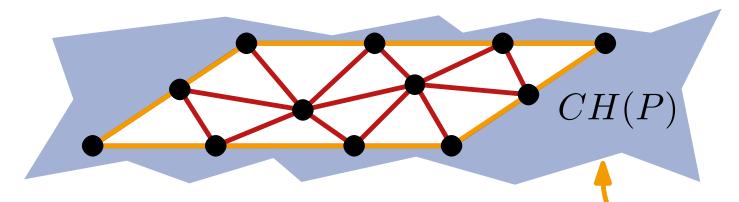


- **Obs.:** all internal faces are triangles
 - outer face is the complement of the convex hull

Theorem 1: Let P be a set of n points, not all collinear. Let h be the number of points in CH(P).

Then any triangulation of P has t(n,h) triangles and e(n,h) edges.

Def.: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with a vertex set P.



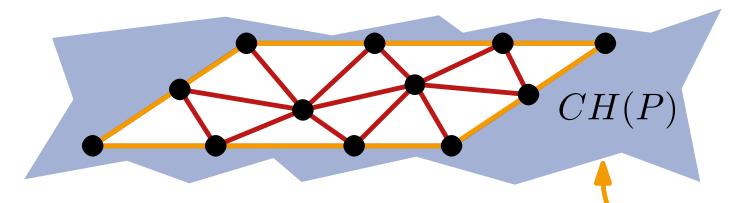
- **Obs.:** all internal faces are triangles
 - outer face is the complement of the convex hull

Theorem 1: Let P be a set of n points, not all collinear. Let h be the number of points in CH(P). Then any triangulation of P has t(n,h) triangles

and e(n,h) edges.

Compute t and e!

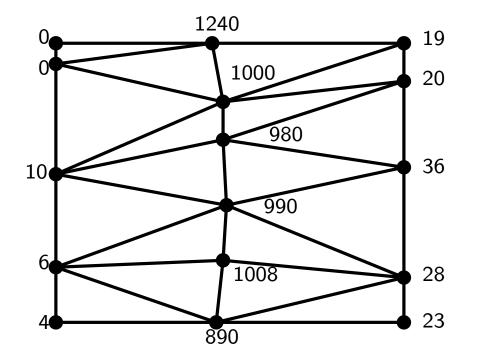
Def.: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with a vertex set P.

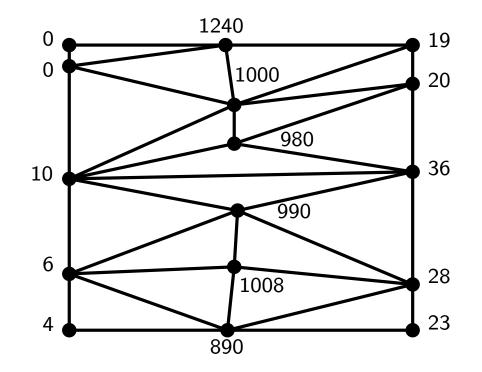


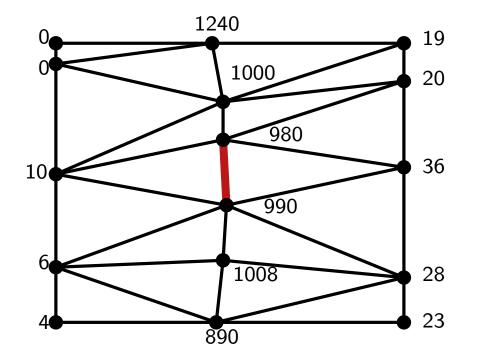
- **Obs.:** all internal faces are triangles
 - outer face is the complement of the convex hull

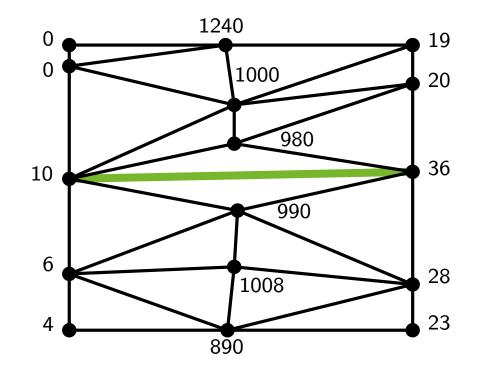
Theorem 1: Let P be a set of n points, not all collinear. Let h be the number of points in CH(P).

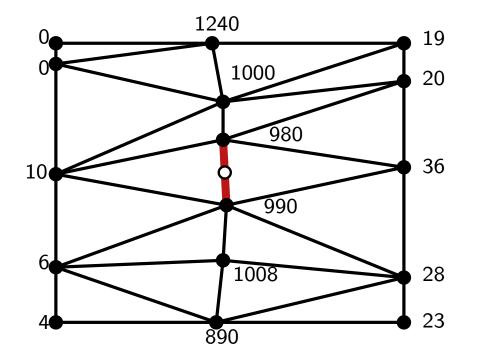
Then any triangulation of P has (2n - 2 - h) triangles and (3n - 3 - h) edges.

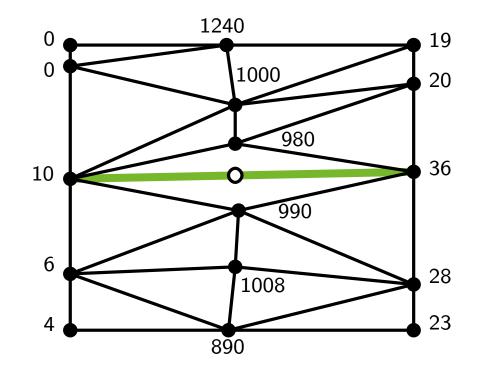


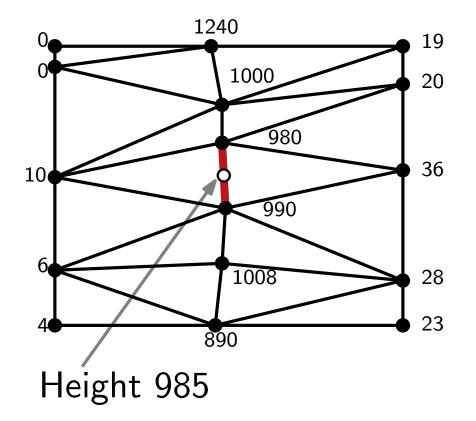


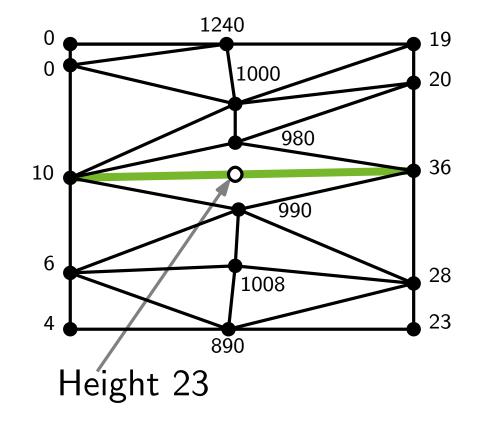


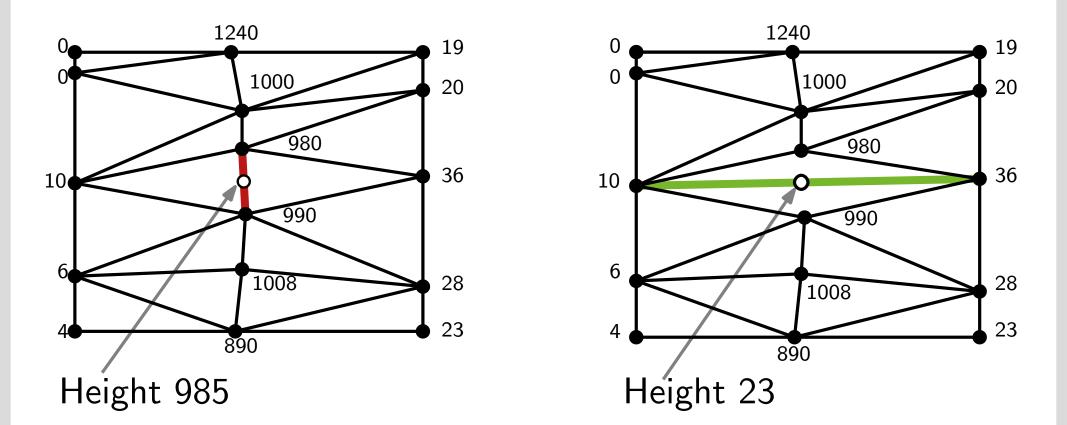




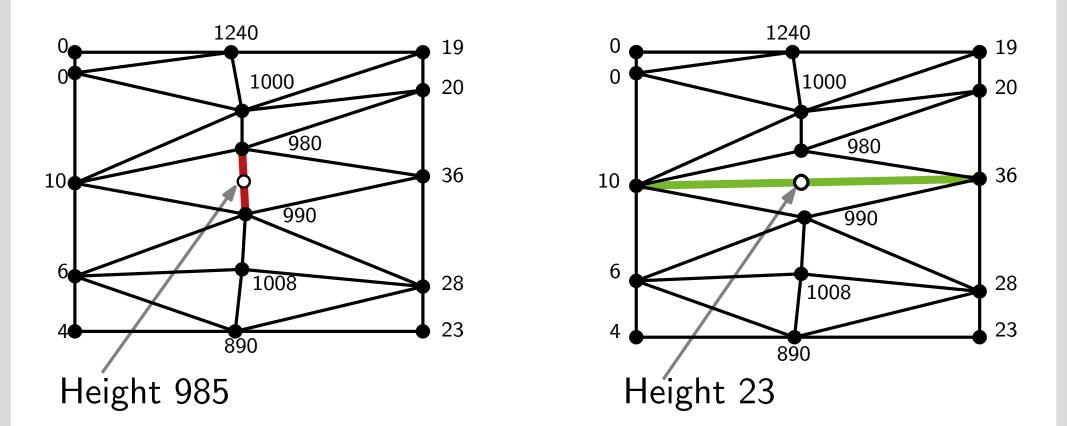








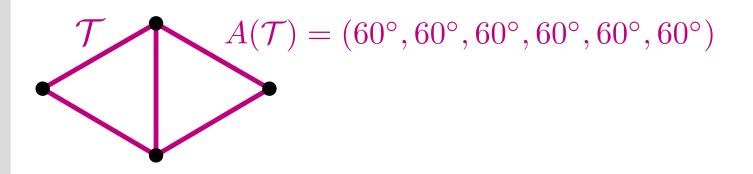
Intuition: Avoid narrow triangles!



Intuition:Avoid narrow triangles!Or: maximize the smallest angle!

Angle-optimal Triangulations

Def.: Let $P \subset \mathbb{R}^2$ be a set of points, \mathcal{T} be a triangulation of P and m be the number of the triangles. $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ is called **angle-vector** of \mathcal{T} where $\alpha_1 \leq \cdots \leq \alpha_{3m}$.



Angle-optimal Triangulations

Def.: Let $P \subset \mathbb{R}^2$ be a set of points, \mathcal{T} be a triangulation of P and m be the number of the triangles. $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ is called **angle-vector** of \mathcal{T} where $\alpha_1 \leq \cdots \leq \alpha_{3m}$.

For two triangulations \mathcal{T} and \mathcal{T}' of P we define the **order** of the angle-vectors $A(\mathcal{T}) > A(\mathcal{T}')$ as lexicographic order of corresponding angle sequences.

$$\mathcal{T} \qquad A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

$$A(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

Angle-optimal Triangulations

Def.: Let $P \subset \mathbb{R}^2$ be a set of points, \mathcal{T} be a triangulation of P and m be the number of the triangles. $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ is called **angle-vector** of \mathcal{T} where $\alpha_1 \leq \cdots \leq \alpha_{3m}$.

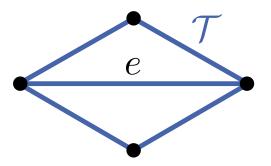
For two triangulations \mathcal{T} and \mathcal{T}' of P we define the **order** of the angle-vectors $A(\mathcal{T}) > A(\mathcal{T}')$ as lexicographic order of corresponding angle sequences.

 \mathcal{T} is called **angle-optimal**, if $A(\mathcal{T}) \geq A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P.

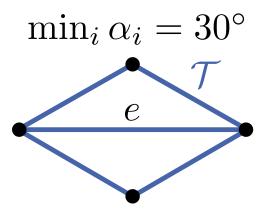
$$\mathcal{T} = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

$$A(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

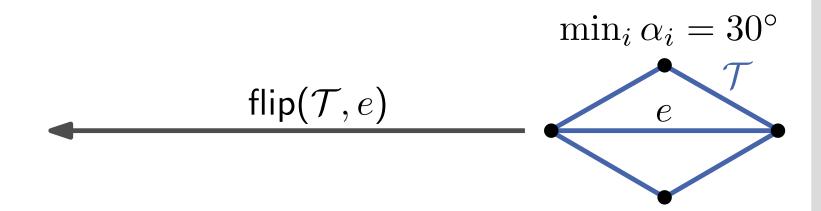
Def.: Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is called **illegal**, when the smallest angle incident to e increases after the flip of e.



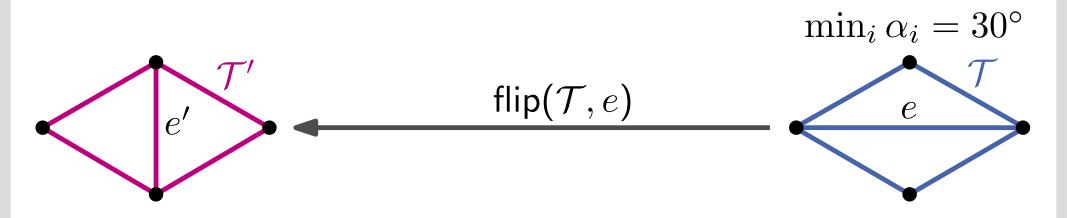
Def.: Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is called **illegal**, when the smallest angle incident to e increases after the flip of e.



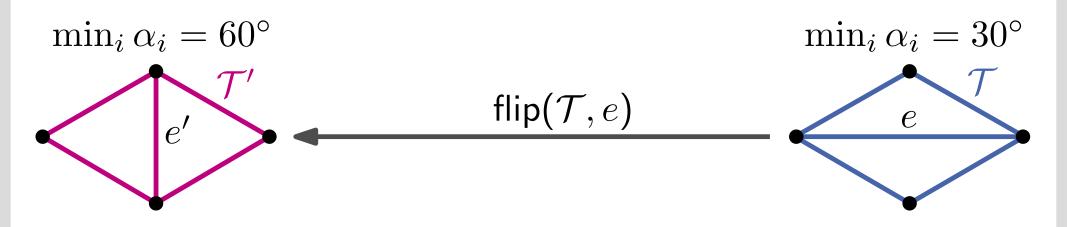
Def.: Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is called **illegal**, when the smallest angle incident to e increases after the flip of e.



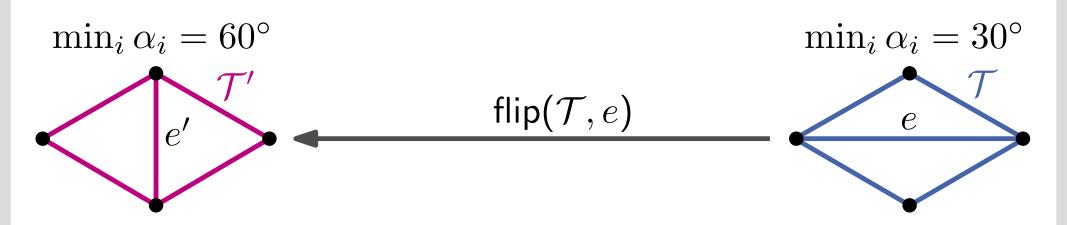
Def.: Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is called **illegal**, when the smallest angle incident to e increases after the flip of e.



Def.: Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is called **illegal**, when the smallest angle incident to e increases after the flip of e.

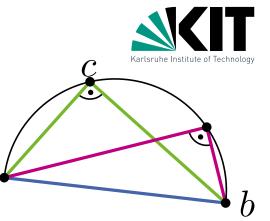


- **Def.:** Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is called **illegal**, when the smallest angle incident to e increases after the flip of e.
- **Obs.:** Let e be an illegal edge of \mathcal{T} and $\mathcal{T}' = \operatorname{flip}(\mathcal{T}, e)$. Then $A(\mathcal{T}') > A(\mathcal{T})$.



Thales's Theorem

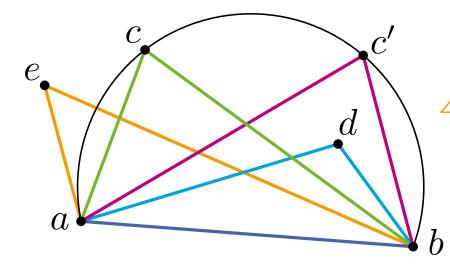
Theorem 2: If a, b and c are points on a circle where the segment ab is a diameter of the circle, then the a angle $\angle bca$ is a right angle.



Thales's Theorem

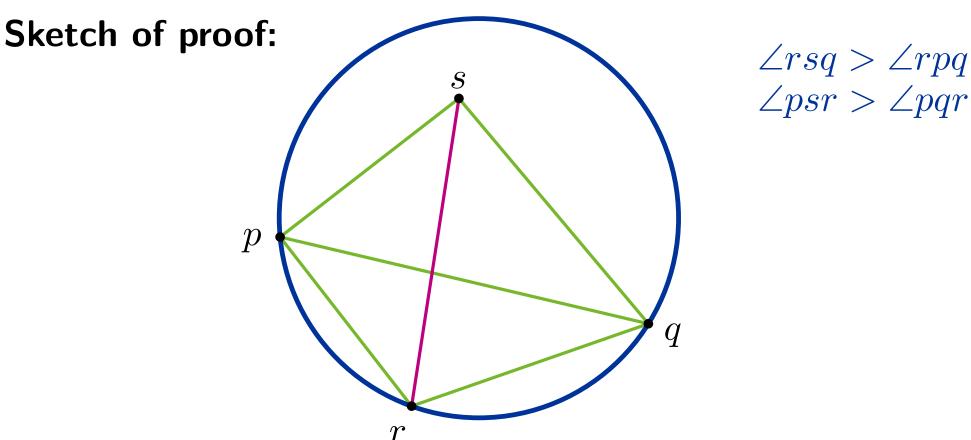
Theorem 2: If a, b and c are points on a circle where the segment ab is a diameter of the circle, then the a angle $\angle bca$ is a right angle.

Theorem 2': Consider a circle C through a, b, c. For any point c' on C on the same side of ab as c, holds that $\angle acb = \angle ac'b$. For any point d inside C holds that $\angle adb > \angle acb$, and for point e outside C, holds that $\angle aeb < \angle acb$.



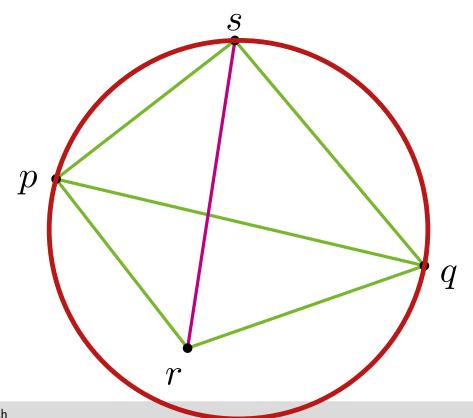
 $\angle aeb < \angle acb = \angle ac'b < \angle adb$

Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in int(C)$. If p, q, r, s form a convex quadrilateral and do not lie on a common circle ($s \notin \partial C$) then exactly one of \overline{pq} and \overline{rs} is an illegal edge.



Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in int(C)$. If p, q, r, s form a convex quadrilateral and do not lie on a common circle ($s \notin \partial C$) then exactly one of \overline{pq} and \overline{rs} is an illegal edge.

Sketch of proof:

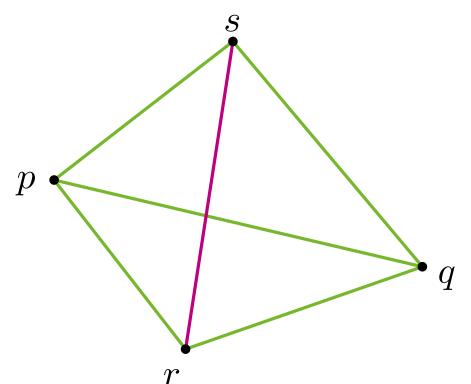


 $\begin{array}{l} \angle rsq > \angle rpq \\ \angle psr > \angle pqr \end{array}$

 $\angle prs > \angle pqs$ $\angle srq > \angle spq$

Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in int(C)$. If p, q, r, s form a convex quadrilateral and do not lie on a common circle ($s \notin \partial C$) then exactly one of \overline{pq} and \overline{rs} is an illegal edge.

Sketch of proof:

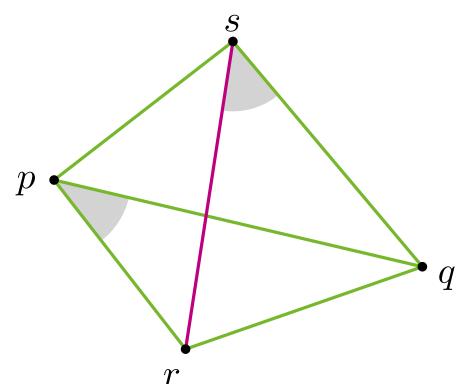


 $\begin{array}{l} \angle rsq > \angle rpq \\ \angle psr > \angle pqr \end{array}$

 $\angle prs > \angle pqs$ $\angle srq > \angle spq$

Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in int(C)$. If p, q, r, s form a convex quadrilateral and do not lie on a common circle ($s \notin \partial C$) then exactly one of \overline{pq} and \overline{rs} is an illegal edge.

Sketch of proof:



 $\begin{array}{l} \angle rsq > \angle rpq \\ \angle psr > \angle pqr \end{array}$

 $\angle prs > \angle pqs$ $\angle srq > \angle spq$

Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in int(C)$. If p, q, r, s form a convex quadrilateral and do not lie on a common circle ($s \notin \partial C$) then exactly one of \overline{pq} and \overline{rs} is an illegal edge.

- **Obs.:** The characterization is symmetric w.r.t. r and s
 - $s \in \partial C \Rightarrow \overline{pq}$ and \overline{rs} are legal
 - an illegal edge \Rightarrow quadrilateral is convex

Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in int(C)$. If p, q, r, s form a convex quadrilateral and do not lie on a common circle ($s \notin \partial C$) then exactly one of \overline{pq} and \overline{rs} is an illegal edge.

- **Obs.:** The characterization is symmetric w.r.t. r and s• $s \in \partial C \Rightarrow \overline{pq}$ and \overline{rs} are legal • an illegal edge \Rightarrow quadrilateral is convex
- **Def.:** A triangulation without illegal edges in called **legal**.

Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in int(C)$. If p, q, r, s form a convex quadrilateral and do not lie on a common circle ($s \notin \partial C$) then exactly one of \overline{pq} and \overline{rs} is an illegal edge.

- Obs.: The characterization is symmetric w.r.t. r and s
 s ∈ ∂C ⇒ pq and rs are legal
 an illegal edge ⇒ quadrilateral is convex
- **Def.:** A triangulation without illegal edges in called **legal**.

Is there always a legal triangulation?

Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in int(C)$. If p, q, r, s form a convex quadrilateral and do not lie on a common circle ($s \notin \partial C$) then exactly one of \overline{pq} and \overline{rs} is an illegal edge.

- Obs.: The characterization is symmetric w.r.t. r and s
 s ∈ ∂C ⇒ pq and rs are legal
 an illegal edge ⇒ quadrilateral is convex
- **Def.:** A triangulation without illegal edges in called **legal**.

```
while \mathcal{T} has an illegal edge e do \lfloor \operatorname{flip}(\mathcal{T}, e)
return \mathcal{T}
```


Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in int(C)$. If p, q, r, s form a convex quadrilateral and do not lie on a common circle ($s \notin \partial C$) then exactly one of \overline{pq} and \overline{rs} is an illegal edge.

- Obs.: The characterization is symmetric w.r.t. r and s
 s ∈ ∂C ⇒ pq and rs are legal
 an illegal edge ⇒ quadrilateral is convex
- **Def.:** A triangulation without illegal edges in called **legal**.

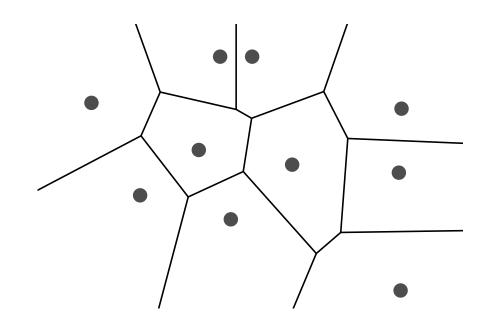
 $\begin{array}{ll} \textbf{while } \mathcal{T} \text{ has an illegal edge } e \textbf{ do} \\ & \left\lfloor \mbox{flip}(\mathcal{T}, e) \\ \textbf{return } \mathcal{T} \end{array} \right. \qquad \begin{array}{l} \mbox{terminates, since } A(\mathcal{T}) \text{ increases and} \\ \mbox{\#Triangulations is finite } (< 30^n, [Sharir, Sheffer 2011]) \end{array}$

It holds that: each angle-optimal triangulation is legal.

But is each legal triangulation also angle-optimal?

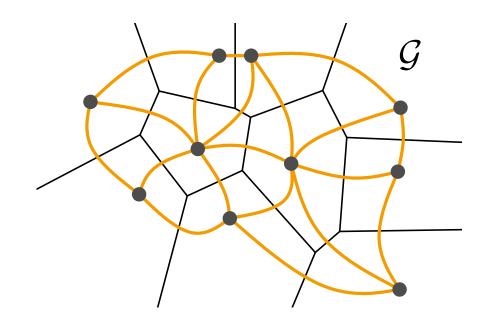
Let Vor(P) be the Voronoi-Diagram of a point set P.

Def.: The graph $\mathcal{G} = (P, E)$ with $E = \{pq \mid \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ are adjacent} \}$ is called **dual graph** of Vor(P).



Let Vor(P) be the Voronoi-Diagram of a point set P.

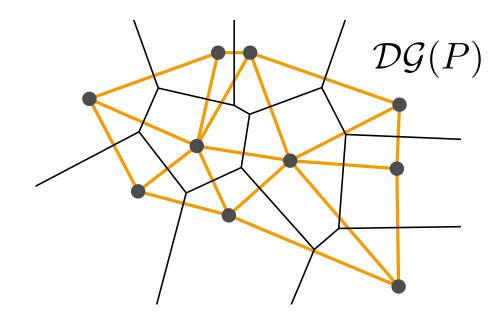
Def.: The graph $\mathcal{G} = (P, E)$ with $E = \{pq \mid \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ are adjacent} \}$ is called **dual graph** of Vor(P).



Let Vor(P) be the Voronoi-Diagram of a point set P.

Def.: The graph $\mathcal{G} = (P, E)$ with $E = \{pq \mid \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ are adjacent} \}$ is called **dual graph** of Vor(P).

Def.: The straight-line drawing of \mathcal{G} is called **Delaunay-Graph** $\mathcal{DG}(P)$.



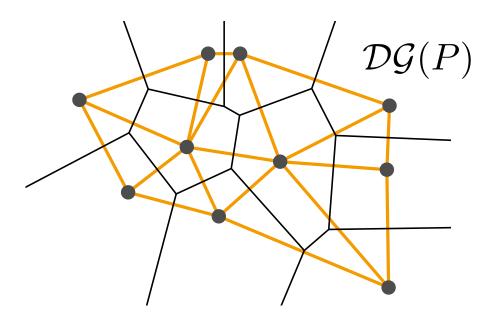
Let Vor(P) be the Voronoi-Diagram of a point set P.

Def.: The graph $\mathcal{G} = (P, E)$ with $E = \{pq \mid \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ are adjacent} \}$ is called **dual graph** of Vor(P).

Def.: The straight-line drawing of \mathcal{G} is called **Delaunay-Graph** $\mathcal{DG}(P)$.

11

Georgy Voronoi (1868–1908)



Boris Delone (1890–1980)

Theorem. 3: $\mathcal{DG}(P)$ is crossing-free.

12 Tamara Mchedlidze · Darren Strash

or

Theorem. 3: $\mathcal{DG}(P)$ is crossing-free.

Sketch of proof:

The bisector b(p,q) defines a Voronoi-edge $\Leftrightarrow \exists r \in b(p,q)$ with $C_P(r) \cap P = \{p,q\}$.

The edge pq is in $\mathcal{DG}(P)$

 \Leftrightarrow there is an empty circle $C_{p,q}$ with p and q on the boundary.

or

Theorem. 3: $\mathcal{DG}(P)$ is crossing-free.

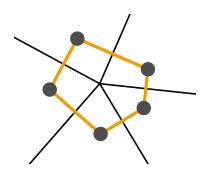
Sketch of proof:

The bisector b(p,q) defines a Voronoi-edge $\Leftrightarrow \exists r \in b(p,q)$ with $C_P(r) \cap P = \{p,q\}$.

The edge pq is in $\mathcal{DG}(P)$

 \Leftrightarrow there is an empty circle $C_{p,q}$ with p and q on the boundary.

Obs.: A Voronoi-vertex v in Vor(P) with degree k corresponds to a convex k-gon in $\mathcal{DG}(P)$.



or

Theorem. 3: $\mathcal{DG}(P)$ is crossing-free.

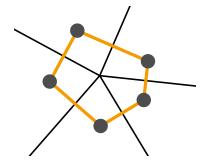
Sketch of proof:

The bisector b(p,q) defines a Voronoi-edge $\Leftrightarrow \exists r \in b(p,q)$ with $C_P(r) \cap P = \{p,q\}.$

The edge pq is in $\mathcal{DG}(P)$

 \Leftrightarrow there is an empty circle $C_{p,q}$ with p and q on the boundary.

Obs.: A Voronoi-vertex v in Vor(P) with degree k corresponds to a convex k-gon in $\mathcal{DG}(P)$.

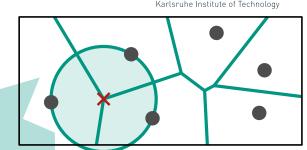


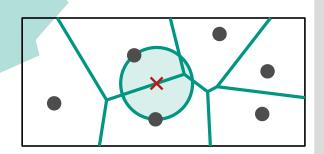
If P is in general position (no four points on a circle), then all faces of $\mathcal{DG}(P)$ are triangles \rightarrow **Delaunay-triangulation**

Characterization

Theorem about Voronoi-Diagram:

- point q is a Voronoy-vertex $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- bisector $b(p_i, p_j)$ defines a Voronoi-edge $\Leftrightarrow \exists q \in b(p_i, p_j)$ with $C_P(q) \cap P = \{p_i, p_j\}.$

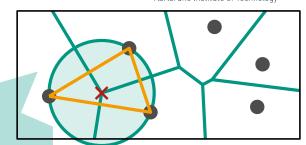


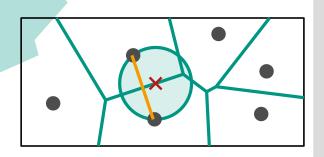


Characterization

Theorem about Voronoi-Diagram:

- point q is a Voronoy-vertex $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- bisector $b(p_i, p_j)$ defines a Voronoi-edge $\Rightarrow \exists a \in b(p_i, p_j)$ with $C_{-}(a) \cap B_{-}(a)$
 - $\Leftrightarrow \exists q \in b(p_i, p_j) \text{ with } C_P(q) \cap P = \{p_i, p_j\}.$





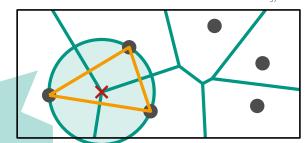
Theorem 4: Let P be a set of points.

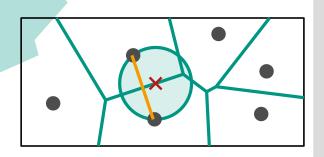
- Points p,q,r are vertices of the same face of $\mathcal{DG}(P)\Leftrightarrow$ circle through p,q,r is empty
- Edge pq is in $\mathcal{DG}(P) \Leftrightarrow$ there is an empty circle $C_{p,q}$ through p and q

Characterization

Theorem about Voronoi-Diagram:

- point q is a Voronoy-vertex $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- bisector $b(p_i, p_j)$ defines a Voronoi-edge $\Rightarrow \exists a \in b(a, a)$ with $C_{-}(a) \cap B_{-}(a)$
 - $\Leftrightarrow \exists q \in b(p_i, p_j) \text{ with } C_P(q) \cap P = \{p_i, p_j\}.$





Theorem 4: Let P be a set of points.

- Points p, q, r are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow$ circle through p, q, r is empty
- Edge pq is in $\mathcal{DG}(P) \Leftrightarrow$ there is an empty circle $C_{p,q}$ through p and q

Theorem 5: Let P be a set of points and let \mathcal{T} be a triangulation of P. \mathcal{T} is Delaunay-Triangulation \Leftrightarrow the circumcircle of each triangle has an empty interior.

Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Sketch of proof:

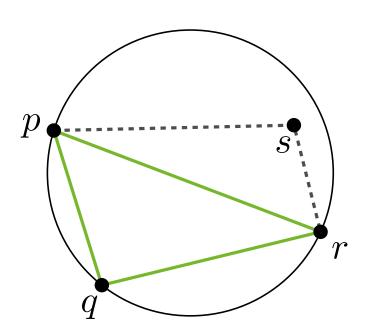
" \Leftarrow " clear; use

Lemma 1: Let Δprq and Δpqs be two triangles of \mathcal{T} and C the circumcircle of Δprq . Edge \overline{pq} is illegal iff $s \in int(C)$.

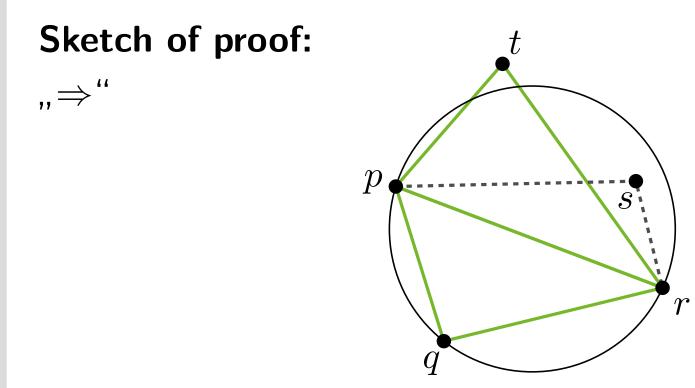
Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Sketch of proof:

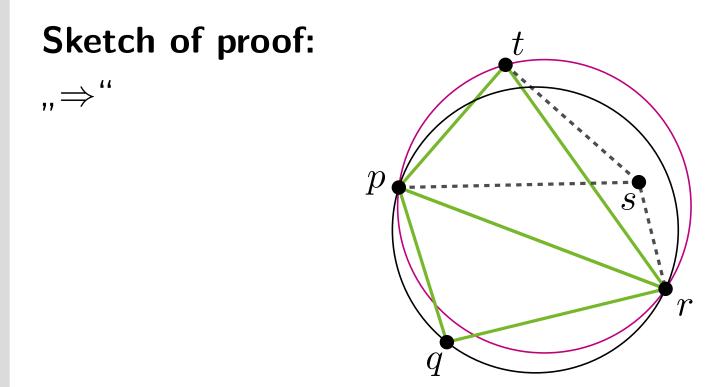
,,⇒''



Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.



Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.



Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Obs.: When P is in general position $\mathcal{DG}(P)$ is unique

Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Obs.: When P is in general position $\mathcal{DG}(P)$ is unique \Rightarrow legal triangulation is unique

Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Obs.: When P is in general position $\mathcal{DG}(P)$ is unique \Rightarrow legal triangulation is unique I know that: \mathcal{T} is angle-optimal $\Rightarrow \mathcal{T}$ is legal

Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Obs.: When P is in general position $\mathcal{DG}(P)$ is unique \Rightarrow legal triangulation is unique I know that: \mathcal{T} is angle-optimal $\Rightarrow \mathcal{T}$ is legal $\Rightarrow \mathcal{DG}(P)$ is angle-optimal!

Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Obs.: When P is in general position $\mathcal{DG}(P)$ is unique \Rightarrow legal triangulation is unique I know that: \mathcal{T} is angle-optimal $\Rightarrow \mathcal{T}$ is legal $\Rightarrow \mathcal{DG}(P)$ is angle-optimal! If P is not in general position, then for any

triangulation of a "bigger" face of $\mathcal{DG}(P)$ the minimal angles are equal (exercise!).

Summary

Theorem 7: For n points on the plane a Delaunay-triangulation can be computed in $O(n \log n)$ time (Voronoi-Diag. + Triangulation of "big" faces)

Summary

Theorem 7: For n points on the plane a Delaunay-triangulation can be computed in $O(n \log n)$ time (Voronoi-Diag. + Triangulation of "big" faces)

Corollary: For n points in general position an angle-optimal triangulation can be computed in $O(n \log n)$ time. If the points are not in general position, a triangulation with maximal smallest angle can be computed in the same $O(n \log n)$ time.

Summary

Theorem 7: For n points on the plane a Delaunay-triangulation can be computed in $O(n \log n)$ time (Voronoi-Diag. + Triangulation of "big" faces)

Corollary: For n points in general position an angle-optimal triangulation can be computed in $O(n \log n)$ time. If the points are not in general position, a triangulation with maximal smallest angle can be computed in the same $O(n \log n)$ time.

Outlook: In the general case the angle-optimal triangulation can be computed in $O(n \log n)$ time.

[Mount, Saalfeld '88]

Are there alternative approaches for the height interpolation using triangulations?

Are there alternative approaches for the height interpolation using triangulations?

The *data-independent* Delaunay-triangulations is an initial step of *data-dependent* triangulations, which start from $\mathcal{DG}(P)$ and perform edge-flips. Rippa (1990) showed that $\mathcal{DG}(P)$ minimizes *roughness* independently from the height information.

Are there alternative approaches for the height interpolation using triangulations?

The *data-independent* Delaunay-triangulations is an initial step of *data-dependent* triangulations, which start from $\mathcal{DG}(P)$ and perform edge-flips. Rippa (1990) showed that $\mathcal{DG}(P)$ minimizes *roughness* independently from the height information.

Has $\mathcal{DG}(P)$ other interesting properties?

Are there alternative approaches for the height interpolation using triangulations?

The *data-independent* Delaunay-triangulations is an initial step of *data-dependent* triangulations, which start from $\mathcal{DG}(P)$ and perform edge-flips. Rippa (1990) showed that $\mathcal{DG}(P)$ minimizes *roughness* independently from the height information.

Has $\mathcal{DG}(P)$ other interesting properties?

Yes, Delaunay-Graph contains the edges of other interesting graphs on P (see exersices). For example it holds that $\mathsf{EMST}(P) \subseteq \mathsf{Gabriel}\operatorname{-Graph}(P) \subseteq \mathcal{DG}(P)$

Are there alternative approaches for the height interpolation using triangulations?

The *data-independent* Delaunay-triangulations is an initial step of *data-dependent* triangulations, which start from $\mathcal{DG}(P)$ and perform edge-flips. Rippa (1990) showed that $\mathcal{DG}(P)$ minimizes *roughness* independently from the height information.

Has $\mathcal{DG}(P)$ other interesting properties?

Yes, Delaunay-Graph contains the edges of other interesting graphs on P (see exersices). For example it holds that $\mathsf{EMST}(P) \subseteq \mathsf{Gabriel}\operatorname{-Graph}(P) \subseteq \mathcal{DG}(P)$

Where to find further information on Voronoi-Diagrams und Delaunay-Triangulations?

Are there alternative approaches for the height interpolation using triangulations?

The *data-independent* Delaunay-triangulations is an initial step of *data-dependent* triangulations, which start from $\mathcal{DG}(P)$ and perform edge-flips. Rippa (1990) showed that $\mathcal{DG}(P)$ minimizes *roughness* independently from the height information.

Has $\mathcal{DG}(P)$ other interesting properties?

Yes, Delaunay-Graph contains the edges of other interesting graphs on P (see exersices). For example it holds that $\mathsf{EMST}(P) \subseteq \mathsf{Gabriel}\operatorname{-Graph}(P) \subseteq \mathcal{DG}(P)$

Where to find further information on Voronoi-Diagrams und Delaunay-Triangulations?

Relatively new book (2013) of Aurenhammer, Klein, Lee!

