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Sample points
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Projection
7T(p) — (pazapyao)

Interpolation 1: each point gets the height of the nearest sample point
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Projection
7T(p) — (pazapyao)

Interpolation 2: triangulate the set of sample points and interpolate on
the triangles
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What a good triangulation looks like?

Projection
7T(p) — (pwapyao)

Interpolation 2: triangulate the set of sample points and interpolate on
the triangles
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riangulation of a Point Set AT
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Def.: A triangulation of a point set P C R? is a maximal
planar subdivision with a vertex set P.
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Def.: A triangulation of a point set P C R? is a maximal
planar subdivision with a vertex set P.

Obs.:
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Def.: A triangulation of a point set P C R? is a maximal
planar subdivision with a vertex set P.

Obs.: = all internal faces are triangles
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Def.: A triangulation of a point set P C R? is a maximal
planar subdivision with a vertex set P.

Obs.: = all internal faces are triangles

m outer face is the complement of the convex hull
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riangulation of a Point Set AT
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Def.: A triangulation of a point set P C R? is a maximal
planar subdivision with a vertex set P.

Obs.: = all internal faces are triangles

m outer face is the complement of the convex hull

Theorem 1: Let P be a set of n points, not all collinear. Let
h be the number of points in CH(P).

Then any triangulation of P has t(n, h) triangles
and e(n, h) edges.
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riangulation of a Point Set AT
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Def.: A triangulation of a point set P C R? is a maximal
planar subdivision with a vertex set P.

Obs.: = all internal faces are triangles

m outer face is the complement of the convex hull

Theorem 1: Let P be a set of n points, not all collinear. Let
h be the number of points in CH(P).

Then any triangulation of P has t(n, h) triangles
and e(n, h) edges. Compute t and e
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riangulation of a Point Set AT
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Def.: A triangulation of a point set P C R? is a maximal
planar subdivision with a vertex set P.

Obs.: = all internal faces are triangles
m outer face is the complement of the convex hull

Theorem 1: Let P be a set of n points, not all collinear. Let
h be the number of points in CH(P).

Then any triangulation of P has (2n — 2 — h)
triangles and (3n — 3 — h) edges.

Delaunay-Triangulations
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Intuition: Avoid narrow triangles!
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Back to Height Interpolation AUT

stitute of Technology
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10 36
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Height 985 Height 23

Intuition: Avoid narrow triangles!

Or: maximize the smallest angle!
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Angle-optimal Triangulations AT
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Def.: Let P C R? be a set of points, 7 be a triangulation of
P and m be the number of the triangles.
A(T) = (aq,...,asm) is called angle-vector of T

where 1 < ... < 3, -

T A(T) = (60°,60°,60°,60°, 60°, 60°)
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Def.: Let P C R? be a set of points, 7 be a triangulation of
P and m be the number of the triangles.
A(T) = (aq,...,asm) is called angle-vector of T

where 1 < ... < 3, -

For two triangulations 7 and 7’ of P we define the
order of the angle-vectors A(T) > A(T") as
lexicographic order of corresponding angle sequences.

T A(T) = (60°,60°,60°,60°, 60°, 60°) T

A(T") = (30°,30°,30°, 30°, 120°, 120°)
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Angle-optimal Triangulations AT
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Def.: Let P C R? be a set of points, 7 be a triangulation of
P and m be the number of the triangles.
A(T) = (aq,...,asm) is called angle-vector of T

where 1 < ... < 3, -

For two triangulations 7 and 7’ of P we define the
order of the angle-vectors A(T) > A(T") as
lexicographic order of corresponding angle sequences.

T is called angle-optimal, if A(7) > A(T") for all
triangulations 7' of P.

T A(T) = (60°,60°,60°,60°, 60°, 60°) T

A(T") = (30°,30°,30°, 30°, 120°, 120°)

Tamara Mchedlidze - Darren Strash
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Def.: Let 7 be a triangulation. An edge e of T is called
illegal, when the smallest angle incident to e increases
after the flip of e.
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Def.: Let 7 be a triangulation. An edge e of T is called
illegal, when the smallest angle incident to e increases
after the flip of e.

min; o; = 30°

T
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Def.: Let 7 be a triangulation. An edge e of T is called
illegal, when the smallest angle incident to e increases
after the flip of e.

min; o; = 30°

flip(‘T,e) L
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Def.: Let 7 be a triangulation. An edge e of T is called
illegal, when the smallest angle incident to e increases
after the flip of e.

min; o; = 30°

¢ flip(‘T,e) L

Tamara Mchedlidze - Darren Strash Delaunay-Triangulations



7

Edge Flips AT
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Def.: Let 7 be a triangulation. An edge e of T is called
illegal, when the smallest angle incident to e increases
after the flip of e.

min; a; = 60° min; a; = 30°

¢ flip(‘T,e) L
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Def.: Let 7 be a triangulation. An edge e of T is called
illegal, when the smallest angle incident to e increases

after the flip of e.

Obs.: Let e be an illegal edge of 7 and 77 = flip(T,e).
Then A(T") > A(T).

min; a; = 60° min; a; = 30°

< flip(7, e) L
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Theorem 2:If a, b and ¢ are points on a
circle where the segment ab is a
diameter of the circle, then the @
angle Zbca 1s a right angle. b
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hales's Theorem AT
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Theorem 2:If a, b and ¢ are points on a
circle where the segment ab is a
diameter of the circle, then the @
angle Zbca 1s a right angle.

Theorem 2’: Consider a circle C' through a, b, c. For any point
¢’ on C on the same side of ab as ¢, holds that Zacb = Zac'b.
For any point d inside C holds that Zadb > Zacb, and for
point e outside C, holds that Zaeb < Zacb.

< = /ac'b < Zadb

8 Tamara Mchedlidze - Darren Strash Delaunay-Triangulations



Legal Triangulation AT
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Lemma 1: Let Apgr and Apgs be two triangles in 7 and let C
be the circle through Apgr. Then pq is illegal iff s € int(C).

If p,q,r, s form a convex quadrilateral and do not lie on a
common circle (s ¢ AC') then exactly one of pg and 75 is an
illegal edge.

Sketch of proof: /rsq> /rpq

/psr > Zpqr
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Lemma 1: Let Apgr and Apgs be two triangles in 7 and let C
be the circle through Apgr. Then pq is illegal iff s € int(C).

If p,q,r, s form a convex quadrilateral and do not lie on a
common circle (s ¢ AC') then exactly one of pg and 75 is an
illegal edge.

Sketch of proof: /rsq> /rpq

/psr > Zpqr

Zprs > £pgs
Zsrq > £spq
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Lemma 1: Let Apgr and Apgs be two triangles in 7 and let C
be the circle through Apgr. Then pq is illegal iff s € int(C).

If p,q,r, s form a convex quadrilateral and do not lie on a
common circle (s ¢ AC') then exactly one of pg and 75 is an
illegal edge.

Sketch of proof: /rsq> /rpq

/psr > Zpqr

Zprs > £pgs
Zsrq > £spq
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Lemma 1: Let Apgr and Apgs be two triangles in 7 and let C
be the circle through Apgr. Then pq is illegal iff s € int(C).

If p,q,r, s form a convex quadrilateral and do not lie on a
common circle (s ¢ AC') then exactly one of pg and 75 is an
illegal edge.

Sketch of proof: /rsq> /rpq

/psr > Zpqr

Zprs > £pgs
Zsrq > £spq
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Legal Triangulation AT
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Lemma 1: Let Apgr and Apgs be two triangles in 7 and let C
be the circle through Apgr. Then pq is illegal iff s € int(C).

If p,q,r, s form a convex quadrilateral and do not lie on a
common circle (s ¢ AC') then exactly one of pg and 75 is an
illegal edge.

Obs.: = The characterization is symmetric w.r.t. r and s

s s € 0C = pq and 75 are legal
= an illegal edge = quadrilateral is convex
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Legal Triangulation AT
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Lemma 1: Let Apgr and Apgs be two triangles in 7 and let C
be the circle through Apgr. Then pq is illegal iff s € int(C).

If p,q,r, s form a convex quadrilateral and do not lie on a
common circle (s ¢ AC') then exactly one of pg and 75 is an
illegal edge.

Obs.: = The characterization is symmetric w.r.t. r and s
s s € 0C = pq and 75 are legal
= an illegal edge = quadrilateral is convex

Def.: A triangulation without illegal edges in called legal.
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Legal Triangulation AT
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Lemma 1: Let Apgr and Apgs be two triangles in 7 and let C
be the circle through Apgr. Then pq is illegal iff s € int(C).

If p,q,r, s form a convex quadrilateral and do not lie on a
common circle (s ¢ AC') then exactly one of pg and 75 is an
illegal edge.

Obs.: = The characterization is symmetric w.r.t. r and s
s s € 0C = pq and 75 are legal
= an illegal edge = quadrilateral is convex

Def.: A triangulation without illegal edges in called legal.

Is there always a legal triangulation?
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Legal Triangulation AT
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Lemma 1: Let Apgr and Apgs be two triangles in 7 and let C
be the circle through Apgr. Then pq is illegal iff s € int(C).

If p,q,r, s form a convex quadrilateral and do not lie on a
common circle (s ¢ AC') then exactly one of pg and 75 is an
illegal edge.

Obs.: = The characterization is symmetric w.r.t. r and s
s s € 0C = pq and 75 are legal
= an illegal edge = quadrilateral is convex

Def.: A triangulation without illegal edges in called legal.

while 7 has an illegal edge e do
- flip(T,e)

return 7
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Legal Triangulation AT
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Lemma 1: Let Apgr and Apgs be two triangles in 7 and let C
be the circle through Apgr. Then pq is illegal iff s € int(C).

If p,q,r, s form a convex quadrilateral and do not lie on a
common circle (s ¢ AC') then exactly one of pg and 75 is an
illegal edge.

Obs.: = The characterization is symmetric w.r.t. r and s
s s € 0C = pq and 75 are legal
= an illegal edge = quadrilateral is convex

Def.: A triangulation without illegal edges in called legal.

while 7 has an illegal edge e do

L flip(T, e) terminates, since A(7) increases and
return T #Tr|angU|at|OnS |S f|n|te (< 30”, [Sharir, Sheffer 2011])

9-9 Tamara Mchedlidze - Darren Strash Delaunay-Triangulations



Reverse statement? QAT
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It holds that: each angle-optimal triangulation is legal.

But is each legal triangulation also angle-optimal?
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Let Vor(P) be the Voronoi-Diagram of a point set P.

Def.: The graph G = (P, E) with
E ={pq | V(p) and V(q) are adjacent}
is called dual graph of Vor(P).
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Let Vor(P) be the Voronoi-Diagram of a point set P.

Def.: The graph G = (P, E) with
E ={pq | V(p) and V(q) are adjacent}
is called dual graph of Vor(P).
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Let Vor(P) be the Voronoi-Diagram of a point set P.

Def.: The graph G = (P, E) with
E ={pq | V(p) and V(q) are adjacent}
is called dual graph of Vor(P).

Def.: The straight-line drawing of G is called
Delaunay-Graph DG(P).
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Let Vor(P) be the Voronoi-Diagram of a point set P.

Def.: The graph G = (P, E) with
E ={pq | V(p) and V(q) are adjacent}
is called dual graph of Vor(P).

Def.: The straight-line drawing of G is called
Delaunay-Graph DG(P).

Georgy Voronoi Boris Delone
(1868—-1908) (1890-1980)
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Properties QAT
Theorem. 3: DG(P) is crossing-free.
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Properties ST

Theorem. 3: DG(P) is crossing-free.

Sketch of proof:
The bisector b(p, q) defines a Voronoi-edge
< dr € b(p, q) with Cp(r)N P = {p,q}.

of The edge pq is in DG(P)
& there is an empty circle C), ;, with p and ¢ on the boundary.

Delaunay-Triangulations
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Properties QAT
Theorem. 3: DG(P) is crossing-free.

Sketch of proof:

The bisector b(p, q) defines a Voronoi-edge
< dr € b(p, q) with Cp(r)N P = {p,q}.

of The edge pq is in DG(P)
& there is an empty circle C), ;, with p and ¢ on the boundary.

Obs.: A Voronoi-vertex v in Vor(P) with degree k
corresponds to a convex k-gon in DG(P).

s

/N
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Properties QAT
Theorem. 3: DG(P) is crossing-free. gy

Sketch of proof:

The bisector b(p, q) defines a Voronoi-edge
< dr € b(p, q) with Cp(r)N P = {p,q}.

of The edge pq is in DG(P)
& there is an empty circle C), ;, with p and ¢ on the boundary.

Obs.: A Voronoi-vertex v in Vor(P) with degree k
corresponds to a convex k-gon in DG(P).

S /‘ If P is in general position (no four points
¢ o — on acircle), then all faces of DG(P) are
/ ° \ triangles — Delaunay-triangulation

12 Tamara Mchedlidze - Darren Strash Delaunay-Triangulations
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Theorem about Voronoi-Diagram: o
= point ¢ is a Voronoy-vertex
< |Cp(q) N P| >3, °
= bisector b(p;,p;) defines a Voronoi-edge
& dq € b(ps,pj) with Cp(q) NP = {p;,p;}. o
¢ o

13 Tamara Mchedlidze - Darren Strash Delaunay-Triangulations
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Characterization \‘(lT

Theorem about Voronoi-Diagram:

= point ¢ is a Voronoy-vertex :
< |Cp(q)N Pl > 3, )

= bisector b(p;,p;) defines a Voronoi-edge
& dq € b(ps,pj) with Cp(q) NP = {p;,p;}. o
¢ o

Theorem 4: Let P be a set of points.
= Points p, g, r are vertices of the same face of DG(P) &

circle through p, g, r is empty
= Edge pqisin DG(P) <
there is an empty circle C), , through p and q

Delaunay-Triangulations

Tamara Mchedlidze - Darren Strash
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Characterization \‘(lT

Theorem about Voronoi-Diagram:

= point ¢ is a Voronoy-vertex
< |Cp(g) N P| >3,

= bisector b(p;,p;) defines a Voronoi-edge
& dq € b(ps,pj) with Cp(q) NP = {p;,p;}. o

Theorem 4: Let P be a set of points.

= Points p, g, r are vertices of the same face of DG(P) &

circle through p, g, r is empty
= Edge pqisin DG(P) <
there is an empty circle C), , through p and q

Theorem 5: Let P be a set of points and let T be a
triangulation of P. T is Delaunay-Triangulation
& the circumcircle of each triangle has an empty

Interior.

Tamara Mchedlidze - Darren Strash
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Legality and Delaunay- Triangulation QAT
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Theorem 6: Let P be a set of points and 7 a triangulation
of P. T is legal < 7T is Delaunay-Triangulation.

Sketch of proof:
<" clear: use

Lemma 1: Let Aprqg and Apgs be two triangles of 7 and C' the
circumcircle of Aprq. Edge pq is illegal iff s € int(C').
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Legality and Delaunay- Triangulation QAT
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Theorem 6: Let P be a set of points and 7 a triangulation
of P. T is legal < 7T is Delaunay-Triangulation.

Sketch of proof:

”j
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Legality and Delaunay- Triangulation QAT
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Theorem 6: Let P be a set of points and 7 a triangulation
of P. T is legal < 7T is Delaunay-Triangulation.

Sketch of proof: ¢

”j
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Legality and Delaunay- Triangulation QAT

tttttttttttttttttttttttttttttt

Theorem 6: Let P be a set of points and 7 a triangulation
of P. T is legal < 7T is Delaunay-Triangulation.

Sketch of proof: ¢

”j
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Legality and Delaunay- Triangulation QAT

tttttttttttttttttttttttttttttt

Theorem 6: Let P be a set of points and 7 a triangulation
of P. T is legal < 7T is Delaunay-Triangulation.

Obs.:  When P is in general position DG(P) is unique
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Legality and Delaunay-Triangulation AT

tttttttttttttttttttttttttttttt

Theorem 6: Let P be a set of points and 7 a triangulation
of P. T is legal < 7T is Delaunay-Triangulation.

Obs.:  When P is in general position DG(P) is unique
= legal triangulation is unique
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Legality and Delaunay-Triangulation AT
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Theorem 6: Let P be a set of points and 7 a triangulation
of P. T is legal < 7T is Delaunay-Triangulation.

Obs.:  When P is in general position DG(P) is unique

= legal triangulation is unique
| know that: T is angle-optimal = 7T is legal
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Legality and Delaunay-Triangulation AT

tttttttttttttttttttttttttttttt

Theorem 6: Let P be a set of points and 7 a triangulation
of P. T is legal < 7T is Delaunay-Triangulation.

Obs.:  When P is in general position DG(P) is unique

= legal triangulation is unique
| know that: T is angle-optimal = 7T is legal
= DG(P) is angle-optimal
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Legality and Delaunay-Triangulation AT

tttttttttttttttttttttttttttttt

Theorem 6: Let P be a set of points and 7 a triangulation
of P. T is legal < 7T is Delaunay-Triangulation.

Obs.:  When P is in general position DG(P) is unique
= legal triangulation is unique
| know that: T is angle-optimal = 7T is legal
= DG(P) is angle-optimal
If P is not in general position, then for any

triangulation of a , bigger" face of DG(P) the
minimal angles are equal (exercise!).

14-9 Tamara Mchedlidze - Darren Strash Delaunay-Triangulations



Summary QAT

tttttttttttttttttttttttttttttt

Theorem 7: For n points on the plane a
Delaunay-triangulation can be computed in

O(nlogn) time
(Voronoi-Diag. 4+ Triangulation of , big" faces)
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Theorem 7: For n points on the plane a
Delaunay-triangulation can be computed in
O(nlogn) time
(Voronoi-Diag. 4+ Triangulation of , big" faces)

Corollary: For n points in general position an angle-optimal
triangulation can be computed in O(nlogn) time.
If the points are not in general position, a
triangulation with maximal smallest angle can be
computed in the same O(nlogn) time.
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Summary QAT
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Theorem 7: For n points on the plane a
Delaunay-triangulation can be computed in
O(nlogn) time
(Voronoi-Diag. 4+ Triangulation of , big" faces)

Corollary: For n points in general position an angle-optimal
triangulation can be computed in O(nlogn) time.
If the points are not in general position, a
triangulation with maximal smallest angle can be
computed in the same O(nlogn) time.

Outlook: In the general case the angle-optimal triangulation

can be computed in O(nlogn) time.
[Mount, Saalfeld '88]
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Discussion AT

Karlsruhe Institute of Technology

Are there alternative approaches for the height interpolation using
triangulations?
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Are there alternative approaches for the height interpolation using
triangulations?

The data-independent Delaunay-triangulations is an initial step of
data-dependent triangulations, which start from DG(P) and perform
edge-flips. Rippa (1990) showed that DG(P) minimizes roughness
independently from the height information.
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Are there alternative approaches for the height interpolation using
triangulations?

The data-independent Delaunay-triangulations is an initial step of
data-dependent triangulations, which start from DG(P) and perform
edge-flips. Rippa (1990) showed that DG(P) minimizes roughness
independently from the height information.

Has DG (P) other interesting properties?
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Are there alternative approaches for the height interpolation using
triangulations?

The data-independent Delaunay-triangulations is an initial step of
data-dependent triangulations, which start from DG(P) and perform
edge-flips. Rippa (1990) showed that DG(P) minimizes roughness
independently from the height information.

Has DG (P) other interesting properties?

Yes, Delaunay-Graph contains the edges of other interesting graphs on P
(see exersices). For example it holds that
EMST(P) C Gabriel-Graph(P) C DG(P)
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Are there alternative approaches for the height interpolation using
triangulations?

The data-independent Delaunay-triangulations is an initial step of
data-dependent triangulations, which start from DG(P) and perform
edge-flips. Rippa (1990) showed that DG(P) minimizes roughness
independently from the height information.

Has DG(P) other interesting properties?

Yes, Delaunay-Graph contains the edges of other interesting graphs on P

(see exersices). For example it holds that
EMST(P) C Gabriel-Graph(P) C DG(P)

Where to find further information on Voronoi-Diagrams und
Delaunay-Triangulations?
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Are there alternative approaches for the height interpolation using
triangulations?

The data-independent Delaunay-triangulations is an initial step of
data-dependent triangulations, which start from DG(P) and perform
edge-flips. Rippa (1990) showed that DG(P) minimizes roughness
independently from the height information.

Has DG(P) other interesting properties?

Yes, Delaunay-Graph contains the edges of other interesting graphs on P

(see exersices). For example it holds that
EMST(P) C Gabriel-Graph(P) C DG(P)

Where to find further information on Voronoi-Diagrams und

Hier Klicken Blick ins Buch!

Delaunay- Triangulations? o s

DELAUNAY TRIANGULATIONS

am

Relatively new book (2013) of Aurenhammer, Klein, Lee!
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